
Context Switching Time and Memory Footprint Comparison of Xilkernel and

µC/OS-II on MicroBlaze

Gökhan U!urel1 and Cüneyt F. Bazlamaçcı 2

1Dept. of Image Processing, MGEO Division, Aselsan Inc. Ankara, Turkey

gugurel@mgeo.aselsan.com.tr
2Dept. of Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey

cuneytb@metu.edu.tr

Abstract

Using soft processors is an increasingly encountered trend in

real-time embedded system design. If a system uses a field

programmable gate array (FPGA) platform, one can save

area, power, money and more by embedding a soft processor

onto this FPGA platform. Another trend is using a real time

operating system (RTOS) for microprocessors or

microcontrollers in real-time embedded systems. RTOSs

help software people in meeting the critical deadlines of the

real-time environment with their deterministic and

predictable behavior. In this paper, we first discuss the

advantages and disadvantages of using a soft processor and

give a brief description of Xilinx’s soft processor

MicroBlaze. We then make a simple comparison of

standalone (having no RTOS) systems with systems running

an RTOS and give a brief introduction of two existing

RTOSs, namely µC/OS-II and Xilkernel and the benchmark

criteria for comparing these. We finally compare µC/OS-II

and Xilkernel over the MicroBlaze platform in terms of their

context switching times and memory footprints.

1. Introduction

Nowadays, more and more embedded systems are using field

programmable gate arrays (FPGAs) to control and process data

by making use of inherent parallelism and flexibility concepts of

FPGAs. Designers using FPGAs can choose and implement the

exact amount and type of peripherals that are needed for the

requirements of their application, having also the freedom of

changing them while the design process is continuing. Suppose

that a system designer prepares the requirements of an incoming

project before the design phase of the product as usual. There is

always a high possibility that these requirements are changed by

the customer after the design phase starts. If the system

designers decide to use for example a microprocessor of a

particular type at the beginning of the project, software

engineers may experience difficulties to fulfill the incoming

requirements later because of the inflexible hardware

architecture of this particular microprocessor. By using FPGAs

on the other hand, software of the product may be protected and

may be implemented in a processor independent way and the

designers may not suffer from processor obsolescence.

If the decision is to use FPGAs in a project, designers can

have more advantages by opting for soft processors embedded in

FPGAs. Today’s embedded systems must be power-efficient,

sufficiently small and above all, cheap, to be commercially

viable. If an embedded design uses a microprocessor, one needs

to have an extra flash memory and RAM for booting the

software when the system is powered up. However, FPGAs have

built-in flash memory and RAM, so designers can save area,

power and money by not using such extra peripherals. As a

matter of fact, if a standard processor is sufficient to fulfill the

requirements of an embedded project, it may be wise to use it.

But if an FPGA is already employed for some other purposes

then it may be cheaper and more area-efficient to use an

embedded processor in the design [1].

Using an embedded soft processor on the other hand has

some disadvantages. Because of the integration of the hardware

and software platform design, the design tools are more complex

and relatively immature compared to standard processor design

tools.

Using a real time operating system (RTOS) on processors is

another trend that designers increasingly follow due to RTOSs’

deterministic behavior and efficient resource management

characteristics. Ability to create tasks to handle and distribute

huge sized codes, existence of scheduling algorithms to manage

the tasks and efficient interrupt handling and faster memory

allocation are some of the many advantages of using an RTOS.

RTOS comparison according to different benchmark criteria

is useful for those who want to use RTOSs on their systems but

who are not sure which one to use. Designers choose an

appropriate RTOS for their design by considering their

requirements of course. For example, if memory is critical, it is

wise to choose an RTOS with the lowest memory footprint

specification. There are various benchmark criteria in the

literature for RTOSs defined for various purposes but we believe

that there is not enough research done on porting these criteria to

a specific processor to evaluate the performance of RTOSs

according to these ported criteria. In [2], 16 RTOSs are

evaluated according to RTOS datasheets and websites, four of

which are then shortlisted according to the benchmark criteria

defined by the author. This shortlist of RTOSs is then finally

compared on a small scale microprocessor.

If you are a soft processor user and decide to use an RTOS

on your processor, your chance of finding a survey including a

detailed comparison of RTOS products on soft processors is

even lower. In this paper, two RTOS candidates that can run on

MicroBlaze are compared according to their context switching

times and memory footprint data.

The outline of the paper is as follows. In Section 2,

MicroBlaze is introduced briefly. Comparison of standalone

(having no RTOS) systems with systems running an RTOS is

given in Section 3. In Section 4, µC/OS-II and Xilkernel are

introduced, and benchmark criteria for comparing these RTOSs

are discussed. Section 5 gives the comparison results of the

context switching times and memory footprint data of µC/OS-II

and Xilkernel and section 6 finally presents the conclusions.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

52

2. MicroBlaze

MicroBlaze is Xilinx’s soft CPU core implemented using

FPGA logic cells. Having a rich instruction set optimized for

embedded applications and 70 configuration options, designers

can create either a very small footprint embedded

microcontroller or a high performance embedded computer

running various RTOSs [3]. There are various options that affect

the performance of MicroBlaze. ‘Area-optimized’ MicroBlaze

occupies less logic cells in FPGA, leaving more cells to other

peripherals. ‘Performance-optimized’ MicroBlaze is designed

for applications that demand a faster processor. In Table 1,

performance data of MicroBlaze v8.10a is presented, which may

be used to compare a ‘soft’ processor’s performance with a

‘hard’ one.

Table 1. MicroBlaze Processor v8.10 Performance Data [3]

Microcontroller Configuration

MicroBlaze with local memory and debugger,

UART, timer

Performance-Optimized

MicroBlaze
 Area-Optimized

Virtex-6 FPGA (-3)

307 MHz 241 MHz

(5788 LUTs) (5118 LUTs)

Spartan-6 FPGA (-3)

154 MHz 131 MHz

(3157 LUTs) (2447 LUTs)

3. Standalone versus ‘with RTOS’ option

Real-time embedded systems must process information and

give a response to outside world within a critical specified

interval. Handling interrupts and switching from task to task

should be as fast as possible to meet the hard requirements of

real time constraints. If a real-time system with very ‘loose’

requirements is under consideration, software engineers tend to

use ‘endless loops’ in their architecture [4]. For clarifying

‘loose’ requirements, one can say that such a system has a

limited interaction with the outside world and does not have

strict timing requirements. However, when a software designer

use ‘endless loops’ in the solution due to ‘loose requirements’,

he/she should be aware that interrupts can only be polled at each

execution of the loop leading to a slower response to the outside

world.

If the timing requirements are much tighter, use of ‘endless

loops’ strategy might not be possible. Faster response times are

needed then for outside world interaction, which may not be

possible by using ‘endless loops’. Also thousands or maybe

more lines of code make it hard to control the software. Bugs

appear more frequently and they are hard to detect as code size

grows. This is the point where software engineers need

something else to distribute the duty of the overall software to

smaller but specialized units and ‘control’ time in a more

reliable and efficient manner.

A standalone system possesses a processor, which has no

operating system running on it. By running an RTOS on such a

processor, the resources of the embedded system might be

managed more efficiently. Using an RTOS, ‘tasks’ can be

created to perform the duty. Priorities can be assigned to these

tasks, i.e., software engineers may decide which functions of

their software are more important than others. Another feature

of RTOSs named as semaphores increase the predictability of

the software by helping in switching the tasks safely. Each

RTOS company provides a different set of application

programmers interfaces (APIs), but in summary, nearly all of

these provide fast memory allocation, preemptive scheduling

and deterministic latency. The more software engineers have

precise information about what’s going on in their systems, the

more their software becomes reliable.

4. Xilkernel vs !C/OS-II

There are many third-party companies giving RTOS support

for Xilinx soft processor MicroBlaze. In Table 2, a list of some

third-party companies that supports MicroBlaze and their RTOS

products are given [3].

Table 2. Third-Party RTOS Companies Supporting MicroBlaze

Company Product

eSOL Co., Ltd
PrKernel

(µITRON4.0)

Express Logic ThreadX®

Mentor Graphics ESD Nucleus Plus

Micriµm µC/OS-II

MiSPO NORTi/ulTRON

PetaLogix
uClinux and

Petalinux 2.6

 Apart from these, Xilinx has its own RTOS, named Xilkernel,

for MicroBlaze. The most important advantage of using

Xilkernel is that it is shipped with Xilinx and is therefore highly

integrated into the design tools of Xilinx, making it possible to

configure and build an embedded system using Xilkernel in

minutes [5].

 µC/OS-II is also one of the popular RTOSs among companies

that are supporting MicroBlaze. It is easily portable to

MicroBlaze and the board support package of µC/OS-II can be

ported to any MicroBlaze project with little modification.

µC/OS-II is widely used in industry and also used for research

purposes on RTOSs.

 There are various benchmark criteria for comparing RTOSs.

In [2], these criteria are summarized as; language support, tool

compatibility, system service APIs, memory footprint (ROM

and RAM usage), performance, device drivers, OS-awareness

debugging tools, technical support, source/object code

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

53

distribution, licensing scheme and company reputation.

However, we believe that MicroBlaze needs its own specific

benchmark criteria in order to be able to compare RTOSs on

MicroBlaze. In this paper, we compare only the context-

switching and memory footprint performance of Xilkernel and

µC/OS-II as a starting point. Context-switching time is the time

between the last instruction of one task and the first instruction

of the next task. It can be interpreted as the overhead that an

RTOS cause for switching between tasks. Memory footprint

data is the size of the RAM and ROM spaces needed for RTOSs

to use for running accurately. The more APIs that RTOSs

support, the bigger the memory footprint data is. To form a

rational comparison in terms of memory footprint, both RTOSs

must have the exact features enabled, thus size of codes of the

same features can be compared. As future work, a detailed

benchmarking list for MicroBlaze needs to be created and all

RTOSs supporting MicroBlaze should be compared using these

criteria.

5. Results

 In the following, our experimental setup (Fig. 1) is briefly

described.

Fig. 1. Experimental setup

 Our board consists of an FPGA (Xilinx Spartan 3AN) and an

additional 1Mbit SRAM to be used for the total memory need of

the application project on MicroBlaze. FPGA code is

downloaded to the board via the JTAG connector of the board.

FPGA code does not change if there is no change on the

hardware design of MicroBlaze project, so debugging the

software is done by simply downloading the software code to

the SRAM every time the code is updated.

 On MicroBlaze platform, context-switching performance of

Xilkernel and µC/OS-II is compared using the measurement

method in Table 3.

 We ran this measurement algorithm for 30 seconds for both

RTOSs on MicroBlaze and determined the number of context

switching operations occurred during this time for both RTOSs

separately. This measurement technique also contains the time

consumed by those functions that help to switch control between

tasks. However switching task functions can spend varying

times on Xilkernel and µC/OS-II, which is the drawback of our

measurement method that needs to be noted for future works.

On µC/OS-II, “OSTaskSuspend” and “OSTaskResume” system

calls are used for the purpose of switching tasks.

Table 3. Measurement method of context-switching

Task1 (Higher Priority) Task2 (Lower Priority)

Running Sleeping

Switch control to Task2 Sleeping

Sleeping Running

Sleeping
When Task2 starts to run,

switch control back to Task1

Running Sleeping

 On Xilkernel, which uses POSIX thread architecture, there is

no system call to suspend and resume a task. Semaphores,

mutexes and conditional variables can be used for scheduling

tasks. We chose semaphores in our case to switch the tasks.

 Another important note is about running frequencies of the

RTOSs and the MicroBlaze. Both RTOSs are configured to run

on 1 KHz while task stack sizes are the same. Xilkernel’s

maximum operating frequency is 1 KHz, which is the main

reason of choosing the common running frequency of RTOSs as

1KHz. MicroBlaze operating frequency is 80 MHz and both

RTOSs run on a MicroBlaze which is generated with the same

synthesis options on ISE (Xilinx FPGA design tool) such as

optimization goal, optimization effort and performing timing-

driven packing.

 After running the benchmark code for both RTOSs, the

results that are presented in Table 4 are obtained.

Table 4. Context Switching Count of Xilkernel and µC/OS-II

Xilkernel µC/OS-II

2.190.150 360.596

 We then conclude that Xilkernel performs the switching task

functionality six times faster than µC/OS-II. It is hard to give

exact time values in context switching comparisons since timing

depends on processor speed, architecture of the processor

(especially on soft processors like MicroBlaze) and the lack of

support of RTOS timers for accurate results. Both RTOSs

support timers that measure time in terms of “OS Ticks” which

then leaves us with a bad resolution while working on

frequencies such as 1 KHz.

 It may also be proposed that both RTOSs should use

semaphores when switching tasks for a more reliable

comparison. If semaphores are used on µC/OS-II however,

performance figures do not get any better, which leads us to the

results in Table 5.

Table 5. Context Switching Count of Xilkernel and µC/OS-II

when µC/OS-II uses semaphore control

Xilkernel µC/OS-II

2.190.150 290.220

 In terms of memory footprint data, both RTOSs have no

problem of fitting into memory since codes of RTOSs reside in

the additional 1Mbit SRAM on our board. In order to compare

memory footprint data, compiled sizes of a sample test code will

be given for both RTOSs. Given compiled code size data

includes the user code for testing purposes and the static code of

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

54

RTOSs’ features. Sample test code is a simple endless loop and

negligible in size, approximately the same for both test codes, so

one may think that the data presented shows only the size of the

static codes of RTOSs. For a meaningful comparison, all the

unnecessary features that are not used in the test code (like

mailboxes, message queues, etc.) are disabled.

 Two different cases are generated and measured. First test

code is a sample code in which RTOSs have the semaphore

feature enabled. Second test code is the same sample code in

which RTOSs don’t have the semaphore feature enabled.

Namely, both RTOSs are compared according to their memory

footprint with semaphore feature enabled and then disabled.

Results are given in Table 6.

Table 6. Memory Footprint Data Results

Semaphore Feature Enabled

text data bss dec hex

Xilkernel 23918 468 28562 52948 ced4

µC/OS-II 16938 352 31838 49128 bfe8

Semaphore Feature Disabled

text data bss dec hex

Xilkernel 20010 468 27022 47500 b98c

µC/OS-II 15978 352 31838 48168 bc28

 We conclude that, two RTOSs don’t have much of a

difference in terms of memory footprint. Interpreting the results,

we may state that Xilkernel’s semaphore feature code size is

nearly six times bigger than µC/OS-II’s semaphore feature code

size. We may also state that all the code sizes mentioned in

Table 6, won’t fit into Xilinx Spartan 3AN FPGA’s internal

RAMs. If one wants to use one of the RTOSs above on

MicroBlaze running on Spartan 3AN, an external memory

should be placed on the board.

6. Conclusion

 Designers of embedded systems are considering use of a soft

processor option more frequently since they feel, of course

depending on the application, free to add or remove peripherals

according to the requirements of the project. Also processor

performance can be tuned according to the needs and

components on the board can be reduced. Processor

obsolescence is also not a problem anymore. If the requirements

force the designer to manage hard timing constraints on running

tasks and to have more precise latencies in terms of context

switching and interrupts, designers are choosing RTOS solution

increasingly. Selecting an RTOS that most suits the

requirements of a project should not be difficult for a designer,

which means, no time should be wasted by the designer for

researching all of the available RTOSs. A comparison of

available RTOSs using the benchmark criteria that fulfill

designers’ need will accelerate their work and provoke RTOS

companies to strengthen their products on areas where they are

weak. In this paper, two important RTOS products on

MicroBlaze are compared according to critical benchmark

criteria, namely the context switching time and memory

footprint. Xilkernel is turned out to be faster than µC/OS-II on

context switching times as a result. But there is no clear winner

on memory footprint comparison. For future work, the

benchmark criteria should be enriched by combining the

literature with the requirements that soft processor usage

imposes. Also, all of the RTOS products that support

MicroBlaze should be added to the comparison.

7. References

[1] B. Fletcher, “FPGA Embedded Processors, Revealing True

System Performance”, in Embedded Systems Conference,

San Francisco, USA, ETP-367, March 2005. (available at:

http://www.xilinx.com/products/design_resources/proc_cen

tral/resource/ETP-367paper.pdf)

[2] T. Anh and S. Tan, "Real-Time Operating Systems For

Small Microcontrollers", IEEE Micro, vol. 29, no.5, pp. 30-

45, Sept.-Oct, 2009.

[3] Xilinx, “MicroBlaze Soft Processor Core”,

http://www.xilinx.com/tools/microblaze.htm.

[4] D. Kalinsky, "Context Switch", Embedded Systems

Programming, pp. 94-105, February, 2001.

[5] A. Rönnholm, “Evaluation of Real-Time Operating

Systems for Xilinx MicroBlaze CPU”, M.S. Thesis,

Department of Computer Science and Electronics,

M¨alardalens University, Vasteras, Sweden, 2006.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

55

