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Abstract 

In this paper a hardware implementation of a neural network 
using Field Programmable Gate Arrays (FPGA) is presented. 
A digital system architecture is designed to realize a 
feedforward multilayer neural network. The designed 
architecture is described using Very High Speed Integrated 
Circuits Hardware Description Language (VHDL) and 
implemented in an FPGA chip. The design is verified on an 
FPGA demo board. 

I. INTRODUCTION 

Artificial Neural Networks have been widely used in many 
fields. A great variety of problems can be solved with 
ANNs in the areas of pattern recognition, signal processing, 
control systems etc. Most of the work done in this field 
until now consists of software simulations, investigating 
capabilities of ANN models or new algorithms. But 
hardware implementations are also essential for 
applicability and for taking the advantage of neural 
network’s inherent parallelism.  

There are analog, digital and also mixed system 
architectures proposed for the implementation of ANNs. 
The analog ones are more precise but difficult to implement 
and have problems with weight storage. Digital designs 
have the advantage of low noise sensitivity, and weight 
storage is not a problem. With the advance in 
programmable logic device technologies, FPGAs has 
gained much interest in digital system design. They are user 
configurable and there are powerful tools for design entry, 
syntheses and programming. 

ANNs are biologically inspired and require parallel 
computations in their nature. Microprocessors and DSPs are 
not suitable for parallel designs. Designing fully parallel 
modules can be available by ASICs and VLSIs but it is 
expensive and time consuming to develop such chips. In 
addition the design results in an ANN suited only for one 
target application. FPGAs not only offer parallelism but 
also flexible designs, savings in cost and design cycle.   

II. APPLICATION 

The application selected in this work is a three input XOR 
problem. A 3-5-1 backpropagation network (three neurons 
in the input layer, five neurons in the hidden layer and one 
neuron in the output layer) is implemented on a XILINX 
Spartan II chip with 200,000 typical gate count. First the 
network is trained in software using MATLAB Neural 

Networks Processing Toolbox. Then calculated weights 
are written to a VHDL Package file. This file, along 
with other VHDL coding is compiled, synthesized and 
implemented with Xilinx ISE software tools. 
Simulations are made with ModelSim. Finally the 
design is realized on a Digilent DIIE demo board having 
the Xilinx FPGA chip. 

III. DATA REPRESENTATION 

Before beginning a hardware implementation of an 
ANN, a number format (fixed, floating point etc.)  must 
be considered for the inputs, weights and activation 
function. And also the precision (number of bits) should 
be considered. Increasing the precision of the design 
elements significantly increases the resources used.  

Accuracy has a great impact in the learning phase; so 
the precision of the numbers must be as high as possible 
during training. However during the propagation phase, 
lower precisions are acceptable [5]. The resulting errors 
will be small enough to be neglected especially in 
classification applications [1, 3, 4].  

In the XOR problem we applied, the input space is 
between –1 and 1. The training resulted in weights 
residing between –2 and 2. We chose 8-bit precision for 
the system to cover the [-2,2) range, resulting in a 
precision of 1/64. Table 1 shows various numbers in this 
range and their 8-bit representation. To represent 
negative numbers, 2’s complement method is used. 

Table 1. Data representations. 

Number Representation 

-2 10000000 

-1 11000000 

0 00000000 

0.015625 00000001 

0.734375 00101111 

1 01000000 

1.984375 01111111 

 



IV. NETWORK ARCHITECTURE 

Implementation of a fully parallel neural network is 
possible in FPGAs. A fully parallel network is fast but 
inflexible. Because; in a fully parallel network the number 
of multipliers per neuron must be equal to the number of 
connections to this neuron.  Since all of the products must 
be summed, the number of full adders equals to the number 
of connections to the previous layer minus one. For 
example in a 3-5-1 network the output neuron must have 5 
multipliers and 4 full adders while the neurons in the 
hidden layer must have 3 multipliers and 2 full adders. So 
different neuron architectures have to be designed for each 
layer. Because multipliers are the most resource using 
elements in a neuron structure, a second drawback of a fully 
parallel network is gate resource usage. Krips et. al. [3] 
proposed such architecture.  

Neuron Architecture 

In this work we chose multiply and accumulate structure for 
neurons. In this structure there is one multiplier and one 
accumulator per neuron. The inputs from previous layer 
neurons enter the neuron serially and are multiplied with 
their corresponding weights. Every neuron has its own 
weight storage ROM. Multiplied values are summed in an 
accumulator. The processes are synchronized to clock 
signal. The number of clock cycles for a neuron to finish its 
work, equals to the number of connections from the 
previous layer. The accumulator has a load signal, so that 
the bias values are loaded to all neurons at start-up. This 
neuron architecture is shown in Figure 1.  In this design the 
neuron architecture is fixed throughout the network and is 
not dependent on the number of connections.  

 

 
Figure 1.  Block diagram of a single neuron. 

The precision of the weights and input values are both 8 
bits. The multiplier is an 8-bit by 8-bit multiplier, which 
results in a 16-bit product, and the accumulator is 16-bits 
wide. The accumulator has also an enable signal, which 
enables the accumulating function and an out_enable signal 
for its three-state outputs. Here the multiplier has a parallel, 
non-pipelined, combinational structure, which is generated 
by Xilinx Logicore Multiplier Generator V5.0 [7]. 

Layer Architecture 

In our design an ANN layer has one input, which is 
connected to all neurons in this layer. But previous layer 
may have several outputs depending on the number of 
neurons it has. Each input to the layer coming from the 
previous layer is fed successively at each clock cycle. All 
of the neurons in the layer operate parallel. They take an 
input from their common input line, multiply it with the 
corresponding weight from their weight ROM and 
accumulate the product. If the previous layer has 3 
neurons, present layer takes and processes these inputs in 
3 clock cycles.  After these 3 clock cycles, every neuron 
in the layer has its net values ready. Then the layer starts 
to transfer these values to its output one by one for the 
next layer to take them successively by enabling 
corresponding neuron’s three-state output.   The block 
diagram of a layer architecture including 3 neurons is 
shown in Figure 2. 

 

 
Figure 2. Block diagram of a layer consisting of 3 

neurons. 

Since only one neuron’s output have to be present at the 
layer’s output at a time, instead of implementing an 
activation function for each neuron it is convenient to 
implement one activation function for each layer. In this 
layer structure pipelining is also possible. A new input 



Figure 3.  Block diagram of the 3-5-1 network. 

pattern can enter the network while another is propagating 
through the layers.  

Activation Function 

The activation function is implemented by means of look-
up tables.  The look-up table’s input space is designed so 
that it covers a range between –8 and +8.  In our data 
representation system this range corresponds to 10 bits.  So 
a 1024x8 ROM is needed to implement the activation 
function’s look-up table.  We used Xilinx Logicore’s 
Single-Port Block Memory to implement this ROM 
efficiently in the target Spartan FPGA. The contents of the 
ROM are prepared in MATLAB and written to a memory 
initialization file in a special format, which Xilinx’s core 
generator can read.   

Network Architecture 

The control signals in the system are generated by a state 
machine. This state machine is responsible of controlling 
all of the operations in the network. First it activates the 
load signals of the neurons and the neurons load their bias 
values. Then hidden layer is enabled for 3 clock cycles, 
and then the output layer consisting of a single neuron is 
enabled for 5 clock cycles. Out enable signals are also 
activated by this state machine. The state machine is 
designed using generic VHDL coding so that it can easily 
be applied to different network configurations. The state 
machine generates weight ROM addresses in a priory 
determined sequence so that same address lines can be 
used by all of the neurons in the system. Input RAM also 
uses this address line. Once the input RAM is loaded by 
input values using the switches on the board, the 
propagation phase starts and the output of the network is 
displayed. The block diagram of the network is shown in 
Figure 3. 

 

V. IMPLEMENTATION RESULTS 

The FPGA equipped chip in our demo board is a Xilinx 
SpartanII 2s200epq208-6. This chip has 2352 slices and 
14 block RAMs. A slice is a logic unit, which includes 
two 4-input look-up tables (LUT) and two flip-flops. 
The resource usage of a single neuron, activation 
function and state machine is shown in Table 2. In 
Table 3 the resource usage of the whole design is 
shown. To emphasize the networks resource usage, we 
excluded the display interface’s and input RAM’s 
resource usages in these tables. 

Table 2. Resource usage of the design elements. 
 Neuron Activation 

Function 
State 

Machine 
Number of 

Slices 12 - 12 

Number of 
Slice  

Flip-Flops 
22 - 11 

Number of  
4-input LUTs 23 - 17 

Number of 
Block RAMs - 2 - 

 
Table 3. Resource usage of the design elements. 
Number of Slices 91 
Number of Slice  

Flip-Flops 
151 

Number of  
4-input LUTs 

161 

Number of Block RAMs 4 
 

 
 
 
 



VI. CONCLUSION 

This paper has presented the implementation of neural 
networks by FPGAs. The proposed network architecture is 
modular, being possible to easily increase or decrease the 
number of neurons as well as layers. FPGAs can be used 
for portable, modular, and reconfigurable hardware 
solutions for neural networks, which have been mostly 
used to be realized on computers until now.  

With the internal layer parallelism we used, it takes only 
10 clock cycles for the applied 3-5-1 network to calculate 
its output.  If this network was realized with a 
microprocessor it would take more than one hundred clock 
cycles to make all the 20 multiplications and 20 
summations. Because neural networks are inherently 
parallel structures, parallel architectures always result 
faster than serial ones. In our design the clock period can 
be as low as 20ns taking the propagation delays in the 
FPGA into account. FPGA technologies are fairly new and 
rapidly advancing in gate count and speed. We think that 
they are the best candidates in neural network 
implementations among the other alternatives.  
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