

YILDIZ TECHNICAL UNIVERSITY
FACULTY OF ELECTRIC AND ELECTRONICS
DEPARTMENT OF COMPUTER ENGINEERING

SENIOR PROJECT

MULTI ROBOT SIMULATION PURPOSEFUL

SYNCHRONOUS POSITION DETERMINATION

AND MAP BUILDING

Project Supervisor: Assist. Prof. Dr. Sırma YAVUZ

Project Group

03061036 Belgin TAŞDELEN

İstanbul, 2008

© Copyright Yıldız Technical University, Department of Computer Engineering.

CONTENTS

ABBREVIATION LIST .. iv

FIGURE LIST... v

TaBLE LIST .. vi

PREFACE...vii

ÖZET ...viii

ABSTRACT.. x

1. INTRODUCTION .. 1

1.1. Robot Systems ... 1

2. SYSTEM ANALYSIS AND FEASIBILITY... 3

2.1. Requirements Analysis .. 3

2.2. Feasibility Study .. 3

2.2.1. Technical Feasibility... 3

2.2.2. Legal Feasibility ... 3

2.2.3. Economical Feasibility ... 3

2.2.4. Usability Feasibility.. 4

3. SYSTEM ARCHITECTURE ... 5

3.1. Microcontroller .. 5

3.2. RF Communication.. 6

3.3. Servo .. 7

3.4. Infrared Sensors ... 7

3.5. Dc Motor.. 8

3.6. Encoder .. 8

3.7. Potentiometer ... 8

4. MOTION MECHANISM OF THE ROBOT.. 9

5. KINEMATICS EQUATION AND DETERMINING THE ROBOT’S POSITION.. 11

6. COMMUNICATION PROTOCOL AND PACKET STRUCTURE......................... 14

6.1. SYNCH.. 14

6.2. SFD (Start Frame Delimiter) ... 14

6.3. LENGTH ... 14

6.4. ADDRESS ... 15

6.5. CONTROL... 15

iii

6.6. PAYLOAD .. 16

6.7. CRC (Cyclic Redundancy Check) ... 17

6.8. Process Steps: .. 20

6.9. Using javax.com Package for Communication.. 20

6.9.1. Class Hierarchy... 20

6.9.2. Interface Hierarchy ... 21

7. BACKGROUND ON MULTI-ROBOT SIMULATION... 23

7.1. Behavior Based Formation Control Systems for Multi-Robot Simulation [9] 23

7.1.1. Conclusion of the Study.. 24

7.2. Nathan Koenig, Andrew Howard’s Multi-Robot Simulator [10] 25

8. RECOMENDED SYSTEM STRUCTURE.. 27

8.1. Designed User Interface... 27

8.2. Designed System Structure and Object Relationship .. 28

8.3. Designed System Structural Mechanism ... 31

9. RESULT ... 33

REFERENCES ... 34

iv

ABBREVIATION LIST

RF : Radio Frequency

IR : Infra Red

SFD : Start Frame Delimiter

CRC : Cyclic Redundancy Check

v

FIGURE LIST

Figure 3.1. Robots’ Architecture...5

Figure 3.2. Infrared Distance Measurement7

Figure 5.1. Kinematic Equations Graphics..11

Figure 6.1. Packet Structure.. 14

Figure 6.2. Communication Flows for both Parties.. 19

Figure 7.1. Behavior Based Control System Interface………………………………………….23

Figure 7.2. FormationTypes…………………………………………………………………….23

Figure 7.3. General Structure of Gazebo Components…………………………………………26

Figure 8.1. Designed User Interface ………………………………………………………..… 27

Figure 8.2. User Interface Robot Control ……………………………………………………...27

Figure 8.3. User Interface Calibration Panel …………………………………………………..29

Figure 8.4. User Interface Environment Panel …………………………………………………30

Figure 8.5. User Interface Sensor Panel………………………………………………………...30

Figure 8.6. System Structural Mechanism Diagram …………………………………….……..32

Figure 8.7. Program View ……………………………………………………………………...32

vi

TABLE LIST

Table 2.1. Cost Analysis Table…... 4

Table 3.1. IR Sensor Byte Values for Specific Distances .. 6

Table 3.2. Servo Specifications .. 7

Table 4.1. Decimal Values for Robot’s Velocity.. 9

Table 4.2. Relation between Motor Byte Values and Taken Path Quantity..................... 9

Table 4.3. Relation between Servo Decimal Values and Effect on Direction................ 10

Table 5.1. Control Bytes ... 15

Table 5.2. Devices’ Addresses.. 16

vii

PREFACE

I would like to thank Assistant Professor Sırma YAVUZ, my supervisor, for her kind

support, new ideas and teaching me new concepts especially in simulation area. I

enjoyed being a member of her active research group. Also, I thank to Aytunç BEKEN

and Ümit KAVALA for their valuable help.

viii

ÖZET

Tasarlanılacak projede temel amaç gerçek hayatta eş zamanlı konum belirleme ve

haritalama yapan otonom üç robotun çalışma prensiplerinin modellenmesi olacaktır.

Burada gerçek hayattaki robotlar, bilinmeyen bir yerin bilinmeyen üç farklı noktasına

bırakıldığında, bu mekânı dolaşmaya başlayarak kendi konumlarını hesaplarken aynı

zamanda da çeşitli algoritmalar vasıtası ile bu mekanın haritasını çıkartmaya

çalışacaklardır.

Robotlar bir kumandadan gelen önceden belirlenmiş bir haberleşme protokolüne göre

aldığı yön ve hız bilgileri doğrultusunda hareket etmekte, istenildiğinde de üzerlerindeki

kızıl ötesi, ultrasonik sensör, encoder, optik kodlayıcı ve rotary sensör bilgilerini yine

aynı protokole göre isteği yapan kumandaya iletecektir. Uygulamada virtual olarak

oluşturulacak 2 com port bağlantısından aynı bilgisayar üzerinde iletişim oluşturma

imkanı elde edilecektir.

Simülasyonu yapılacak robotlar bir ön ve iki arka olmak üzere, üç tekerlek üzerine

yerleştirilen bir platformdan oluşmaktadır. Çalışmadaki tüm robotlar aynı yapıya sahip

olacak şekilde tasarlanmıştır. Merkeziyetçi bir yapı kullanılacağından tüm robotlar

sensör ölçülerini merkez bilgisayara iletirken, bilgisayar gerekli planları yapıp, robotlara

kontrol işareti gönderecektir.

Tasarlanılacak yapı temel 2 alt bölümden oluşmaktadır:

1. Robot Simülasyonu

2. Kumanda
Robot Simülasyonu Kumanda

 Seri

 Haberleşme

Yön

Yol

Hız

IR1 IR2 IR3

IR4 IR6 IR5

Harita Alanı

Robot1

Robot2

Robot3

Komutlar

Yön

Komutlar

Yön

Komutlar

Yön

ix

Robotun kenarlarına yerleştirilmiş 6 adet kızılötesi algılayıcı, ön ve arkada 1’er yanlarda

2’şer tanedir. Sensörler gerçek robotta 10–80 cm arası algılama kabiliyetine sahiptirler.

Simülasyonda ise 0–80 cm arası ölçüm yapılabilmesi kararlaştırılmıştır. Simülasyon

tarafındaki yön bilgisi rotary sensörü, kumanda tarafında yer alan yön bilgisi ise servo

ile ilişkilendirilecektir. Robotlara ilişkin kinematik denklemler yardımı ile hareket

fonksiyonları düzenlenilecektir.

Aynı donanıma sahip olan robotlarda planlama tamamen merkez tarafında

gerçekleştirilecektir. Her robota bir sonraki hareketi gönderilecektir. Robot-Bilgisayar

arası gerek komut alış verişi gerekse sensör ve konum/yön verisi iletimi Bluetooth alıcı

verici modüller üzerinden sağlanacaktır.

Simülasyon uygulamasında kullanıcı robot simülasyonu tarafında robotları koordinat

değeri girerek yerleştirecek, harita oluşturabilecek, istediği haritayı kaydedebilecek ve

gerekli seçimler yapıldıktan sonra kumanda portu dinlemeye alınacaktır. Aynı zamanda

gerçek uygulamaya yakınlık oluşturabilmek amacı ile sensör gürültüsü ekleyebilme

opsiyonu da projeye dâhil edilecektir. Bu sayede gerçeğe daha yakın değerler elde etme

şansı artırılmış olacaktır. Kumanda kısmında kullanıcı kontrolünü kolaylaştırmak

amaçlı olarak, robotların verilen komutlar doğrultusunda ilerlemeleri sırasında,

komutların değiştirilmemesi halinde doğrultularına bakılarak çarpışma risklerinin olup

olmadığı hakkında bilgi verilmesi amaçlanmaktadır. Ayrıca robotların duvara çarpma

durumları da incelenecek ve uyarı verilerek kontrol kolaylığı arttırılacaktır.

x

ABSTRACT

The main aim of the proposed project is, modeling the system principles of the

autonomous three robots that determine position synchronously and map building as

real time systems. In the scenario of the simulation, real time systems (robots) will try to

map building the place that they have not known (trained about) before.

Robots will move through the information of velocity and direction that will be received

from the controller by predefined communication protocol, and values of the devices on

them as IR sensors, ultrasonic sensor, encoder and rotary sensors can be transmitted by

the same protocol to the controller that sends the request. In the application, the

opportunity of using virtual communication ports will be utilized.

The simulated robots have the same structural properties, and have a platform that is

fixed on 3 wheels, two of that are at the back of it. Because of being used a centralist

structure in the project, all the robots will send their sensor values to the central

computer, the computer will implement the required calculations and send control

signal to robots back.

The main structure of the project will have 2 subparts;

1. Robot Simulation

2. Manuel Conroller

Robot Simulation Manual Controller

 Serial

 Communication

Direction

Path

Velocity

IR1 IR2 IR3

IR4 IR6 IR5

Map Area

Robot1

Robot2

Robot3

Commands

Direction

Commands

Direction

Commands

Direction

xi

The 6 IR sensors that are fixed on the robot are 1 on the front and back part, and 2 on

the left and right sides. Sensors have the capability of measuring the distances between

10 and 80 cm. This constraint will be obtained in simulation also. In the simulation part,

the data about direction will be associated with the rotary sensor, on the other hand it

will be associated with the servo on the manual controlling part. The functions of

motion will be arranged by the help of the kinematics equations.

Planning of actions will be implemented on the central computer part entirely. The next

motion command will be sent to all of the robots.

In the simulation application, the user will place the robots by determining the

coordinates, compose special maps, can save the desired maps on the interface in robot

simulation part, then after some options are assigned controller will start to listen to the

serial port. At the same time, to make the application be close to the real time system,

option of adding noise to the sensors will be inserted to the project. In the manual

control part, it is intended to giving information about the risk of the collusion between

robots will be determined by considering their existing coordinates and the directions.

Also the collusion of wall warnings will be inserted to the project to help the user while

controlling them.

1. INTRODUCTION

1.1. Robot Systems

Robots are comprised of several systems working together as a whole. The type of job

the robot does dictate what system elements it needs. The general categories of robot

systems are controller, body, mobility, power, sensors and tools.

The controller is the robot's brain and controls the robot's movements. It's usually a

computer of some type which is used to store information about the robot and the work

environment and to store and execute programs which operate the robot. The control

system contains programs, data algorithms, logic analysis and various other processing

activities which enable the robot to perform.

The body of a robot is related to the job it must perform. Industrial robots often take the

shape of a bodiless arm since its job requires it to remain stationary relative to its task.

Space robots have many different body shapes such as a sphere, a platform with wheels

or legs, or a ballon, depending on its job.

Robots movement depends on the job they have to do and the environment they operate

in. In the water, conventional unmanned, submersible robots are used in science and

industry throughout the oceans of the world. Land based rovers can move around on

legs, tracks or wheels. In the Air (Space), robots that operate in the air use engines and

thrusters to get around.

Power for industrial robots can be electric, pneumatic or hydraulic. Electric motors are

efficient, require little maintenance, and aren't very noisy. Pneumatic robots use

compressed air and come in a wide variety of sizes. A pneumatic robot requires another

source of energy such as electricity, propane or gasoline to provide the compressed air.

Hydraulic robots use oil under pressure and generally perform heavy duty jobs. This

power type is noisy, large and heavier than the other power sources. A hydraulic robot

also needs another source of energy to move the fluids through its components.

2

Pneumatic and hydraulic robots require maintenance of the tubes, fittings and hoses that

connect the components and distribute the energy.

Sensors are the perceptual system of a robot and measure physical quantities like

contact, distance, light, sound, strain, rotation, magnetism, smell, temperature,

inclination, pressure, or altitude. Sensors provide the raw information or signals that

must be processed through the robot's computer brain to provide meaningful

information. Robots are equipped with sensors so they can have an understanding of

their surrounding environment and make changes in their behavior based on the

information they have gathered.

As working machines, robots have defined job duties and carry all the tools they need to

accomplish their tasks onboard their bodies. Many robots carry their tools at the end of

a manipulator. The manipulator contains a series of segments, jointed or sliding relative

to one another for the purpose of moving objects. The manipulator includes the arm,

wrist and end-effector. An end-effector is a tool or gripping mechanism attached to the

end of a robot arm to accomplish some task. It often encompasses a motor or a driven

mechanical device. An end-effector can be a sensor, a gripping device, a paint gun, a

drill, an arc welding device, etc.

3

2. SYSTEM ANALYSIS AND FEASIBILITY

2.1. Requirements Analysis

Requirement analysis shows the system’s requirements for this project. First of all, we

need a robot which has programmed on it’s microcontroller and has all electronic staff

on it. This project will be performed to help collecting data and testing the robot routing

algorithms. The basic thing is a computer that we will be able to write and run java

codes in a good performance. To test the algorithms and control the robots movements

manually this project is being planned to be used.

2.2. Feasibility Study

2.2.1. Technical Feasibility

Technical feasibility shows the system’s hardware and software requirements for this

project.

2.2.1.1. Hardware Requirements

We need a robot which is programmed with some functions. Driving the robots required

direction by preferred velocity value, we need a central computer to command it.

2.2.1.2. Software Requirements

Microsoft XP Home Edition is used as operating system and Netbeans IDE in order to

write programs with java.

2.2.2. Legal Feasibility

In this project all the software and hardware are licensed to Yıldız Technical University

Computer Engineering Department. One can use any part of this project without

permission.

2.2.3. Economical Feasibility

Economical feasibility shows the financial reports for this project. Software and

hardware requirements’ all expenses are shown with the cost table.

4

Table 2.1. Cost Analyses Table

Robot 3000 YTL
Windows XP Professional 260 YTL
Net Beans IDE 6.0.1 0 YTL (Free)
J2SE 1.5 Java Development Kit 0 YTL (Free)
Work Force 2000 YTL

TOTAL

 5260 YTL

2.2.4. Usability Feasibility

This project will be developed using latest technology available that meet all

requirements. Everybody will be able to use easily this project when they meet with it

first time by the help of its user-friendly interface design.

5

3. SYSTEM ARCHITECTURE

In this project, there will be two main parts; a simulation part in which a shortest path

algorithm for autonomous robots (three robots) will be tested, and a manual control part

to collect data for future studies. Robots have 6 infrared sensors, a potentiometer, and an

encoder. In this section, robots’ architecture will be explained and some tools will be

shown.

Figure 3.1 Robot Architecture

3.1. Microcontroller

A microcontroller could be likened to the “brains” of the robot. It can be programmed

by the designer to accomplish the task at hand. It is responsible for sending commands

to other individual systems in the robot, receiving data from external devices, and

coordinating activities.

6

3.2. RF Communication

The RF part of the project has been greatly simplified because both of side computer

and pc use the same RF module. It is a 433.92 MHz RF receiver WIZ-SML-IA from

Aurel. This is transceivers for point-to-point data transfer in half-duplex mode and its

card integrates a 100kbps XTR transceiver. This device will be used to receive the data

in serially, and should integrate perfectly into our current system through the USART

on the MMC. The MMC listens the RF Module for incoming data by using USART

interrupts.
Table 3.1 IR Sensor Byte Values for Specific Distances

CM BYTE
80 216
75 220
70 224
65 231
60 236
55 244
50 256
45 269
40 280
35 300
30 324
25 360
20 411
15 488
10 634

The model that is constituted by the help of the samples shown in Figure 3.1

x: byte value

y: cm value
dxbx ceaecmy +=)(

a=3733

b=-0,02049

c=62,76

d=-0,002876

x: cm value

y: byte value
dxbx ceaebytey +=)(

a= 894,5

b= -0,1052

c= 338,2

d= -0,005858

Figure 3.1 Equation of IR Value Conversion to cm and byte

7

3.3. Servo

A servo motor is comprised of a DC motor, a gear train, a potentiometer connected to the

output shaft and an integrated circuit for positional control. All this hardware is packaged in a

black casing. A servo motor is used because it is a low power device that has precise control

in the angular position of the front wheel. Its specification is shown below.

Table 3.2. Servo Motor Specifications

Speed 0.23 sec/60 degrees at 4.8 v

Torque 44.4 oz/in (3.2 kg/cm) at 4.8 v

Size 1.59”L x o.78”W x 1.42”H w/o output shaft

Weight 1.31 oz (37.2g)

Connector “J” type with approx. 5”

3.4. Infrared Sensors

These units report the distance to a given target as an analog voltage. Using an analog to

digital converter on the microcontroller, one can determine the range to a given target.

Infrared sensors function by emitting a special wavelength of light invisible to the

human eye unaided, infrared, and then calculating the angle of return of the light. This

method uses simple trigonometry to determine the distance the sensor is from an object.

However, if the light is blocked or reflected away from the sensor, it will not be able to

detect the object. The method of measuring distance is shown below in Figure 3.2.

Infrared Distance Measurement.

Figure 3.2. IR Distances Masurement

8

It has a range of 10 cm to 80 cm, which should have sufficient range for our purposes,

but it was mainly chosen for the cost. The minimum range of the sensor is incurred

because the angle of return becomes too wide for the width of the sensor, causing the

emitted infrared beam to be unable to be sensed.

3.5. Dc Motor

DC motors are more common and easily available. Dc motor was used to move the

robot. They are generally more powerful, easier to interface to, and allow the robot to

move faster. However, despite these advantages, they also have a serious disadvantage.

They have no method for exact control of the distance to travel. They simply turn on

and drive and slowly turn off. It would be possible to implement our own control

device to determine the number of rotations of the wheel by having an encoder get clock

pulse each time the wheel has rotated. However, this measurement is not very precise

and therefore the DC motor must be examined critically in order to interface it properly

with the rest of the mobile platform and achieve the desired goals.

3.6. Encoder

Incremental encoders are sensors capable of generating signals in response to rotary

movement. In conjunction with mechanical conversion devices, such as measuring

wheels or spindles, incremental shaft encoders can also be used to measure linear

movement. The shaft encoder generates a signal for each incremental change in

position. Its resolution is 1024. It has 6 leads. Yellow leads generate one clock pulse in

a cycle. Green and white leads generate 1024 pulses in a cycle. But between green and

white there is 90 degrees phase difference. This difference make possible to realize the

direction of the encoder.

3.7. Potentiometer

Potentiometer is an instrument for measuring electrical potential, on the robot, a

potentiometer was attached on the front wheel in order to obtain direction information.

Because servo motors are reliable but some times they fails because of obstacles.

9

4. MOTION MECHANISM OF THE ROBOT

DC motor, ESC and Servo are some of the components that help to move the robot. The

values that would be sent to the robots to determine the velocity should be between 0-

255 decimal values (8 bits).

Some decimal values that can be sent to the robot by computer for special states of

robot’s motion is shown below.

Table 4.1. Decimal Values for Robot’s Velocity

Decimal Value Effect on motion

127 Stops the motor

0-127 Makes robot go backwards

127-255 Makes robot go forwards

135-145 The reference range for reliable results

To calculate the speed of the robot as form of m/s or cm/s, some samples are taken for

determining the ways that the robot taken in predefined time period. These

measurements are shown in below.

Table 4.2. Relation between Motor Byte Values and Taken Path Quantity

Duration
(s)

Encoder #Tour
(Encoder/512)

Wheel
Mesure(cm)

Taken
Path(cm/s)

Velocity
(cm/s)

Motor
byte

45 6296 12.29688 19 245.9375 5.465278 135
(frward)

28 7621 14.88477 19 297.6953 10.63198 145
(frward)

43 9254 18.07422 19 361.4844 8.406613 140
frward)

27 8945 17.4707 19 349.4141 12.94126 120
(frward)

Servo achieves to rotate the front wheel in required angle value. In theory servo motor

has the capacity of rotating 180 degree. But because of some technological constraints,

10

the valid angle range is not the same practically. That’s why the decimal values that are

sent to the servo are limited in range of 61-131 for reliable results.

Table 4.3. Relation between Servo Decimal Values and Effect on Direction

Decimal Value (Servo) Direction

97 Straight

97-131 Turning left

61-97 Turning right

In this project and the previous ones, it has to be thought that robot motion like vectorel

not like a point to calculate correct coordinates. In my project it is assumed there are

two motion type calculation: linear motion and circular motion.

In linear motion, robot follows a direct way to the chosen point. Also robot’s slope

doesn’t change. We get the distance (d) value from robot’s encoder and the calculations

which are shown below we find new coordinates.

Usually it is needed to change direction of robot, so it has to be found new slope with

circular motion.

11

5. KINEMATICS EQUATION AND DETERMINING THE ROBOT’S

POSITION

In the current system, by the help of the encoder the taken path length (d) and by the

help of the potentiometer the angle between the front wheel and the robot’s body (Q1)

can be calculated. By the help of this variables and a simple calculation the angle of the

back wheels can be extracted.

If the command of “rotation by angle of α” is ordered to the robot in a specific t time

while it is moving on direction of | OA| its new location can be defined by the help of

direct kinematics equation as shown in figure 5.1.

The difference between the value of encoder in time t and t+1 gives us the opportunity

of calculating the path has been covered.

instantaneous rotation point

Figure 5.1. Kinematic Equations Graphics

12

By the help of this equation, the angle that faces the ds curve can be estimated as the

formulation.

According to the start gradient of robot the angles of θ1, θ2 that are used to determine the

next position of the robot can be assigned as following equations.

When O(x1(t),y1(t)) and A(x2(t),y2(t)) are asummepted as the first coordinates of the

robot, the equation for calculating the next coordination of the front wheel in t+1 time

when the coordination of t specific time is known, is showed in equation system (5), and

the equation for back wheels is indicated in equation system (6) below.

For calculating the front wheel’s coordination of the robots the following equations are

used:

X1= X1+ gs* cos(υ¹)

Y1= Y1 + gs* sin(υ¹)

(5)

(6)

13

For calculating the back wheels’ coordination of the robots the following equations are

used:

X2= X2+ gsArka* cos(υ²)

Y2= Y2 + gsArka* sin(υ²)

14

6. COMMUNICATION PROTOCOL AND PACKET STRUCTURE

The communication between computer and robot(s) is performed by RF (Radio

Frequency) (or Bluetooth in the future). There are Full Duplex RF modules both

computer and robot.

Serial communication can be implemented by several of data transmission baud rates

(115200, 57600,…,9600) ; 10 bits strings with one start bit and 8 data bits. Processing

and evaluating of start and stop bits are implemented by serial communication devices.

The data and command transmission between robot(s) and computer, can performed by

sending at least 7 hello packets and in computer side, maximum 19 (all IR,

potentiometer and encoder data), in robot side maximum 23 byte. (This data is valid for

8 bits-ADC, if 10 bits-ADC is used then one byte should be added to entire values).

Command data structure is shown as follows;

SYNCH SFD LENGTH ADDRESS CONTROL PAYLOAD CRC

6.1. SYNCH

It indicates the beginning of the packet. The synchronization byte comes first. This is

the flag of the data, if it comes, next byte (SFD) is expected. The pattern of synch byte

is 01010101 (0x55h) because this is the most difficult byte that can be send by RF due

to the nature of RF communication.

6.2. SFD (Start Frame Delimiter)

The second byte is start frame delimiter; this byte is determiner of boundaries. The

pattern of SFD byte is 01111110 (0x7Eh). If this byte is correct, receiver expects the

length byte; else it goes back and waits for synch byte again.

6.3. LENGTH

The third byte is length of the bytes which follow this byte. In other words, this

declares the sum of the length of address byte, control byte, payload bytes and CRC

Figure 6.1. Packet Structure

15

bytes. It can be up to a maximum of 255. Specifying the packet length is necessary

because each packet can contain a different amount of data. For example, a packet

containing all devices information will have the maximum amount of payload.

However, a simple HELLO packet has just 7 bytes. Therefore, specifying the packet

length is essential to coordinating messages properly.

6.4. ADDRESS

The fourth byte shows the sender and receiver addresses. First fourth bits of this byte

show sender address and the next four bits show receiver address. For instance, if

sender address is 0xFh and the receiver address is 0x0h then address byte must be

0xF0h.

6.5. CONTROL

The fifth byte is control byte. This byte contains control data. It is possible to add a new

control byte because of new situations. But these conrol bytes are enough to handle

robot control for now. These bytes make difference sense for robot and computer. For

example collision packet can only be sent by robot to computer.

Connection handshaking is ensured by the following processes;

“Hello” packet is sent by computer after the port is opened then, the robot gets the hello

package and the connection is ensured.

Control Byte Meaning

ACK (0x00) Last packet is send successfully

NACK (0x01) Time out

COLLISION (0x02) Collusion is perceived

ERROR (0x03) Error on byte

HELLO (0x04) Handshaking

Table 6.1. Control Bytes

16

ACK means the last packet has been received by computer. When computer sends a

packet and receives its response on time , next packet’s control byte will be ACK.

NACK means that robot’s response to the last packet has not been received on time.

COLLISION means robot collided with something, ERROR means data is received by

one of the side but there is error on data. HELLO is a connection establishment byte. At

the beginning of connection HELLO packet sends to robot, if robot takes this packet, it

resends the same packet to the sender.

6.6. PAYLOAD

 The values of the devices that are on the robot can be two state as; read-only, and read-

write. Therefore, all the devices have a unique address. Address of the read-only state

devices most significant bit is 1, the others is 0.

The reason of giving a unique address to all devices is to ensure standardization of the

data read and write structure from the devices that are specialized for a task. By the help

of this, new fixed devices can be adapted the system easily by not implying changes in

the packet structure.

To read a device from computer, it’s the only requirement to send the address of the

device whose value is necessary to read. For writing process; the data byte that is

required to be written, should be sent with the address of the device.

Device Address Device Name

0x00 IR sensor on front

0x01 IR sensor on front left side

0x02 IR sensor on back left side

0x03 IR sensor on back

0x04 IR sensor on back right side

0x05 IR sensor on front right side

0x06 Potentiometer

0x07 Encoder

0x08 Switches (Every bit of this byte shows one of the switch respectively)

Table 6.2. Device Adresses

17

0x80 DC motor

0x81 Servo

Payload part of packet is the main data that want to be transmitted. In this project a

flexible packet structure was used. On the robot a unique address was assigned for every

device, and devices are separated into main two groups. In the first group there are

readable devices. A sensor is an example of these devices. Computer only sends

readable devices’ addresses and robot reads the value of these devices and sends to

computer. In the second group there are writable devices. Servo is an example of these

devices. If computer wants to set the value of servo, it must send the address of these

devices and in the following byte value of these devices must be sent. Devices and their

addresses are shown in the table 7. Readable and writeable devices can be distinguished

from each other by checking the most significant bits of address byte. If it is a readable

device, the most significant bit of address byte is 0, if it is a writable device the most

significant bit of address byte is 1.

These packet structures also give an opportunity to create different size of payload. We

can only send one of the device information or all of the devices information. Devices’

sequence in the payload is not important.

In some environment EMI can decrease the performance of RF communication. If

packet size increases, at the same time the number of corrupted packet increases. In this

circumstance we can reduce the packet size by demanding devices’ value one by one,

this can increase the performance.

6.7. CRC (Cyclic Redundancy Check)

This is used as a control data of 16 bits. CRC bytes are two bytes shows 16 bit CRC

checksum. A CRC (cyclic redundancy check) is a type of hash function used to

produce a checksum – a small, fixed number of bits – against a block of data, such as a

packet of network traffic or a block of a computer file. A CRC "checksum" is the

remainder of a binary division with no bit carry (XOR used instead of subtraction), of

the message bit stream, by a predefined (short) bit stream of length n, which represents

18

the coefficients of a polynomial. The checksum is used to detect errors after

transmission or storage. CRC is computed and appended before transmission or storage,

and verified afterwards by the receiver to confirm that no changes occurred on transit.

CRCs are popular because they are simple to implement in binary hardware, are easy to

analyze mathematically, and are particularly good at detecting common errors caused by

noise in transmission channels. For substantiality, we used the 16-bit CRC-16-CCITT

polynomial x16 + x12 + x5 + 1 (0x1021h). While being sent, the most significant byte of

CRC is sent firstly.

An example can be given to constitute CRC code:

Code string = 11010011101100

Polynomial = 1011

1 1 0 1 0 0 1 1 1 0 1 1 0 0

1 0 1 1

0 1 1 0 0 0 1 1 1 0 1 1 0 0

 1 0 1 1

0 0 1 1 1 0 1 1 1 0 1 1 0 0

 1 0 1 1

0 0 0 1 0 1 1 1 1 0 1 1 0 0

 1 0 1 1

0 0 0 0 0 0 0 1 1 0 1 1 0 0

 1 0 1 1

0 0 0 0 0 0 0 0 1 1 0 1 0 0

 1 0 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0

 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 0

 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1

19

The process of extracting output stream is implemented by performing arithmetic

operator XOR between input string and CRC polynomial. CRC polynomial is applied

by starting from left hand side of the input stream on 1 bit values.

The Algorithm of the communication can be shown in figure:

The Flowchart of Communication The Flowchart of Communication

in Computer Side in Robot Side

S T A R T

In it ia liz a tio n s

W a it fo r S Y N C H b y te

If n o t S F D g o to
“W a it fo r S y n c h b y te ” s ta te

S e n d th e re s u lt in th e s a m e
p a c k e t fo rm a t a n d g o to “W a it fo r S y n c h

b y te ” s ta te

S T O P

G e t le n g th in fo a n d re m a in in g
b y te s o f p a c k e t

P ro c e s s th e p a c k e t

Figure 6.2. Communication Flow for Both Partlies

20

6.8. Process Steps:

1. Hello packet is send by computer (computer address = f, robot address =0)

0x55h 0x7Eh 0x04h 0xF0h 0x04h 0x4Eh 0x4Ah

2. Direction and velocity values are send to robot by computer.

0x55h 0x7Eh 0x04h 0xF0h 0x00h 0x80h 0x68h 0x81h 0x76h 0x46h 0xA6h

 (DC motor) Velocity

 Address value

3. All the IR sensors, potentiometer and encoder values are read robot by

computer.

0x55h 0x7Eh 0x04h 0xF0h 0x00h 0x00h 0x01h 0x02h 0x03h 0x04h

0x05h 0x06h 0x07h 0x80h 0x68h 0x81h 0x76h 0xE0h 0xE1h

 Potentiometer IR sensor encoder

6.9. Using javax.com Package for Communication

6.9.1. Class Hierarchy

 Class java.lang.Object

 Class javax.comm.CommPort

o Class javax.comm.ParallelPort

o Class javax.comm.SerialPort

 Class javax.comm.CommPortIdentifier

Servo Direction

Address value

21

 Class java.util.EventObject (Implements java.io.Serializable)

o Class javax.comm.ParallelPortEvent

o Class javax.comm.SerialPortEvent

 Class java.lang.Throwable (Implements java.io.Serializable)

o Class java.lang.Exception

 Class javax.comm.NoSuchPortException

 Class javax.comm.PortınUseException

 Class javax.comm.Unsupported CommOperationException

6.9.2. Interface Hierarchy

 interface javax.comm.CommDriver

 interface java.util.EventListener

o interface javax.comm.CommPortOwnershipListener

o interface javax.comm.ParallelPortEventListener

o interface javax.comm.SerialPortEventListener

For the process of opening port by the help of the javax.comm library, the structure of

that is given before, can be implemented as an example given following.

Port Name = COM5

Number of Data Bits = 8 bits

Number of Stop Bits = 1 bit

Parity = No parity

Baud Rate = 115200 bps

import javax.comm.CommPortIdentifier;

import javax.comm.NoSuchPortException;

import javax.comm.PortInUseException;

 import javax.comm.SerialPort;

import javax.comm.UnsupportedCommOperationException;

22

CommPortIdentifier cpi=new CommPortIdentifier.getPortIdentifier(“COM5”);

SerialPort sp=new SerialPort(SerialPort) cpi.open(“COM5”, 115200);

Sp.setSerialPortParams (115200,

 SerialPort.DATABITS_8,

 SerialPort.STOPBITS_1,

 SerialPort.PARITY_NONE);

To be used for reading from port and writing on port, the variables of “os”,”is” should

be created;

InputStream is = sp.getInputStream();

OutputStream os = sp.getOutputStream();

byte b = (byte) is.read(); // reading byte from serial port

os.write(b); //writing to serial port

os.flush();

23

7. BACKGROUND ON MULTI-ROBOT SIMULATION

7.1. Behavior Based Formation Control Systems for Multi-Robot Simulation [9]

In Bench and Arkin’s article, new reactive behaviors that implement formations in

multi-robot teams are presented and evaluated. The formation behaviors are integrated

with other navigational behaviors to enable a robotic team to reach navigational goals,

avoid hazards and simultaneously remain in formation. The behaviors are implemented

in simulation, on robots in the laboratory and aboard DARPA's HMMWV-based

Unmanned Ground Vehicles. The technique has been integrated with the Autonomous

Robot Architecture (AuRA) and the UGV Demo II architecture. The results demonstrate

the value of various types of formations in autonomous, human-led and

communications-restricted applications, and their appropriateness in different types of

task environments.

Figure 7.1. Behavior Based Control System Interface [9]

Figure 7.2. Formation Types [9]

24

Several formations for a team of four robots are considered (Figure 7.2):

• line - where the robots travel line-abreast.

• column - where the robots travel one after the other.

• diamond - where the robots travel in a diamond.

• wedge - where the robots travel in a V

These formations are used by U.S. Army mechanized scout platoons on the battlefield.

For each formation, each robot has a specific position based on its identification number

(ID). Figure 3 shows the formations and robots' positions within them.

Each robot computes its proper position in the formation based on the locations of the

other robots. Three techniques for formation position determination have been identified

[9]:

Unit-center-referenced: A unit-center is computed independently by each robot by

averaging the x and y positions of all the robots involved in the formation. Each robot

determines its own formation position relative to that center.

Leader-referenced: Each robot determines its formation position in relation to the lead

robot (Robot1). The leader does not attempt to maintain formation; the other robots are

responsible for formation maintenance.

Neighbor-referenced: Each robot maintains a position relative to one other

predetermined robot.

7.1.1. Conclusion of the Study

Separate experiments in simulation evaluated the utility of the various formation types

and references in turns and across obstacle fields. For 90º turns, the diamond formation

performs best when the unit-center-reference for formation position is used, while

wedge and line formations work best when the leader-reference is used. For travel

across an obstacle field, the column formation works best for both unit-center- and

leader-referenced formations. In most cases, unit-center-referenced formations perform

25

better than leader-referenced formations. Even so, some applications probably rule out

the use of unit-center-referenced formations [9]:

Human leader: A human serving as team leader can not be reasonably expected to

compute a formation's unit-center on the y, especially while simultaneously avoiding

obstacles. A leader-referenced formation is most appropriate for this application.

Communications restricted applications: The unit-center approach requires a transmitter

and receiver for each robot and a protocol for exchanging position information.

Conversely, the leader-referenced approach only requires one transmitter for the leader,

and one receiver for each following robot. Bandwidth requirements are cut by 75% in a

four robot formation.

Passive sensors for formation maintenance: Unit-center-referenced formations place a

great demand on passive sensor systems (e.g. vision). In a four robot visual formation

for instance, each robot would have to track three other robots which may spread across

a 180º field of view. Leader- and neighbor-referenced formations only call for tracking

one other robot.

7.2. Nathan Koenig, Andrew Howard’s Multi-Robot Simulator [10]

Simulators have played a critical role in robotics research as tools for quick and efficient

testing of new concepts, strategies, and algorithms. To date, most simulators have been

restricted to 2D worlds, and few have matured to the point where they are both highly

capable and easily adaptable. Gazebo is designed to fill this niche by creating a 3D

dynamic multi-robot environment capable of recreating the complex worlds that will be

encountered by the next generation of mobile robots [10]. Its open source status, fine

grained control, and high fidelity place Gazebo in a unique position to become more

than just a stepping stone between the drawing board and real hardware: data

visualization, simulation of remote environments, and even reverse engineering of black

box systems are all possible applications.

This study, explains the design principles of Gazebo and its applicability to the

development process of real world robotics. The software that Nathan Koenig, Andrew

26

Howard are developed has maintained a simple powerful interface to the underlying

physics engine and rendering capabilities while retaining compatibility with the Player

and Stage initiatives. This has resulted in a quick and easy adoption of Gazebo by many

people, and has the potential to be used in ways never before seen in a simulator.

 Figure 7.3. general Structure of Garazbo Components

27

8. RECOMENDED SYSTEM STRUCTURE

8.1. Designed User Interface

Robot address

is selected –is

used in packet

structure

(receive-send
address)
Use to

determine the

first coordinates

of the robot on

map area
Use to generate

serial commands

Opens the selected

serial port to

communicate

Gets the measured

values from

specified devices

Adds the command to

the command list of

specified robot

Sends the serial

commands to specified

robot

Figure 8.1. Designed User Interface

Figure 8.2. User Interface Robot Control

28

8.2. Designed System Structure and Object Relationship

In planned structure, the options and command series will be taken from user interface

and then control panels will be formed. Control objects will be used to create objects for

robots and control its behaviors by opening ports for its communications. Then after

running action is triggered, control object will call the methods for converting the user

command expressions to packets to send the specified robot and at the same time listen-

port is opened in simulation side. After the packet transmissions, the awakened (by

control panel) command processor that has kinematics inside, determines the next

coordinates of the robot and the values of the required specified devices (IR, encoder…)

on it through the data transmitters the measured (if real robot / calculated if simulation)

data are transmitted to specified robot back.

In this designed structure, the specified byte values for the devices on the robot can be

calibrated if requested. The “kalibrasyon” button helps the user to display the second

interface of the program for calibration on which the default values are printed. If it is

requested the values can be changed before simulation or commanding the robot.

User

Interface

Robot Control

Panel 1

Robot Control

Panel 2

Robot Control

Panel 3

Robot1

Port1

Robot2

Port2

Robot3

Port3

Data

Transmitter

Data

Transmitter

Data

Transmitter

Command

Processor

29

Figure 8.3. User Interface Calibration Panel

The above panel named “Kalibrasyon Paneli”, must be called before starting the

simulation. Otherwise simulation will use the default values that are shown in above

table. If calibration is applied than the window will disappear after the “Devam” button

is clicked. Otherwise, until the event of click, the window states on screen and doesn’t

allow the user to use simulation main interface.

Another section on the main menu is named “Ortam Bilgileri ” that is used to give the

opportunity of preparing the environment that the robots will be circulated. By using

this panel the user can prepare his own environment by drawing barriers by giving its

start and stop x, y coordinates and clicking the button named “duvar çiz”.

Default IR sensor

coordinate values

Default Robot

Dimensions

Default Servo

motor byte values

Default DC motor

byte values

30

Figure 8.4. User Interface Environment Panel

Another important panel on the main menu interface is about the values that are taken

from robot side depending of the environment and the device values. The values read

from the IR sensors are affected from the environment conditions. But in simulation

side, the values that are read from IR sensors are calculated mathematically inside of the

algorithm and so they don’t reflect the real ones because of the noise factor. To obtain

more realistic values, it is decided to add noise factor to the mathematically calculated

data. This is optional, if the user wants to add noise to the results of the calculations,

one can click the related button by giving the type of the noise factor. Different two

types of noise distribution can be optionally added.

Figure 8.5. User Interface Sensor Panel

Barrier start x-y Coordinates

Barrier stop x-y Coordinates

Clears all the barriers on the panel

“HARİTA”

Clears the selected barrier on the

panel “HARİTA”

Saves all the barriers on the panel

to the new structured file

Saves all the barriers on the panel

to the selected file

No noise option is

default selected

In multi robot

applications,

independent selection

31

In the simulation application, the user can activate single, double or three robots at the

same time. The application can be used either as a single robot application or as a multi

robot application.

8.3. Designed System Structural Mechanism

Designed system structure has four main tasks.

1. Converting linguistic expressions to the command packets (encoding

operation) that the robot gets the commands (decoding operation)

2. Sending the packets to the robot side sequentially by serial port

operations

3. Listening the port in robot side and controlling if a new command is

received

4. Processing the command that is sent from the central computer and

getting the values from the robot side (in simulation calculates the

values)

To implement that mentioned four main task three main thread is used. One of them is

in the control side and others are in the robot side.

Task of the thread in control side: Sending the command packets sequentially to the

robot, in this sequence, packets are sent after the prior command is processed.

Task of the first thread in robot side: Listening the port and evaluating the received

bytes and determining the command packets to transmit it to the robot motion

processor.

Task of the second thread in robot side: Making the robot perform the command that

transmitted from port listener, calculating the values of the devices (IR, encoder…)

according to the motion of the robot.

Control

Side

Robot

Side

32

Figure 8.6. System Structural Mechanism Diagram

Figure 8.7. Program View

Command

Converter
Linguistic

Commands

Encoded

Commands

Robot

Port listener

Command

Processor
Realized

Commands

Robot

 Command

Calculations

 Effects on

Devices

User

Interface

File

 Effects on

Devices

APPLICATION

TRIGGERS

33

9. RESULT

With this project I had a large amount of information on robotics and modelling a

system by using kinematics equations.

Java is an important object oriented programming language in the information

technology. I used advanced java apis and learned very much about java. Robot’s

communication system, movement modelling as simulation and robot control system’s

codes is written with this technology. So I used different classes which have different

duties, on the same framework.

Communication type used in project, Rf communication, is a good way for robotic

communication system. I had a large amount of information about RF communication

that is an effective way for robotic communication. Between robot and computer,

communication with RF played a basic role. I had to learn all things about

communication.

The important thing is, I learned how to work with a project group and to organize

project schedule. I have had excellent experience with this project.

34

REFERENCES

[1] “Java Uygulamaları”, David Flanagan, Pusula Yayıncılık, 2004 İstanbul

[2] “Java Examples”, http://www.java2s.com/

[3] “Java Tutorials”, http://java.sun.com/docs/books/tutorial/

[4] http://www.ercim.org/publication/Ercim_News/enw42/rives.html

[5] http://www.inria.fr/recherche/equipes/icare.en.html

[6] http://robotica.isa.upv.es/virtualrobot/

[7] Yıldız Teknik Üniversitesi, Elektrik-Elektronik Fakültesi, Bilgisayar
Mühendisliği Bölümü, Robotik Grubu, Şubat 2008 “ Eş Zamanlı Konum Belirleme
Ve HaritaOluşturma Amaçlı Otonom Robot Sistemi Projesi Kılavuzu”, guide

[8] Azarnasap Ehsan, 2007, “Robot in the Loop Simulation to Support Multi-Robot
System Development: A Dynamic Team Formation Example”, Master Thesis
Georgia State University

[9] Balch T., Alkin C.,1999, “Behavior Based Formation Control for Multi Robot
Teams”, IEEE Transactions on Robotics and Automation

[10] Koenig N., Howard A., 2004,” Design and Use Paradigms for Gazebo, An
Open-Source Multi-Robot Simulator”, IEEE/RSJ International Conference on
Intelligent Robots and Systems Robotics Research Labs, University of Southern
California Los Angeles, CA 90089-0721, USA

35

RESUME

Name Surname : Belgin TAŞDELEN

Birthdate : 23–01–1985

BirthPlace : İstanbul

High School : İstanbul Köy Hizmetleri Anatolian High School

Internship : BELBIM AŞ.

 Mavili Elektronik Ticaret AŞ.

 Garanti Teknoloji

