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ABSTRACT 
A hybrid search method based on Ant Colony Optimization 
for Continuous Domains ( ACO ) and the Nelder-Mead 
Simplex algorithm is proposed to calculate the stability 
margin of linear time-invariant time-delay systems. The 
effectiveness of the Nelder-Mead Simplex procedure is 
combined with the global search power of the ACO  
method to obtain the stability margin of linear time-
invariant time-delay systems. Also, the problem is 
formulated in a way that results in a constant-dimension 
search space (the complex plane) regardless of the order of 
the system. Simulation results indicate successful assessment 
of stability for the systems under examination. 
 

I. INTRODUCTION 
Time-delays are present in many real-world systems 
including telecommunication and mechanical systems. 
Time-delays can have an adverse effect on the stability of 
a system [2]. This necessitates having proper tools for the 
stability analysis of time-delay systems. Many researchers 
have investigated stability of time-delay systems [1, 3, 4, 
5, 6, 7, 8], and it is still an active research area. 
 
In this paper the stability analysis of linear time-invariant 
time-delay (LTITD) systems in state-space representation 
is investigated. It is assumed that the dynamics of the 
system is represented by the state-space equation: 
 
 ( ) ( ) ( )t A t B t τ= + −x x x  (1) 
 
where A  and B  are constant matrices and τ  is the 
constant time lag. 
 
Lee and Dianat [6] used Lyapunov’s direct method for the 
stability analysis of an LTITD system. They proved that 
the system is asymptotically stable if and only if for all 
matrices ( )Q t  that satisfy 

 ( ) ( (0)) ( ); 0Q t A Q Q t t τ= + ≤ ≤  (2) 

with the boundary condition ( )Q Bτ =  and ( ) 0Q t =  for 
[0, ]t τ∉ , the eigenvalues of ( (0))A Q+  have negative 

real parts. It can be seen easily that if ( )Q t  is a solution of 
equation (2), it must satisfy the nonlinear matrix equation: 
 
 ( (0))( ) (0)A QQ e Q Bττ += =  (3) 
 
Based on Lee and Dianat’s work, Kim and Bae [5] 
formulated the stability analysis of system (1) as a 
constrained optimization problem, 
 

 
( (0))

(0),
( , , ) max ( ( (0)))

. . : (0)

i

A Q

Q i
A B real A Q

s t e Q Bτ

τ λ

+

Γ = − +

=
 (4) 

 
and to solve this problem, they used constrained simulated 
annealing and Newton’s method. 
 
In this paper, ant colony optimization for continuous 
domains ( ACO ) [12] is combined with Nelder-Mead 
simplex local search method (NM) to obtain solutions to 
this constrained optimization problem. 
 
The characteristic equation of system (1) can be written 
as, 
 
 ( ) det( ( )) 0sC s sI A Be τ−= − + =  (5) 
 
The linear time-invariant system (1) is asymptotically 
stable if and only if all its characteristic roots lie in the left 
half of the complex s -plane. Thus, the stability margin of 
the system (1) can be reformulated as: 
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The paper is organized as follows: In section II, the 
proposed method is introduced. Section III presents the 
simulation results. Section IV concludes the paper and 
gives directions for further research. 
 
II. STABILITY ANALYSIS USING ACO  AND NM 

METHODS 
Informally, constrained optimization problem (6) is the 
problem of finding the rightmost zero of the characteristic 
equation, ( ) 0C s = . One way to find the solution is using 
an iterated local search (ILS) procedure which produces 
different zeros of ( )C s  until a root with maximal real part 
is found. 
 
The problem of finding a function’s root has been 
extensively studied in the literature and various methods 
have been suggested [10]. One method is formulating the 
problem as an optimization problem; if a function ( )F s  
has a zero at 0s , ( )F s  reaches its minimum value at 

0s s= . The value ( )F s  can be used as the cost function 
for any heuristic search method. In this paper the NM 
method is used to find the zeros of the characteristic 
equation (5). The interested reader is referred to [9, 10] 
for details on the Nelder-Mead simplex method. 
 
Since in a local search method the final answer is 
dependent on the starting point, the choice of the starting 
point should be diverse enough to ensure that all zeros of 
the characteristic equation are obtained. 
 
In this paper we use ACO  to find the starting points of 
the NM algorithm. Let ( )M s  be a function that assigns to 
each point on the complex plane, the result of the NM 
algorithm. That is, if 0s  is the starting point and 1s  is the 
result of the local search, then we have 1 0( )s M s= . The 
constrained optimization problem (6) can be converted to 
the following equivalent constrained optimization 
problem: 
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It is noted that the local search algorithm may end up in a 
local minimum of ( )C s , thus violating the constraint. 
 
In order to solve the above constrained optimization 
problem, a method based on ACO  and stochastic 
ranking [11] is used. A summary of this algorithm to find 
the stability margin of the system (1) is presented in the 
following: 
 

1. Create an archive of random solutions and apply the 
NM algorithm to obtain the cost ( ( ))real M s  and the 
constraint violation ( ( ))C M s . 

2. Sort the solution archive according to stochastic 
ranking as described in [11]. 

3. While termination conditions are not met: 
o Create a number of new solutions based on the 

archive and the ACO  procedure as described in 
[12] and apply the NM algorithm to obtain the 
cost ( ( ))real M s  and constraint violation 

( ( ))C M s ; add the solutions to the end of the 
solution archive 

o Sort the solution archive according to stochastic 
ranking as described in [11]; this will cause the 
worst solutions to move to the end of the archive 
and finally to get eliminated. 

 
It is noted that in the present work a somewhat modified 
bi-objective version of the NM algorithm is used. Instead 
of solely comparing the cost values at different points on 
the complex plane, the solutions are compared based on 
the following criteria: 
 
1. ( )C s , the cost values 
2. In the case of equal costs, absolute value of the real 

parts 
 
In this way a bias towards the right half-plane is 
introduced into the local search which aids the global 
search to find the rightmost zero faster. 
 

III. SIMULATION RESULTS 
Two examples are taken from [5] to show the ability of 
the proposed method to calculate the stability margin of 
LTITD systems. The solution archive for the ACO  
global search has a size of 10 and 2 new solutions are 
generated at each iteration. The search process is 
terminated if after 10 iterations no new zero of the 
characteristic equation is found. The other settings of the 
algorithm are typical settings as mentioned in [12] with 
the stochastic ranking probability parameter fP  equal to 

0.475. 
 
Example 1. Consider the linear time-delay system of the 
form: 
 

1 1 1

2 2 2

( ) ( ) ( )2 0 1 0
( ) ( ) ( )0 0.9 1 1

x t x t x t
x t x t x t

τ
τ

−− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −− − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (8) 

 
In [7] this system has been examined as an uncertain time-
delay system, and the stability of this system is delay 
dependent. Based on analytical results presented in [3, 4, 
8], it is known that for time-delay values greater than 
6.1726 the system in unstable. 



 
In [5] the authors have obtained the stability margin of the 
system for time delays in the range [0,7]  using 
constrained simulated annealing. They have also used 
Newton’s method [10] as the local search method. 
 
In this work, the stability margins for the system (8) have 
been computed for a range of time delays similar to [5]. 
The results are graphically shown in Figure 1. 
 
As seen in Figure 1, the stability margin characterized by 

( , , )A B τ−Γ  (see (7)) increases for delay values up to 0.29  
where the stability margin is approximately 4.3. For time 
delay values larger than 0.29, the stability margin of the 
system decreases until the system becomes unstable at 
6.17. This is in agreement with the results reported in [3, 
4, 5, 8]. 
 
The results and the graph produced by the proposed 
method are similar to those given in [5]. In other words, at 
each time delay value, both methods have obtained 
similar values for the stability margin of the system. 
 
Example 2. Consider the linear time-delay system of the 
form: 
 

 1 1 1

2 2 2

( ) ( ) ( )0 1 0 0
( ) ( ) ( )1 1 0 1

x t x t x t
x t x t x t

τ
α

τ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −− − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (9) 

 
where 1.5α =  is a constant. The characteristic equation 
of this system is 2( ) 1 0sC s s s se τα −= + + + = . It can be 
seen that this system is stable for 0τ = . 
 
In [5] the stability margin of the system has been obtained 
for time delays in the range [0,2]  using constrained 
simulated annealing, followed by Newton’s method [10] 
as the local search algorithm. 
 
In this work, the stability margins for the system (9) have 
been computed for a range of time delays similar to [5]. 
The results are graphically shown in Figure 2. 
 

 
It is seen in Figure 2 that for 0τ = , the stability margin of 
the system characterized by ( , , )A B τ−Γ  (see (7)) 
decreases uniformly by increasing time delay values. The 
rate of decrease increases at 0.79τ . The system 
becomes unstable at 1.34τ . 
 
It is noted that on this second example, also, our results 
match with those reported by Kim and Bae [5]. Both 
methods have found identical values for the stability 
margin at any value of time delay in the range [0,2] . 
 

IV. CONCLUSIONS AND FUTURE WORK 
A new method for the stability assessment of linear time-
invariant time-delay systems using the characteristic 
equation of the system has been proposed. Simulation 
results agree with those reported in the literature. 
 
In comparison with Kim and Bae’s work [5], the method 
has the advantage of a reduced dimensionality of the 
search space. While in their method the dimension of the 
search space grows quadratically with the order of the 
system, our method has a search space with a constant 
dimension of 2 (the complex plane). For example, if the 
order of the time-delay system is 6, the method in [5] 
needs to search a 36-dimensional space while our method 
still searches the complex plane for the roots of the 
characteristic equation. 
 
Also, as it is known, in using the Newton’s method, the 
need for calculating the derivatives of the function can 
cause difficulties. It requires more computational effort to 
obtain the roots of the characteristic equation. Also, 
numerical errors can be large if the characteristic function 
is too steep at the point where the derivative is calculated. 
 
In our approach, Newton’s method is substituted by the 
simple and effective method of Nelder-Mead. The 
effectiveness of the Nelder-Mead simplex algorithm is 
combined with the global search power of the ACO  
method to obtain the stability margin of LTITD systems. 
 
The proposed method can also be used for the robust 
stabilization of LTITD systems. As seen in this paper, the 
proposed method can effectively give the stability margin 
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Figure 2. Stability margin vs. time delay for example 2
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Figure 1. Stability margin vs. time delay for example 1



of an LTITD system at different time-delay values. A 
heuristic search procedure can be used to find the 
parameters of a controller for the system and then the 
proposed method can verify if the resulted system is 
robustly stable for a certain range of time-delays. 
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