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ABSTRACT lifetime of a network or they can be updated periodically or
Sensor scheduling problem in a classical bearing-onljn @ more intelligent fashion by considering the extra power
target tracking application is addressed in this paper. Inrconsumption. In the former case, leaders can be equipped
particular, particle filtering algorithm is employed for the with longer life batteries and higher output transmit power
tracking, and clustering method is utilized for the schedulRF communication ICs. [10] and [11] introduce Distance-
ing. Cluster scheduling is applied instead of scheduling theased Scheduling (DS) and Balanced-energy scheduling
individual sensor nodes. Cra&anRao Lower Bound is used (BS) schemes, and choose the sensor nodes to be kept in
as a decision criteria for the estimation performance ofleeping state with the assumption that energy consumption
each cluster. Due to non-linearity of the problem, propose@f the nodes farther away from the cluster leader is more
solution for tracking is presented in the framework of nonthan the others.

linear Bayesian estimation. In this paper, we present a novel sensor scheduling
method based on partitioning the sensors into clusters.
l. INTRODUCTION Our clustering algorithm depends on associating each slave

With the advances in semiconductor technology, ser§€nsor to its nearest master node. Initially, we assumed
sor devices today tend to have smaller form factor an@ totally random deployment strategy into the region of
lower prices compared to the past. Large amount of sensferest. After grouping the sensors, we used the information
nodes with wireless communication capabilities can now ePllected by the sensors in the same cluster to track the
densely distributed over the area of interest, both in militarosition of our target. Figure 1 describes such a tracking
and civil environments [1]. Bayesian techniques have late®cenario.
been extensively used in target tracking applications[2], [-

Due to non-linearity and possibly non-gaussianity of tt
problem, Sequential Monte Carlo (SMC) Methods [4], [5

are widely used for target tracking applications in Multi o\
Sensor systems. In [6] interacting multiple model (IMM) O—,
based tracker is presented for the problem of bearing o

v

tracking. In [7] different particle filters for the bearing only
tracking of maneuvering target are proposed and @ramr
Rao Lower Bound (CRLB) is employed for the performanc
criteria of these filters.

In the centralized architecture, sensor nodes share tl
observation with a data fusion center directly, which r
quires relatively higher bandwidth compared to the dece

tralized (Cluster Based) architecture [8], [9]. In the latt C{ X
case many of the management activities such as sharing
radio resources, collecting, storing and processing the d
and several monitoring tasks can be distributed efficien

in the network. In this approach, each sensor passes its

observation about the target state to a local leader node. ¢ O : sjave sensors A master nodes P taget

immediate result of this choice is the extra processing pov...

requirement of these local leaders. Selection of the leadEigure 1. Tracking Scenario: Black triangle and circles
node is another parameter that can affect the performant@Present the sensors in the active cluster. Arrows indicate
of overall network. Leader nodes can be fixed through thée master node that each slave report.



. SCENARIO vector X, at time stepk contains four elements: positions

In this section, we introduce a general model for oui? the x and y directions and velocities in the x and y
tracking scenario. We consider the task of tracking a movingirections:
vehicle through our two dimensional stationary sensor field Xiy = [T, Yk B 0] " @
under surveillance_ while conserving power by minimizir_qunematics for the target can be written as
the number of active sensors. Before we run our tracking
algorithm there is a set-up procedure which works as gy, =z, | + ir_1 At + ljk%m& + l'i?'kth?’ 2)
follows : First, we randomly distribute both the slave sensors 2 3
and the master nodes into our region of interest. Master
nodes are basically responsible for communicating with the Ay 1jjk_lAtQ + 1'?)';@_1A1t3 3)
data fusion center. Remaining sensors will be called slaves. 2 3
Slave sensors report the position of the target to their masi@here At is the time difference between state transitions
periodically or if there is no target detected, they report thisr simply the sampling period. The parametéis and
situation as well . After randomly distributing both type ofjj, represent the acceleration in the x and y directions,
sensors, we associate each slave with a master by runnirgpectively. Finally;z;, and ¥, are to represent the varia-
our master-slave association algorithm. Basic criteria faions in the acceleration in two directions again. We model
this process is the Cartesian distance between the mastes acceleration components using random noise. Assuming
nodes and the slave sensors. Each slave is associated waliyyet moves with a constant velocity, using (2) and (3), the
its closest master. Another practical real world constrairtate equation can be written as
that we take into account at this point is the service capacity

of a master node. Maximum number of slaves that we can Xip = FXpo1+QY2Viy (4)

associate with each master is defined. During the set-yghere

process if this limit is exceeded for a master, than the 1 0 At 0

remaining slaves are associated with another master. o 01 0 At (5)
As mentioned before, our main objective is to accurately 00 1 o0

track the target while minimizing the number of active 00 0 1

sensors. Only the active sensors provide observation about AB/3 0 At2)2 0

target position, otherwise they are configured to remain 0 A3 0 At2/2

in sleep mode to reduce the power consumption. Thus, Q =g¢ At2)2 0 At 0 (6)

activation of sensors within a specified distance from the 9
o ; A 0  At?/2 0 At

current target position estimate is quite important. Several

different formulations of this problem are possible as targathere( is the state error covariance matrix and models the

of interest moves through our randomly distributed sensorgcceleration terms in the andy directions. The vectov,

Our approach at this point is simply to compare the curreng a Gaussian random vector of zero mean, unit variance

position estimate of the target with the position of eacland independent components. Finallyis used to control

master node at every time step and to activate the associatgé intensity of the process noise.

slaves of the closest master for the next epoch. Here, weThe observation vector can simply be related to the state

are using the assumption that master nodes are always act@gtor as

and thus leadership can be immediately transferred from one Zy = Oy, + R'?ny. (1)

master to another. Every master can activate its own slav

L IS an L x 1 vector whose elements are the angle
whenever needed.

between the target and the each slave sensor used to generate
lll. TRACKING AND SCHEDULING observations at time stég wherelL is the number of slaves

In this section, we introduce a general model for oufn the corresponding cluster. Thi¢h element of®; is
multi-sensor, single target system. Target velocity is as- 1 (g — y™)
sumed to be constant during the tracking phase. Sensors Oix = tan
are assumed to be bearing only sensors. After running our ) . o
clustering algorithm we employ particle filter to estimate th&/here (zx, yx) is the target position andc*,y*) is the
position of our target based on reported bearing informatigdPsition of ith sensor in the corresponding clustef.

WY i _q)9,.L 8)
(z — )

by the slave sensors in the same cluster denotes the measurement error covariance matrixnarid
. an L x 1 vector whose elements are generated by a Gaussian
lll-A.” Dynamics random variable of zero mean and unit variance.

Now we define the system and observation models for our Intuitively, it can be said that Signal to Noise Ratio (SNR)
target in a detailed manner. For the 2-dimensional case, stat#l decrease with increasing slave-target distance. Defining



Received and Transmitted Signal Powers Bsand P; 1lI-C. Particle Filtering

respectively, we can write We start filtering with the data reported by the slaves in
P, = KP,. ) th_e cluster whose master is closest to _this ini_tial pqsition.
Given p(Xg|Xx—1) and p(Zx|Xy) Generic Particle Filter
K represents both the attenuation due to the channel charagd Resampling algorithms [2] are used to recursively
teristics and the reflection depending on the target materig@stimate the state of moving target.

Then, SNR can simply be expressed as We approximate the posterior densjtyX[Z1.;) at time
stepk by a set of particlefz},i=1,2,....N} and as-
SNR = P,/o*. (10)  sociated weights{wi,i =1,2,....N} where Y~ wi =

This situati b deled in the ob . 1. We draw the particles from a proposal distribu-
is situation can be modeled in the observation vectgy, . g(ailzi_|) = p(ailzi_,) and assign each parti-

above, by increasing the variance of measurement erngL 4 weight using the weight update equatiof) o

with se'nsor-target distance. Furthermore, if we assume thuﬁa’t,lp(zk\xi). Approximation to the posterior density is

the noise components for each sensor are mdependetﬂli%n

R becomes anl.xL diagonal matrix whose elements are N _

directly proportional to the slave-target distance, whére p(xk|Z1.8) = szé(wk —x}) (12)

=1

is the number of slaves in the active cluster.

And finally the state estimation is
Rii o /(g — y™)2 + (g, — 202 (11) y

N
l1I-B. Clustering T~y whmh. (13)
For the maneuvering target tracking application we can =1
assume our region of interest under surveillance is quiteld-D. Posterior Cram ér-Rao Bounds

large area and only a small portion of deployed sensors can| o &, be an unbiased estimator af,. Cramér-Rao

provide useful information at a specific time instance. ThaLtOWer Bound (CRLB) on the error covariance of estimator

is why, clustering the bearing only SEnsors 1S one of t_hE defined to be the inverse of Fisher Information Matrix
most reasonable strategy that can be applied. By clusteri M)

we can reduce the spatial coverage of sensors considerably,

which means higher quality of data reported by each sensor.
Now we present unbalanced clustering algorithm for thg,, can be calculated recursively as follows[12].

efficient data collection. As mentioned before, initially both

Master nodes and Slave sensors are distributed into the

E[(Zr — @) (@ —@)"] > I ™" (14)

. . _ 133 21 117—1 12
region of interest randomly. Je1 = D" = Do Qe + Dy |7 D" +3:(k+ 1) (15)
S = Number of slave sensors where
M = Number of master nodes 11 T
C = Max service capacity of a master Dy =E[(Va, np(ziii1|zk)) (Va, Inp(xpi|zr)) |
m = Master nodes (16)
s = Slave sensors
Calculate distance from all slaves to all masters| 12 T
for i=1,2,---, M Dy* = E[(Va, np(zrii|er) (Ve np(erga|zg))” ]
for j=1,2,---,8 17)
DIi, j] = |lmi — s
end
end Dj? = E[(Va,,, mp(@isi|zn)) (Ve np(@ir|zr) ]
Assign each slave to its closest master (18)
forj=1,2,---,8
[mindist,i] = min(D[:, j]) 21 _ [ pyl2\T
if capacity of ith master is smaller than C Dy = (Dk ) (19)

Assign slavej to master:

else
Assign slavej to another master T
end 3.(k+1) = E[(Va,,, np(Zes1|2ri1)(Va,,, 0p(2hia|rsn)”)
end (20)

Initial FIM can be written as

Jo = E[(Va, Inp(w0))(Va, np(wo))"]  (21)

Table I. Master-Slave Association Algorithm



If process model is linear it can be shown that recursive IV. RESULTS AND DISCUSSION

formulation of J, reduces to In this section, we discuss an example of target tracking

o1 using our proposed sensor scheduling algorithm. For the
Jev1 = (Qr + FideFi”)  +J:(k+1)  (22)  simulations, the trajectory for a target was generated in a
2-dimensional cartesian coordinate system.

In (22) computation of Q% _’_FkaFkT)*l is trivial. Fur- Initially, 64 master nodes and 256 slave sensors were
thermore, if measurement error is zero mean Gaussian witistributed randomly in the area x = (-1500,1500) and y =
covarianceRy, it can be shown that (-1500,1500). Then, our Master-Slave Association algorithm

was applied. Maximum number of slaves that a master can

_ ive service was assumed to be 5. Sampling pe as
J.(k+1) = E[Hy1 " Rypr " His1] 23 ¢ pling peddy
where Hy, is the Jacobian of the nonlinear functiép(.) 1200
Hy, = [Va, [he(z)]"]" (24) 10001
and for our range only sensors a0ol
1 (e —y*) % 600
>

hip(xr) = tan™ (25)

(T — )
where (%, y*) is the position ofith slave in the corre- i

sponding cluster.
2001

ahlk(wk) ahzk(wk) ath(wk) 0 ) ) ) )
oh 1696( IEC Y on 2313(1& ) o oh Lr?)z(k,m | -2500  -2000 1500  -1000  -500 0 500
T k k k k k k X-axis
H,” = Oy Yk o Oyk (26)
0 0 . 0
0 0 . 0 Figure 2. True and Estimated trajectories.

H;, " is 4xL matrix whereL is the number of slave sensorschosen to be 2 seconds. The process noise intensity factor
in a cluster. Since we don’t have observation about velocitie¥as taken as 0.01 and the initial position of target was taken
in = andy directions, last two elements of each column igo be (z,y) = (0,0). For the particle filter algorithm we
zero. used a total of 200 particles and 500 time steps. Resampling
applied whenN. s is below the threshold 40.

During the tracking phase, at each time stepwe
have updated measurement error covariance mairixy

In this section, we develop a sensor scheduling methawlculating the distance between each slave and the target
for our randomly distributed sensors. Note that sensors wepg@sition.

[lI-E. Cluster Scheduling

initially partitioned into clusters by running Master-Slave R = Reoess R (29)
association algorithm given in Table I. Then we estimate ) 1 -
the position of our target by using the sensors in each R = diag([d1,ds, ....dL]") (30)

max

cluster with the particle filtering algorithm. We activate the h
cluster whose calculated inverse Fisher Information MatriX '©'€
is smallest compared to other clusters. In this case cost d¢; = \/(y, — y*1)2 + (2, — 2%)2,i=1,2,....L  (31)
function is

; P dmaz 1S the normalizing constant anbl is the number of
Crp =tr(I'%) (27)  slaves in the active cluster. Constaty,. ;; was set tal00.

Finally our scheduling decision is that we choose the master Trye and Estimated target trajectories using Particle Filter
node for which the cost function is minimized. are shown in Figure 2. Activated sensors throughout the
, tracking phase are shown in Figure 3. Rms position errors

Mopt = argmin;Cy, (28)  in 2 andy directions are shown in Figure 4.



distance. It is evident that, over all power consumption of
the system is extremely low when compared to the case
where no scheduling is done.

1500
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