

Failure modes of control valve

Failure	Consequence
Sticky	Loss of control
Cavitation	Damage
Passing	Integrity HSE
Leaking gland	Spill small HSE
Noise	Damage valve
Corrosion	Major leak
Closing	Spurious Trip (random error)
Not closing	Hazard (HSE)

Guideword +	Parameter =	Deviation
No	amount / flow	No flow
High	pressure	High pressure
Low	level	Low level
High	temperature	High temperature
Gui	deword + Paramete	r = Deviation

2011

2011

Safe Failure	Fraction (SFF)	Hardware Fault Tolerance (HFT)		
Тур А	Тур В	N = 0	N = 1	N = 2
	0%< 60%		SIL1	SIL2
0%< 60%	60%< 90%	SIL1	SIL2	SIL3
60%< 90%	90%< 99%	SIL2	SIL3	SIL4
≥ 90%	≥ 99%	SIL3	SIL4	SIL4
e behaviour of " mpletely determ ell defined. Such e behaviour of "	simple" (type A ined. The failure components are complex" (type	A) devices und modes of all e metal film re B) devices	der fault conc constituent c sistors, trans under fault co	litions can be omponents are istors, relays, e onditions canno ponent is not w

Safe Failure I	Fraction (SFF)	Hardware	Fault Tolera	ance (HFT)
Тур А	Тур В	N = 0	N = 1	N = 2
	0%< 60%		SIL1	SIL2
0%< 60%	60%< 90%	SIL1	SIL2	SIL3
30%< 90%	90%< 99%	SIL2	SIL3	SIL4
≥ 90%	≥ 99%	SIL3	SIL4	SIL4
vebaviour of "	simple" (type /		3 Teil 2, Kap. 7.4	.3.1.1 / Tab. 2&3

	Fraction (SFF)	Hardware	Fault Tolera	nce (HFT)
Тур А	Тур В	N = 0	N II I	N = 2
	0%< 60%		SIL1	SIL2
0%< 60%	60%< 90%	SIL1	SIL2	SIL3
60%< 90%	90%< 99%	SIL2	SIL3	SIL4
≥ 90%	≥ 99%	SIL3	SIL4	SIL4
behaviour of " pletely determi defined. Such behaviour of "	simple" (type A ined. The failure components are complex" (type) devices un modes of all metal film re B) devices	der fault cond constituent co esistors, trans under fault co	itions can be omponents a istors, relays, nditions canr

Wilfried Grote

31

71 | Basics of Functional Safety in Process Industry | W. Grote

CONTACT

	Mode				
chitecture	with low demand rate	High demand or continuous mode			
1001	$\begin{split} PFD_{\sigma} &= \left(\lambda_{DU} + \lambda_{DD}\right) \bullet t_{CE} \\ t_{CE} &= \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR \end{split}$	$PFH_{g} = \lambda_{DV}$			
1002	$\begin{split} PFT_{\theta} = & \underline{2} ((1-\beta_{0}) \dot{x}_{xo} + (1-\beta) \dot{x}_{xo})^{2} t_{cd} c_{ad} + \beta_{0} \dot{x}_{xo} MTTR \cdot \beta \dot{x}_{xo} \left(\frac{T}{2} + MTTR\right) \\ & t_{cx} = \frac{\dot{\lambda}_{yo}}{L_{0}} \left(\frac{T}{2} + MTTR\right) + \frac{\dot{\lambda}_{yo}}{\lambda_{0}} MTTR \\ & t_{ax} = \frac{\dot{\lambda}_{yo}}{\lambda_{0}} \left(\frac{T}{3} + MTTR\right) + \frac{\dot{\lambda}_{yo}}{\lambda_{0}} MTTR \end{split}$	$\begin{split} PFH_{C} &= 2 \big((1 - \beta_{D}) \lambda_{DD} + (1 - \beta) \lambda_{DU} \big)^{\frac{1}{2}} t_{CZ} + \beta_{D} \lambda_{DD} + \beta \lambda_{DU} \\ t_{CZ} &= \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{2} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR \end{split}$			
2003	$\begin{split} PFD_{c} = & 6((1-\beta_{c})\lambda_{co} + (1-\beta)\lambda_{co})^{2}t_{cd}x_{cd} + \beta_{c}\lambda_{co}MTTR \cdot \beta_{cbc} \Big(\frac{T}{2} + MTTR \\ & t_{cc} = \frac{\Delta_{coc}}{\lambda_{cc}}\Big(\frac{T}{2} + MTTR \Big) + \frac{\Delta_{coc}}{\lambda_{co}}MTTR \\ & t_{ccc} = \frac{\Delta_{coc}}{\lambda_{cc}}\Big(\frac{T}{3} + MTTR \Big) + \frac{\Delta_{coc}}{\lambda_{co}}MTTR \end{split}$	$\begin{split} PFH_{G} &= 6 \big((1 - \beta_{D}) \lambda_{DD} + (1 - \beta) \lambda_{DU} \big)^{2} t_{CE} + \beta_{D} \lambda_{DD} + \beta \lambda_{DU} \\ t_{CE} &= \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{2} + MTR \right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR \end{split}$			
1002D	$\begin{split} & PFD_{0} = 2(1-\beta)\lambda_{00}((1-\beta_{0})\lambda_{00} + (1-\beta)\beta_{00} + \lambda_{00})\gamma_{cx}\gamma_{cx}\gamma_{cx} + \beta_{0}\lambda_{00}MTTR + \beta\lambda_{00}\left(\frac{T}{2} + MTTR\right)\\ & I_{cx} = -\frac{\lambda_{00}\left(\frac{T}{2} + MTTR\right) + (\lambda_{00} + \lambda_{00})MTTR}{\lambda_{00} + \lambda_{00} + \lambda_{00}}\\ & I_{cx} = -\frac{\lambda_{00}\left(\frac{T}{2} + MTTR\right) + (\lambda_{00} + \lambda_{00})MTTR}{\lambda_{00} + \lambda_{00} + \lambda_{00}} \end{split}$	$\begin{split} PFH_{ic} &= 2(1-\beta)\lambda_{ace} \left((1-\beta_{ia})\lambda_{aaa} + (1-\beta)\lambda_{ace} + \lambda_{aa}\right)\lambda_{cc}' + \beta_{ia}\lambda_{aaa} + \beta\lambda_{ace} \\ &+ \lambda_{aaa} \left(\frac{T_{i}}{2} + MTTR\right) + (\lambda_{aaa} + \lambda_{aaa})MTTR \\ &+ \lambda_{aaa} + \lambda_{aaa} + \lambda_{aaa} \right) \\ \end{split}$			

Definitions Term Description CDF Cumulative Distribution Function Electrical/electronical/programmable electronical systems (E/E/PES) A term used to embrace all possible electrical equipment that may be used to carry out a safety function. Thus simple electrical devices and programmable logic controllers (PLCs) of all forms are included. Equipment under control (EUC) Equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities. ESD Emergency Shut-Down ETA Event Tree Analysis FME(C)A Failure Mode Effect (and Criticality) Analysis FMEDA Failure Mode Effect and Diagnostics Analysis FIT Failures in Time FTA Fault Tree Analysis Hazardous event hazardous situation which results in harm HAZOP HAZard and OPerability study HET Hardware Failure Tolerance IEC/EN 61508 Standard of functional safety of electrical/electronical/programmable electronical safety-related systems IEC/EN 61511 Standard of functional safety: safety instrumented systems for the process industry sector Low Demand Mode – where the frequency of demands for operation made on a safety related system is no greater than one per year and no greater than twice the proof test frequency. LDM CONTACT 80 | Basics of Functional Safety in Process Industry | W. Grote

Definitions	
sis	Safety Instrumented System – A SIS (Safety system) comprises one or more safety functions; for each of these safety functions there is a SIL requirement.
SIL	Safety Integrity Level – One of four discrete stages in specifying the requirements for the safety integrity of the safety functions, which are assigned to the E/E/PE safety-related system, in which the Safety Integrity Level 4 represents the highest stage and the Safety Integrity Level 1 represents the lowest stage of safety integrity.
SLC	Safety Life Cycle – Covers all aspects of safety, including the initial conception, design, implementation, installation, commissioning, validation, maintenance and decommissioning of the risk-reducing measures.
Safety	The freedom from unacceptable risk of physical injury or of damage to the health of persons, either directly or indirectly, as a result of damage to property or the environment.
Safety function	Function to be implemented by an E/E/PE safety-related system, other technology safety-related system or external risk reduction facilities, which is intended to achieve or maintain a safe state for the EUC, in respect of a specific hazardous event.
Tolerable risk	Risk, which is accepted in a given context based upon the current values of society.
82 Basics of Functional Safety in Process Industry W. Grote	

