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Abstract:  
An electric power system shows a chaotic behavior on an 
interval of loading state. Another type of system instability is 
voltage collapse when the system is too loaded. Voltage-
collapse can be simply described as “not able to supply 
enough reactive power to the load bus.” By changing its 
reactive power output, a Static Var Compensator (SVC) 
regulates the voltage at the point to which it is connected. 
Voltage collapse dynamics were modeled by the movement 
of the system state along a particular trajectory at a saddle 
node bifurcation. In voltage collapse analysis, bifurcation 
points needed in order to the sample power system are 
attained. Chaotic behavior has been observed in computer 
simulations for a sample system to the 5 bus Hale network 
including SVC. 
Keywords: Voltage collapse, Saddle-node bifurcation, SVC, 
Chaotic behavior 
 
INTRODUCTION 
 
In voltage collapse analysis, bifurcation points needed in 
order to the sample power system are attained by using 
computational method. During the past decade utilities 
have reported serious complications in maintaining 
network stability in their power systems, particularly 
voltage stability, as some events occur and parameters 
change in the systems [1]. Chaotic phenomena are one 
type of deterministic oscillation existing in deterministic 
systems. Study on chaotic phenomena is one important 
part of power system stability studies. Early studies such 
as Ajjarapu and Lee, Chiang [7], Wang and Tan, mainly 
focused on interpreting the behavior of chaotic 
oscillations in power systems. Later studies such as Wu, 
Rajesh,Yu and Jia, Srivastava and Abed began to concern 
the interaction of chaotic motion and system dynamic 
components, the relationship of power system stability 
region and chaos, and the methods of preventing and 
eliminating power system chaotic oscillations  [2].  
 
Hopf and saddle-node bifurcations(SNB) have been 
recognized as some of the reasons, albeit not the only 
ones, for voltage stability problems in a variety of power 
system models [4,6]. In the choice of bifurcation 
parameters, they indicated that the reactive power demand 
at the load bus as a bifurcation parameter is unrealistic 
and cannot characterize a wide range of operating 
conditions [3]. In practice, the most severe system and 
load conditions are generally known and allow the 
required rating of the SVC to be determined [5]. It is a 
fast acting static reactive power compensator, which can 

damp out the power oscillations and cope with the voltage 
problem due to reactive power deficit. We consider a 
general nonlinear system described by a set of differential 
equations in n-dimensional Euclidian space, 
 

( )xfx=&                                                                         (1) 
),x(fx λ=&                                                                   (2) 

 
where generally the state vector x may consist of 
generator angle, generator angular velocity, load voltage 
magnitude, etc. the parameter λ may be real, reactive 
power or input power to the generator, etc. At a fixed 
point (a equilibrium point or a steady-state solution) x 
(λ0), since the right-hand term of Eq.(2) becomes zero, its 
stability is dominated by the eigenvalues of the Jacobian 
J= f∂ / x∂  evaluated at x (λ0) [3]. 
 
Next, we discuss four steady-state behaviors associated 
with the nonlinear system (1): equilibrium points, saddle 
nodes and chaos. Chaos, also called strange attractor, has 
no generally accepted precise mathematical definition. 
Usually, from a practical point of view, it can be defined 
as bounded steady-state behavior which does not fall into 
the categories of the other three steady-state behaviors, 
i.e., equilibrium points, periodic solutions, and quasi- 
periodic solutions [7]. At a SNB point, two equilibrium 
points, generally one stable and one unstable, coalesce 
and become a saddle-node point, and then disappear as 
the parameter passes through the bifurcation value. At a 
bifurcation the Jacobian has a zero eigenvalue and hence 
the determinant of the Jacobian is zero. Therefore, the 
necessary conditions for SNB are given following, 

 
f(x0,λ0)=0,  det J (f(x0,λ0))=0 
 
SNB is considered as a main reason for dynamic 
instability of the system (2) and is associated with voltage 
collapse problems in power systems [8,9,10].  
 
In this paper, chaotic oscillations are determined in power 
systems controlled static var compensator. Firstly, chaotic phase 
portraits are observed in a simple power system. The final 
section of this paper concentrates on applying the results 
obtained for the sample system to the 5 bus Hale network. The 
concepts of Power System Model are firstly defined in section 2. 
In section 3, bifurcation analysis and chaos are described in 
sample power system. Finally, simulation results are shown to 
demonstrate the effectiveness of our proposed method. 
 



2. POWER SYSTEM MODEL 
 
The simple two bus system is shown in figure 1.The p.u 
dynamic equations that represent this system, using a 
basic dynamic generator model, a frequency and voltage 
dependent dynamic model for the load and dynamic SVC 
model, are given by 
 

 
Figure 1. A basic power system having SVC at the end of 
transmission line. 
 
2.1 Generator Dynamic Model. 
 
The dynamic equations for machine are given by: 
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2.2 Load Model 
 
The dynamic  equations for load at a bus are given by: 
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τ
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2.3 Dynamic Model of SVC  
 
In this paper, SVC has been represented by Basic Model-
1[12]. 
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where TR and KR are time and gain constants of voltage 
regulator, and also TB  ve Bref  are time constant and 
reference susceptance values of SVC.     
δ = δ1- δ2 
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QG is used to represent generator reactive limits. If 

maxmin GGG QQQ ≤≤ , the generator voltage V1 is 

assumed to be controlled to represent somewhat the 
control actions of a voltage regulator or AVR; thus, 
neglecting droop and the control system dynamics, the 
voltage regulator is modeled here by keeping the 
generator terminal voltage at the fixed value 

1VV o11 == .where the generator inertia and damping 
constants are represented by M and DG, and DL and τ 
stand for the dynamic load frequency and voltage time 
constants respectively [11] 
 
3. BIFURCATION ANALYSIS AND CHAOS IN A 
SIMPLE POWER SYSTEM 
 
The steady state load demand is modeled through the 
parameter Pd, under the assumption that reactive power 
load demand is directly proportional to the active power 
demand, i.e, Qd=k.Pd ; this parameter is used here to carry 
out he voltage collapse studies. SVC operated capacitive 
mode figures out compensation effect for power system 
stability. To simplify the stability analysis, the resistance 
is neglected (R=0), Pm=Pd. The initial loading condition, 
as considered or not, as discussed below. The p.u time 
constants are assumed to be M =0.9, DG, =0.001, DL 
=0.01, τ =40; the load power factor is assumed to be 0.97 
lagging, i,e., k =0.25, and reactance of transmission line 
X= 0.5 pu. SVC have injected reactive power at 0.518 pu 
value in order to V2 =1.0 pu value of load bus, 
meanwhile, voltage of load bus is 00.300.1 −∠ pu value, 
afterwards load flow analysis. Values belonging to limit 
points of system, X*=[w;δ;V;Bsvc;Pd] state variables 
vector is attained as [0.0; 0.6629;0.8561;0.518;1.0537].  
 
At the end of simulation, from graphics at the Pd =1.06 pu 
value achieved figure 2.a), system can be noticed to lead 
to be unstable at the Pd =1.06 pu value. Fig. 2.b depicts 
the Pd-V curve for the simple system. As expected 
the“nose” is the SNB point and the load active power 
demand at the SNB point is SNB

dP  =1.0537 p.u.  
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                      (a)                                          (b) 
Figure 2. Graphic simulations, a)Variations of voltage V2 
 for different Pd values, b) Pd-V curve for BSVC=0.518 p.u. 
 
Phase portraits of state space for three different operating 
points are shown in fig. 3. Since Pd is less than SNB

dP  
value of 1 p.u and 1.05 p.u, the stability of the oscillations 
and convergion of the equilibrium point are shown in 
fig.3.a and fig.3.b respectively; whereas in fig.3.c, the 



0.7

0.8

0.9

1

0.5

0.6

0.7
0.8

0.9
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

V

W

0.85

0.9

0.95

1

0.5

0.55

0.6
0.65

0.7
-0.1

-0.05

0

0.05

0.1

V

W

0.9
0.95

1
1.05

1.1

0.45

0.5

0.55
0.6

0.65
-0.1

-0.05

0

0.05

0.1

0.15

V

W

system goes into voltage collapse induced by the saddle 
node bifurcation, since Pd=1.06> SNB

dP . 

                     (a)                                             (b)  
 
 
 
 
 
           
                                            (c)                   
 Fig.3. Phase portraits, at the different load values, (V2-δ-
w) a)Pd=1.0, b)Pd=1.05,c) Pd=1.06 
 
The voltage collapse is caused by the load dynamic. 
However,observe that, as a consequence of the voltage 
instability, also the generator rotor angle presents an 
unstable trajectory in figure 4b. 
                                      

 
                                         (a) 

 
                                         (b)  
Figure 4. Phase portraits between generator angle δ, and  
gen. angular velocity w,a) Pd=1.05, b) Pd=1.06(instability) 

4. APPLIED TO N-BUS POWER SYSTEMS 
 
The our method explained at appendix is tested for well-
known the 5 bus Hale network as shown in figure 5.  The 
generators are set to control voltage magnitudes at the 
Slack bus North and the PV bus South at 1.06 p.u and 1 
p.u., respectively. One SVC is placed at the Lake to keep 
voltage magnitude at that bus at 1 p.u. Nodal voltages are 
given in Table 1. The SVC injects 20.47 MVAR into 
Lake and keeps the nodal voltage magnitude at 1.p.u.  
 

 
Figure 5. Five bus Hale network  [13] (Sbase=100 MVA) 
 
According to results obtained from load flow conclusions, 
the sample network shown in figure 5, is changed into 
basic two-bus power system using “The Reducing Bus 
Method”. Bus admittance matrix 

redbusY  

redbusY = ⎥
⎦

⎤
⎢
⎣

⎡
−+−
+−−

2099.10j8427.38877.9j2273.3
8877.9j2273.33112.10j4135.3

 

 
Where, the parameters of pi equivalent circuit having the 
2-bus are A& =1.0478+j0.0466, =B& 0.0298+j0.0914, 
=C& 0.8302 +j0.7572, =D& 1.0443+j0.0044, respectively. 

It is shown that voltage of Lake bus, susceptance of SVC,  
generator angular velocity, and generator angle for stable  
operation points of system in figure 6. 
 

 
                     (b)                                            (d) 
Figure 6. For Pd=0.45 at stable operating points, a) Load 
Voltage b) SVC susceptance c) Difference with load and  
Generator angle (δ= δ1-δ2 ) d) generator angular velocity 



Our obtained conclusions that result from load flow 
simulations shows similarity with given values at Table 1. 
 
Table 1. Nodal voltages of modified network 
 
                                                              Network bus  
Nodal voltage         North    South    Lake    Main   Elm 

It is chosen 2
dP  =8.829 p.u aiming to show being at the 

stable operating point prior to reach the SNB point of 
system. It is obviously seen being SNB

d
2
d PP <  . The 

chaotic behaviour at the 2
d

1
d PandP  points of the system 

can be observed in the figure 8. 
 

Magnitude(p.u.)       1.00     1.000    1.000   0.994  0.975 
Phase angle (radian)  0.0    -0.036   -0.084   -0.089 -0.101 
 
 
4.1. Hopf and saddle-node bifurcations 
 
In this section, we analyze the stability and bifurcation 
points Eq.(3,4,5,7) where Pd is taken as a bifurcation 
parameter. These bifurcations are the saddle-node 
bifurcation and the Hopf bifurcation. All the results are 
obtained by detailed numerical simulations, and 
preliminary analyses are based on the mathematical 
theories and methods are given as appendix. The Jacobian 
matrix at the equilibrium has two eigenvalues of the 
system passed imaginary axis. So there is a Hopf 
bifurcation HB. { 4140.3j0391.0 ±− ,-0.2762,-0.100}. It 
can be said that other eigenvalues have not imaginer part. 
The values concerning with limit points of system 
f( ;;w[)x *** δ= *V ; *

svcB ; *
dP ]T state variables vector are 

achieved as [-0.0894; -0.1596; 0.5004; 0.2047 ;8.8347]T . 
At a SNB

dP =8.8347 p.u., a saddle-node bifurcation SNB 
occurs which the Jacobian has a simple zero eigenvalue. 
The V-δ graphics between voltage magnitude and angle 
are very signicant with respect to show state space system 
having  the diferent loading condition.of the system is 
choosen as 84.8P1

d = p.u as shown in the figure 7. 

 

 
Then, the obtained conclusions due to SNB

d
1
d PP >  have 

shown to diverge from stable operation point of system. 
After the system is bifurcated, the power system 
converging to the voltage collapse has diverged from 
equilibrium point. 
 

 
                     (a)                                                        
(b) 
Figure 7. For 84.8P1

d = p.u. a)Time series between  
generator voltage and generator angle b) Phase portrait 
between generator voltage and generator angle 

                                              (b) 
Figure 8. Phase portraits of generator angular velocity and 
generator angle for different values of Pd  a) 1

dP =8.829 

(Stable), b) 2
dP =8.84 (Unstable).  

 
Phase portraits are achieved plotting three dimension 
graphics for 1

dP  value (Fig.9), It can be shown that the 
power system undergoes a subcritical Hopf bifurcation at 

2
dP =8.84, which is followed closely by the saddle-node 

bifurcation, SNB
dP  . For the power system example in 

equilibrium with 1
dP  near SNB

dP , if any perturbations take 
the operating point beyond the saddle-node, a fast 
monotonous divergence, i.e. a voltage collapse, can be 
expected. 

 



 
 
 
 
 
 
                          (a)                                     (b)                                                       
 
 
 
 
 
 
 
                                                 (c) 
Figure 9. For 1

dP =8.84 three dimension phase portraits 
(t=500 sec.)  a)t-w-δ b) t-w-V c)t-δ-V  
 
 
5.CONCLUSIONS 
 
In this paper, the relationships between chaos and 
power system instability are deeply studied.  
 
A simple power system and 5 bus 2 generators Hale 
network have been observed in Computer simulations 
to become a chaotic system over a range of loading 
conditions. We illustrate that chaos can induce voltage 
collapse, angle divergence or voltage collapse with 
angle instability simultaneously when its stable 
condition is broken. In general, static bifurcations 
(saddle-node bifurcations) can be related to system 
collapse, and the oscillations of the quasi-periodic 
orbits or weak chaos affect the quality of electric 
power by distorting the voltage and current wave forms 
and can also cause the power system collapse in certain 
circumstances. However they are considered as one of 
the clues for the collapse of complicated power 
systems or stability margin narrowing in parameter 
space. All the studies are helpful to understand the 
various instability modes and to find effective anti-
chaos strategies in power systems. Finally, simulation 
results are shown to demonstrate the effectiveness of 
the proposed method. Our proposed power system 
modeling significantly improves the power system 
stability and provides Hopf bifurcation and chaos 
control. Future work will concentrate on studying 
different FACTS devices and their effects on the 
stability of the power systems and the synthesis of a 
general “bifurcation control” technique for FACTS or 
TCSC controllers.  
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