
HARDWARE IMPLEMENTATION OF A FEEDFORWARD NEURAL
NETWORK USING FPGAs

Aydoğan Savran, Serkan Ünsal
Ege University, Department of Electrical and Electronics Engineering

savran@bornova.ege.edu.tr, userkan@eng.ege.edu.tr

Abstract

In this paper a hardware implementation of a neural network
using Field Programmable Gate Arrays (FPGA) is presented.
A digital system architecture is designed to realize a
feedforward multilayer neural network. The designed
architecture is described using Very High Speed Integrated
Circuits Hardware Description Language (VHDL) and
implemented in an FPGA chip. The design is verified on an
FPGA demo board.

I. INTRODUCTION

Artificial Neural Networks have been widely used in many
fields. A great variety of problems can be solved with
ANNs in the areas of pattern recognition, signal processing,
control systems etc. Most of the work done in this field
until now consists of software simulations, investigating
capabilities of ANN models or new algorithms. But
hardware implementations are also essential for
applicability and for taking the advantage of neural
network’s inherent parallelism.

There are analog, digital and also mixed system
architectures proposed for the implementation of ANNs.
The analog ones are more precise but difficult to implement
and have problems with weight storage. Digital designs
have the advantage of low noise sensitivity, and weight
storage is not a problem. With the advance in
programmable logic device technologies, FPGAs has
gained much interest in digital system design. They are user
configurable and there are powerful tools for design entry,
syntheses and programming.

ANNs are biologically inspired and require parallel
computations in their nature. Microprocessors and DSPs are
not suitable for parallel designs. Designing fully parallel
modules can be available by ASICs and VLSIs but it is
expensive and time consuming to develop such chips. In
addition the design results in an ANN suited only for one
target application. FPGAs not only offer parallelism but
also flexible designs, savings in cost and design cycle.

II. APPLICATION

The application selected in this work is a three input XOR
problem. A 3-5-1 backpropagation network (three neurons
in the input layer, five neurons in the hidden layer and one
neuron in the output layer) is implemented on a XILINX
Spartan II chip with 200,000 typical gate count. First the
network is trained in software using MATLAB Neural

Networks Processing Toolbox. Then calculated weights
are written to a VHDL Package file. This file, along
with other VHDL coding is compiled, synthesized and
implemented with Xilinx ISE software tools.
Simulations are made with ModelSim. Finally the
design is realized on a Digilent DIIE demo board having
the Xilinx FPGA chip.

III. DATA REPRESENTATION

Before beginning a hardware implementation of an
ANN, a number format (fixed, floating point etc.) must
be considered for the inputs, weights and activation
function. And also the precision (number of bits) should
be considered. Increasing the precision of the design
elements significantly increases the resources used.

Accuracy has a great impact in the learning phase; so
the precision of the numbers must be as high as possible
during training. However during the propagation phase,
lower precisions are acceptable [5]. The resulting errors
will be small enough to be neglected especially in
classification applications [1, 3, 4].

In the XOR problem we applied, the input space is
between –1 and 1. The training resulted in weights
residing between –2 and 2. We chose 8-bit precision for
the system to cover the [-2,2) range, resulting in a
precision of 1/64. Table 1 shows various numbers in this
range and their 8-bit representation. To represent
negative numbers, 2’s complement method is used.

Table 1. Data representations.

Number Representation

-2 10000000

-1 11000000

0 00000000

0.015625 00000001

0.734375 00101111

1 01000000

1.984375 01111111

IV. NETWORK ARCHITECTURE

Implementation of a fully parallel neural network is
possible in FPGAs. A fully parallel network is fast but
inflexible. Because; in a fully parallel network the number
of multipliers per neuron must be equal to the number of
connections to this neuron. Since all of the products must
be summed, the number of full adders equals to the number
of connections to the previous layer minus one. For
example in a 3-5-1 network the output neuron must have 5
multipliers and 4 full adders while the neurons in the
hidden layer must have 3 multipliers and 2 full adders. So
different neuron architectures have to be designed for each
layer. Because multipliers are the most resource using
elements in a neuron structure, a second drawback of a fully
parallel network is gate resource usage. Krips et. al. [3]
proposed such architecture.

Neuron Architecture

In this work we chose multiply and accumulate structure for
neurons. In this structure there is one multiplier and one
accumulator per neuron. The inputs from previous layer
neurons enter the neuron serially and are multiplied with
their corresponding weights. Every neuron has its own
weight storage ROM. Multiplied values are summed in an
accumulator. The processes are synchronized to clock
signal. The number of clock cycles for a neuron to finish its
work, equals to the number of connections from the
previous layer. The accumulator has a load signal, so that
the bias values are loaded to all neurons at start-up. This
neuron architecture is shown in Figure 1. In this design the
neuron architecture is fixed throughout the network and is
not dependent on the number of connections.

Figure 1. Block diagram of a single neuron.

The precision of the weights and input values are both 8
bits. The multiplier is an 8-bit by 8-bit multiplier, which
results in a 16-bit product, and the accumulator is 16-bits
wide. The accumulator has also an enable signal, which
enables the accumulating function and an out_enable signal
for its three-state outputs. Here the multiplier has a parallel,
non-pipelined, combinational structure, which is generated
by Xilinx Logicore Multiplier Generator V5.0 [7].

Layer Architecture

In our design an ANN layer has one input, which is
connected to all neurons in this layer. But previous layer
may have several outputs depending on the number of
neurons it has. Each input to the layer coming from the
previous layer is fed successively at each clock cycle. All
of the neurons in the layer operate parallel. They take an
input from their common input line, multiply it with the
corresponding weight from their weight ROM and
accumulate the product. If the previous layer has 3
neurons, present layer takes and processes these inputs in
3 clock cycles. After these 3 clock cycles, every neuron
in the layer has its net values ready. Then the layer starts
to transfer these values to its output one by one for the
next layer to take them successively by enabling
corresponding neuron’s three-state output. The block
diagram of a layer architecture including 3 neurons is
shown in Figure 2.

Figure 2. Block diagram of a layer consisting of 3

neurons.

Since only one neuron’s output have to be present at the
layer’s output at a time, instead of implementing an
activation function for each neuron it is convenient to
implement one activation function for each layer. In this
layer structure pipelining is also possible. A new input

Figure 3. Block diagram of the 3-5-1 network.

pattern can enter the network while another is propagating
through the layers.

Activation Function

The activation function is implemented by means of look-
up tables. The look-up table’s input space is designed so
that it covers a range between –8 and +8. In our data
representation system this range corresponds to 10 bits. So
a 1024x8 ROM is needed to implement the activation
function’s look-up table. We used Xilinx Logicore’s
Single-Port Block Memory to implement this ROM
efficiently in the target Spartan FPGA. The contents of the
ROM are prepared in MATLAB and written to a memory
initialization file in a special format, which Xilinx’s core
generator can read.

Network Architecture

The control signals in the system are generated by a state
machine. This state machine is responsible of controlling
all of the operations in the network. First it activates the
load signals of the neurons and the neurons load their bias
values. Then hidden layer is enabled for 3 clock cycles,
and then the output layer consisting of a single neuron is
enabled for 5 clock cycles. Out enable signals are also
activated by this state machine. The state machine is
designed using generic VHDL coding so that it can easily
be applied to different network configurations. The state
machine generates weight ROM addresses in a priory
determined sequence so that same address lines can be
used by all of the neurons in the system. Input RAM also
uses this address line. Once the input RAM is loaded by
input values using the switches on the board, the
propagation phase starts and the output of the network is
displayed. The block diagram of the network is shown in
Figure 3.

V. IMPLEMENTATION RESULTS

The FPGA equipped chip in our demo board is a Xilinx
SpartanII 2s200epq208-6. This chip has 2352 slices and
14 block RAMs. A slice is a logic unit, which includes
two 4-input look-up tables (LUT) and two flip-flops.
The resource usage of a single neuron, activation
function and state machine is shown in Table 2. In
Table 3 the resource usage of the whole design is
shown. To emphasize the networks resource usage, we
excluded the display interface’s and input RAM’s
resource usages in these tables.

Table 2. Resource usage of the design elements.
 Neuron Activation

Function
State

Machine
Number of

Slices 12 - 12

Number of
Slice

Flip-Flops
22 - 11

Number of
4-input LUTs 23 - 17

Number of
Block RAMs - 2 -

Table 3. Resource usage of the design elements.
Number of Slices 91
Number of Slice

Flip-Flops
151

Number of
4-input LUTs

161

Number of Block RAMs 4

VI. CONCLUSION

This paper has presented the implementation of neural
networks by FPGAs. The proposed network architecture is
modular, being possible to easily increase or decrease the
number of neurons as well as layers. FPGAs can be used
for portable, modular, and reconfigurable hardware
solutions for neural networks, which have been mostly
used to be realized on computers until now.

With the internal layer parallelism we used, it takes only
10 clock cycles for the applied 3-5-1 network to calculate
its output. If this network was realized with a
microprocessor it would take more than one hundred clock
cycles to make all the 20 multiplications and 20
summations. Because neural networks are inherently
parallel structures, parallel architectures always result
faster than serial ones. In our design the clock period can
be as low as 20ns taking the propagation delays in the
FPGA into account. FPGA technologies are fairly new and
rapidly advancing in gate count and speed. We think that
they are the best candidates in neural network
implementations among the other alternatives.

VII. REFERENCES

1. J.J. Blake, L.P. Maguire, T.M. McGinnity, B. Roche,
L.J. McDaid, “The Implementation of Fuzzy
Systems, Neural Networks using FPGAs”,
Information Sciences, Vol. 112, pp.151-168, 1998.

2. C. Cox and W. Blanz, “GANGLION-A Fast Field-
Programmable Gate Array Implementation of a
Connectionist Classifier,” IEEE Journal of Solid-
State Circuits, Vol. 27, No. 3, pp288-299, 1992.

3. M. Krips, T. Lammert, and Anton Kummert, “FPGA
Implementation of a Neural Network for a Real-Time
Hand Tracking System”, Proceedings of the first
IEEE International Workshop on Electronic Design,
Test and Applications, 2002.

4. H. Ossoinig, E. Reisinger, C. Steger, and Reinhold
Weiss. “Design and FPGA-Implementation of a
Neural Network.” Proceedings of the 7th
International Conference on Signal Processing
Applications & Technology, pp 939-943, Boston,
USA,October 1996.

5. M. Stevenson, R. Weinter, and B. Widow,
“Sensitivity of Feedforward Neural Networks to
Weight Errors,” IEEE Transactions on Neural
Networks, Vol. 1, No. 2, pp 71-80, 1990.

6. R. Gadea, J. Cerda, F. Ballester, A. Mocholi,
“Artificial neural network implementation on a single
FPGA of a pipelined on-line backpropagation”,
Proceedings of the 13th International Symposium on
System Synthesis (ISSS'00), pp 225-230, Madrid,
Spain, 2000.

7. Xilinx, “Logicore Multiplier Generator V5.0 Product
Specification,” San Jose, 2002.

8. Xilinx, “Logicore’s Single-Port Block Memory for
Virtex, Virtex-II, Virtex-II Pro, Spartan-II, and
Spartan-IIE V4.0,” San Jose, 2001.

