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ABSTRACT 

A WIRELESS ENTRYPHONE SYSTEM IMPLEMENTATION USING 

MSP430 AND CC1100 

 

In current days, wireless communication is widespread and it is started to be used in 

everyday life, for example, next-generation smart home automation systems widely use 

wireless communication. People want smart systems to make their life easy, and we want 

to discard the cables that limit our mobility.  

 

Although most of the time standards like Wifi or ZigBee are used, sometimes it is 

necessary to design a custom protocol. Because, every single solution has its own 

characteristic, and most of the time, a customized protocol is more efficient in 

functionality, but less efficient in means of development time and money. 

 

In this project, we implemented a wireless entryphone system that it pretty similar to 

its cabled version that is widely used in our country. So, it will be pretty easy and cost 

efficient to set up or remove such a system in a home or apartment. We used TI’s MSP430 

Microcontroller and Chipcon’s CC1100 RF Transceiver, and we designed our own 

protocol for wireless communication. We implemented ADPCM Encoding as voice codec. 

We also implemented XXTEA Encryption to provide security. This system is an example 

of two way, half-duplex, multi-to-single-point communication. This system is pretty cheap, 

easy to set up, very low power and secure. 

 

 

 

 

 

 

 



 v

ÖZET 

MSP430 VE CC1100 ILE KABLOSUZ DIAFON SISTEMI 

UYGULAMASI 

 

Günümüzde, kablosuz teknolojiler gittikçe daha fazla önem kazanarak kablolu 

teknolojilerin yerini almaya başladı. Bunun temel sebebi, taşınabilirliği, uygulanması kolay 

olması ve çok kullanışlı olması. 

 

Hayatımızı her yönden kolaylaştıran bu sistemler için geliştirilen çeşitli protokoller 

ve bu protokolleri kullanan çeşitli sistemler mevcuttur. Ancak çoğu zaman, ihtiyaca gore 

kendi protokolünüzü yazmanız daha verimli olmaktadır. Bu proje çerçevesinde, kendi 

protokolümüzü oluşturarak, apartmanlarımızda veya evlerimizde kullandığımız diafonların 

kablosuz olarak birbirleriyle haberleşebileceği bir sistem geliştirdik. Bu sistem sayesinde, 

uygulaması çok kolay bir şekilde yapılabilecek, daireler-evler arasında hiçbir kablo 

döşeme vs. ihtiyacı olmayan bir ürün ortaya çıkardık. Bu ürünümüz, ses kodlaması için 32 

kbit/s ADPCM formatını kullanmaktadır. Ayrıca, havadaki haberleşmenin güvenli 

olabilmesi ve başka kişiler tarafından dinlenememesi için XXTEA şifreleme sistemini 

kullandık. 

 

Proje kapsamında, genel sistemin yanında, gömülü ortamda C kodu ile ADPCM ses 

kodlaması algoritması ve XXTEA şifreleme algoritması kodlanmıştır. Aynı zamanda, 

kullanılan mikroişlemcinin çeşitli modülleri için sürücüler kodlanmıştır. Bütün yazılım, 

çok kolay geliştirilebilecek ve istenilen özellikler kolaylıkla seçilebilecek modüllere 

ayrılmıştır. 

 

Bu tez, geliştirdiğimiz protokolümüzün ve yazılım uygulamamızın özelliklerini ve 

iyi bilinen ADPCM ses kodlama sistemi ile XXTEA şifreleme sisteminin uygulanması ile 

ilgili ayrıntıları kapsamaktadır. 
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1.  INTRODUCTION 

1.1.  Organization of Report 

The organization of this thesis is as follows: Chapter 2 contains the purpose and 

scope of the project with background information about Entryphone System, Wireless 

Communication, Audio Compression and Encryption. Chapter 3 is the Hardware 

Description part that contains the description of the used hardware components and board. 

Chapter 4 contains the Software Description, including the architecture of designed 

software, state machine of application, definition of used protocols, voice coding and 

encryption, and device driver implementations. Chapter 5 contains detailed analysis of 

Memory and CPU usage of the software and Power consumption of the hardware. Chapter 

6 is the conclusion part, containing the summary of results, possible problems with or 

without implementation of solutions and further improvement suggestions. After the report 

body, there are Appendices sections. Appendix A contains the details of ADPCM voice 

codec and IMA ADPCM implementation that is used in the project, and finally Appendix 

B covers the details of used encryption algorithm, that is called Extended Block TEA 

(XXTEA) algorithm and its background. 

 

1.2.  Used Software & Applications 

For the implementation phase of the project, I have used IAR Embedded Workbench 

for code development, simulation and analysis. The code is compiler dependent, and only 

implemented for IAR Compiler. But the code can be easily ported to another desired 

compiler with minor modifications.  I also used Texas Instruments’ SmartRF Studio 

application to generate the settings and parameters for wireless transmission. 

 

 

 



 15

2.  BACKGROUND 

2.1.  Entryphone System Description 

An intercom (intercommunication device) is an electronic communications system 

intended for limited or private dialogue, direction, collaboration or announcements. 

Intercoms can be portable or mounted permanently in buildings and vehicles. Intercoms 

can incorporate connections to walkie talkies, telephones, cell phones and to other 

intercom systems over phone or data lines and to electronic or electro-mechanical devices 

such as signal lights and door latches. 

 

Home intercom and security systems for buildings are used for communication 

between households and visitors or guards; they offer talk-back, entrance guard and 

security management. In Europe, as houses are mostly of the villa type, the home intercom 

emphasizes high stability. In Asian cities many people are living in big apartment blocks 

with a hundred or more families, and the home intercom emphasizes multi-functionality 

for many users. [1] 

 

Entryphone is an intercom device that is used in the apartments or buildings, to 

communicate with the person who is at outside the door. Entryphone systems are usually 

interfacing with the building's access control system or doorbell. It is a simple intercom 

device, since a small home intercom might connect a few rooms in a house. Larger systems 

might connect all of the rooms in a school or hospital to a central office. Intercoms in 

larger buildings often function as public address systems, capable of broadcasting 

announcements. Intercom systems can be found on many types of vehicles including trains, 

watercraft, aircraft and armoured fighting vehicles. 

 

Permanent intercoms installed in buildings are generally composed of fixed 

microphone/speaker units which connect to a central control panel by wires. 
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Traditional intercom systems are composed entirely of analogue electronics 

components but many new features and interfacing options can be accomplished with new 

intercom systems based on digital connections. Video signals can be interlaced with the 

more familiar audio signals. Digital intercom stations can be connected using Cat 5 cable, 

IP subsystem or can even use existing computer networks as a means of interfacing distant 

parties. 

 

2.1.1.  Wired Intercoms 

While every intercom product line is different, most analogue intercom systems have 

much in common. Voice signals of about a volt or two are carried atop a direct current 

power rail of 12, 30 or 48 volts which uses a pair of conductors. Signal light indications 

between stations can be accomplished through the use of additional conductors or can be 

carried on the main voice pair via tone frequencies sent above or below the speech 

frequency range. Multiple channels of simultaneous conversations can be carried over 

additional conductors within a cable or by frequency- or time-division multiplexing in the 

analogue domain. Multiple channels can easily be carried by packet-switched digital 

intercom signals. 

 

Portable intercoms are connected primarily using common shielded, twisted pair 

microphone cabling. Building and vehicle intercoms are connected in a similar manner 

with shielded cabling often containing more than one twisted pair. 

 

Some digital intercoms use Category 5 cable and relay information back and forth in 

data packets using the Internet protocol architecture. 

 

Most of the time, it is hard to install an intercom system through a building or 

apartment, because of the cabling effort. 
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2.1.2.  Wireless Intercoms 

For installations where it is not desirable or possible to run wires to support an 

intercom system, wireless intercom systems are available. There are two major benefits of 

a wireless intercom system over the traditional wired intercom. The first is that installation 

is much easier since no wires have to be run between intercom units. The second is that 

you can easily move the units at any time. With that convenience and ease of installation 

comes a risk of interference from other wireless and electrical devices. Nearby wireless 

devices such as cordless telephones, wireless data networks, and remote audio speakers can 

interfere. Electrical devices such as motors, lighting fixtures and transformers can cause 

noise. There may be concerns about privacy since conversations may be picked up on a 

scanner, baby monitor, cordless phone, or a similar device on the same frequency. 

Encrypted wireless intercoms can reduce or eliminate privacy risks, while placement, 

installation, construction, grounding and shielding methods can reduce or eliminate the 

detrimental effects of external interference. [2] 

 

Our implementation is a Digital Wireless Intercom system, that uses a hardware 

configurable frequency channel (in this project we used 433 MHz ISM band). We provide 

digital voice coding with Adaptive Differential Pulse Code Modulation (ADPCM) 

algorithm, and we provide security with Extended Block Tiny Encryption Algorithm 

(XXTEA). 

 

2.2.  Wireless Communication Principles 

The term “wireless” is normally used to refer to any type of electrical or electronic 

operation which is accomplished without the use of a "hard wired" connection. Wireless 

communication is the transfer of information over a distance without the use of electrical 

conductors or "wires". The distances involved may be short (a few meters as in television 

remote control) or very long (thousands or even millions of kilometers for radio 

communications). When the context is clear the term is often simply shortened to 

"wireless". Wireless communications is generally considered to be a branch of 

telecommunications. [3] 
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It encompasses various types of fixed, mobile, and portable two way radios, cellular 

telephones, personal digital assistants (PDAs), and wireless networking. Other examples of 

wireless technology include GPS units, garage door openers and or garage doors, wireless 

computer mice and keyboards, satellite television and cordless telephones. 

 

The term "wireless" has become a generic and all-encompassing word used to 

describe communications in which electromagnetic waves or RF (rather than some form of 

wire) carry a signal over part or the entire communication path. 

 

Wireless communication may be implemented via: 

 

1- Radio frequency (RF) communication,  

2- Microwave communication, for example long-range line-of-sight via highly 

directional antennas, or short-range communication, or  

3- Infrared (IR) short-range communication, for example from remote controls or via 

IRDA. 

 

A wireless communication system deals with two directions, a transmitting direction 

and a receiving direction. Normally, the size of the antenna must be as large as one fourth 

of the wavelength of the signal to be transmitted or received to get enough efficiency. For 

this reason, the original signal (normally the voice) with a large wavelength must be 

transferred to a higher frequency (smaller wavelength) to downsize the antenna. At the 

transmitting end, the original signal is imposed on a locally generated radio frequency (RF) 

signal called a carrier. This process is called modulation. 

 

This carrier signal, along with the information signal imposed on it, is then radiated 

by the antenna. At the receiving end, the signal is picked up by another antenna and fed 

into a receiver where the desired carrier with the imposed information signal is selected 

from among all of the other signals impinging on the antenna. The information signal (e.g., 

voice) is then extracted from the carrier in a process referred to as demodulation. 

 

The propagation of the signal in free space is not fluent. There may be some negative 

influence to the received signal. First, the signal becomes weaker and weaker during the 

propagation. Second, interference from some noise will distort the information signal; An 
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then, some propagation mechanisms such as reflection, diffraction and scattering, will 

distort the information signal too. It is even worse in mobile systems -- where one or both 

of the terminals (transmitters and receivers) can move about -- due to an environment that 

changes dynamically from moment to moment. To get rid of these problems, we need more 

precise models to describe the propagation, and more modulation technology to avoid 

distortion. 

 

2.2.1.  History 

The term "Wireless" came into public use to refer to a radio receiver or transceiver (a 

dual purpose receiver and transmitter device), establishing its usage in the field of wireless 

telegraphy early on; now the term is used to describe modern wireless connections such as 

in cellular networks and wireless broadband Internet. It is also used in a general sense to 

refer to any type of operation that is implemented without the use of wires, such as 

"wireless remote control", "wireless energy transfer", etc. regardless of the specific 

technology (e.g., radio, infrared, ultrasonic, etc.) that is used to accomplish the operation. 

 

2.2.2.  Electromagnetic Spectrum 

Light, colors, AM and FM radio and electronic devices make use of the 

electromagnetic spectrum. In the US the frequencies that are available for use for 

communication are treated as a public resource and are regulated by the Federal 

Communications Commission. This determines which frequency ranges can be used for 

what purpose and by whom. In the absence of such control or alternative arrangements 

such as a privatized electromagnetic spectrum, chaos might result if, for example, airlines 

didn't have specific frequencies to work under and an amateur radio operator was 

interfering with the pilot's ability to land an airplane. Wireless communication spans the 

spectrum from 9 kHz to 300 GHz. The International Telecommunications Union (ITU) is 

the part of the United Nations (UN) that manages the use of both the RF Spectrum and 

space satellites among nation states. [4] 



 20

 

Figure 2.1: Electromagnetic Spectrum 

2.2.3.  Digital Wireless Communication 

Digital describes electronic technology that generates, stores, and processes data in 

terms of two states: positive and non-positive. Positive is expressed or represented by the 

number 1 and non-positive by the number 0. Thus, data transmitted or stored with digital 

technology is expressed as a string of 0's and 1's. Each of these state digits is referred to as 

a bit (and a string of bits that a computer can address individually as a group is a byte). [5]

 

The modulation techniques of digital wireless signal are more complicated than those 

of analog signals. There are a lot of modulation techniques. Following is just a small list of 

them: 
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Linear Modulation Techniques:  

BPSK : Binary Phase Shift Keying 

DPSK : Differential Phase Shift Keying 

QPSK : Quadrature Phase Shift Keying 

 

Constant Envelope Modulation Techniques:  

BFSK : Binary Frequency Shift Keying 

MSK : Minimum Shift Keying 

GMSK : Gaussian Minimum Shift Keying 

 

Combined Linear and Constant Envelope Modulation Techniques:  

MPSK : M-ary Phase Shift Keying 

QAM : M-ary Quadrature Amplitude Modulation 

MFSK : M-ary Frequency Shift Keying  

 

Spread Spectrum Modulation Techniques:  

DS-SS : Direct Sequence Spread Spectrum 

FH-SS : Frequency Hopped Spread Spectrum 

 

When wireless applications, such as mobile phones, were initially introduced into 

society, they were based on analog technology, as the prime service was voice. Analog was 

a suitable means, capable of delivering the service. However, the requirements & 

expectations of the current consumer often exceed this service to include data as well. Thus 

the market is being driven to satisfy the requirements of data & voice, which can be more 

adequately delivered by digital technologies. Most consumers prefer digital to analog 

because of its superior performance & service providers are embracing digital technologies 

as well. By examination of the various advertising media nowadays, one can see that they 

are attempting to convince their clients using analog to convert to digital. In a way, analog 

can be looked on as a predecessor to digital in the field of wireless technologies. 
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Some advantages of digital wireless communication over analog: 

 

• It economizes on bandwidth.  

• It allows easy integration with personal communication systems (PCS) 

devices.  

• It maintains superior quality of voice transmission over long distances.  

• It is difficult to decode.  

• It can use lower average transmitter power.  

• It enables smaller and less expensive individual receivers and transmitters.  

• It offers voice privacy. 

 

2.3.  Voice Coding 

Digital audio uses digital signals for sound reproduction. This includes analog-to-

digital conversion, digital-to-analog conversion, storage, and transmission. 

 

Digital audio has emerged because of its usefulness in the recording, manipulation, 

mass-production, and distribution of sound. Modern distribution of music across the 

internet through on-line stores depends on digital recording and digital compression 

algorithms. Distribution of audio as data files rather than as physical objects has 

significantly reduced costs of distribution. 

 

The objective of speech is communication whether face-to-face or cell phone to cell 

phone. To fit a transmission channel or storage space, speech signals are converted to 

formats using various techniques. This is called speech coding or compression. To improve 

the efficiency of transmission and storage, reduce cost, increase security and robustness in 

transmission, speech coding attempts to achieve toll quality performance at a minimum bit 

rate. [6]
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2.3.1.  Turning Speech into Electrical Pulses 

Speech is sound in motion. Talking produces acoustic pressure. Speaking into the 

can of a string telephone, for example, makes the line vibrate, causing sound waves to 

travel from one end of the stretched line to the other. A telephone by comparison, 

reproduces sound by electrical means. What the Victorians called "talking by lightning." A 

standard dictionary defines the telephone as "an apparatus for reproducing sound, 

especially that of the voice, at a great distance, by means of electricity; consisting of 

transmitting and receiving instruments connected by a line or wire which conveys the 

electric current." 

 

Electricity works the phone itself: operates the keypad, makes it ring. Electricity 

provides a path, too, for voice and data to travel over wires. Electric current doesn't really 

convey voice; sound merely varies the current. It's these electrical variations, analogs of 

the acoustic pressure originally spoken into the telephone transmitter or microphone, which 

represent voice. 

 

In wireless technology, a coder inside the mobile telephone converts sound to digital 

impulses on the transmitting side. On the receiving side it converts these impulses back to 

analog sounds. A coder or vocoder is a speech analyzer and synthesizer in one. Vocoders 

are in every digital wireless telephone, part of a larger chip set called a digital signal 

processor. Sound gets modeled and transmitted on one end by the analyzer part of the 

vocoder. On the receiving end the speech synthesizer part interprets the signal and 

produces a close match of the original. Keep following along. 

 

Digital signals are a mathematical or numerical representation of sound, with each 

sonic nuance captured as a binary number. Reproducing sound is as easy as reproducing 

the numbers. Extensive error checking schemes ensure that a wireless digital link stays 

intact, even when transmitted through the air. 
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2.3.2.  Converting electrical impulses to digital signals - Voice coding 

The first step in digitizing is called pulse amplitude modulation or PAM. Amplitude 

refers to a signal's strength, the relative rise and fall that PAM takes measurements of. 

These levels, ranging from 0 to 256 in T-1, are gathered against time. To have a coordinate 

like those below you must have two magnitudes. The signal strength and the time it 

occurred. Once you have those you have a plot that can be put into binary. 

 

After PAM takes its measurements, each sample gets converted to an 8 bit binary 

code word. Let's say one piece of conversation, a fraction of a second's worth, actually, hits 

a strength level of 175. It's now put into binary, transmitted by turning on or off an 

electrical current or light wave. The bits 10101111, for example, represent 175. Voltage 

turned on or off. Since this second step encodes the previous information, it is called pulse 

code modulation or PCM. That's what the code in PCM stands for. 

 

 

Figure 2.2: Quantization 
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Putting the measured strength or amplitude into 8 bit code words is also called 

quantization. A name for both steps is called voice coding. And every code word generated 

is time stamped so it can be put back together in the order it was made. As the result, old 

fashioned pulse code modulation needs 64,000 bits (64kbs) every second to represent 

speech. Better ways exist for wireless. Oh, and make sure you don't confuse the sampling 

rate with the bit rate we just mentioned. A sampling of 8,000 times a second might result in 

a 64,000 bit a second signal but it all depends on what follows next. 

 

PCM, invented decades ago, isn't efficient for digital wireless working. Radio 

frequencies are limited in number and size, yet demand for them keeps growing. Data must 

be sampled and then compressed more effectively to conserve bandwidth. In IS-54, now 

IS-136, the digital system we will look at later, voice traffic gets coded and compressed at 

the same time using a technique called VSELP. That stands for Vector Sum Excited Linear 

Predictive speech compression. Voice is compressed down to 7.95 KBits/s, almost one 

sixth PCM's size. The circuit that does both the initial sampling and compression is called, 

as we mentioned briefly above, a voice coder, again, part of the digital signal processor or 

DSP. There are a number of tricks the DSP uses to crunch down speech and conserve 

bandwidth. 

 

With VSELP, the coder models a speech waveform every 20 milliseconds. That 

helps immediately, at least compared to T1, which samples every 125 microseconds, piling 

up a lot of needless bits. And rather than copying the entire sound, VSLEP digitizes the 

voice's essential elements. It's used with digital sound processing techniques, along with 

proprietary algorithms owned by the chip maker. 

 

2.4.  Audio Compression – Theory and Principles 

A digital audio signal is usually represented by uniformly sampled values with a 

fixed word length N, which means that each sample can have a value between –(2N-1) and 

(2N-1-1). The digital sample value represents the signal amplitude at a specified instant (the 

sample instant) as shown in figure 2. The number of samples per second is specified by the 

sampling frequency fS. This technique is called linear quantization or LPCM (Linear Pulse 

Code Modulation). [7]
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Figure 2.3: Digital Representation of Audio Signals 

2.4.1.  Lossless Compression of Audio 

Lossless compression is based on representing the signal in a way that makes the 

entropy as small as possible and then to employ coding based on the statistical properties 

of this new representation (entropy coding). The former is made possible by the fact that 

music in reality is not statistically independent, there is correlation in the signal. By using 

techniques to de-correlate the signal one can reduce the amount of information (and thus 

obtain a smaller entropy) without loss, since the deleted information can be calculated and 

put back in the signal by exploiting the correlation with the data that is retained. 

 

Entropy coding is based on giving short codes to values with a high probability of 

occurrence and longer codes to the values with lower probability. Then, if the assumptions 

of probabilities are correct, there will be many short codes and few longer ones. 
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Figure 2.4: Basic principles of lossless audio compression 

Figure 2.4 shows a block schematic of how audio is compressed. Framing is to 

gather the audio stream in blocks so it can easily be edited. The blocks often contain a 

header that gives the decoder all necessary information. Decorrelation is done using a 

mathematical algorithm. This algorithm should be effective, but not too computationally 

complex, while entropy-coding can be done in several different ways. 

 

2.4.2.  Lossy Compression of Audio 

Lossy compression is based on using psychoacoustic models to find and remove 

information that is not perceptible to the human auditory system. It’s therefore often 

referred to as perception-based compression. There are many methods available, whose 

complexity and quality vary a lot. The best systems may provide close to CD quality even 

with high compression ratios (10:1 or more), but they are complex and require fast 

processors or custom-made hardware (ASICs). 

 

In this project, we used ADPCM algorithm for voice compression. There is detailed 

information about ADPCM in Appendix C section of the report. 

 

To suit our goals we need a speech codec with: 

• A fairly low bit rate 

• Fairly low computational complexity 

• Modest code and buffer requirements 

 

ADPCM offers a balance that fits our requirements 
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2.5.  Cryptography 

Cryptography, in Greek, literally means hidden writing, or the art of changing plain 

textmessage. Cryptography is used increasingly by businesses, individuals and the 

govemment for ensuring the security and privacy of information and communications. 

Cryptography's use by criminals is becoming widespread as well. The same aspects of 

cryptography that make it useful for security and privacy make it particutarly troublesome 

for law enforcement. [8]

 

Cryptography is the practice and study of hiding information. In modern times, 

cryptography is considered to be a branch of both mathematics and computer science, and 

is affiliated closely with information theory, computer security, and engineering. 

 

The need for cryptography is, today, arguably self-evident.  However, the exact style 

of cryptography is something varied; one can find examples of cryptographic algorithm 

users who fall into the camps of desiring high speed without regard to power consumption, 

those who desire ultra-low power consumption without the need for super high throughput, 

and those who want it all. 

 

Serious cryptanalysts such as government bodies and researchers typically end up 

being limited by their available capital rather than the available power in the system (if you 

can afford a massively parallel FPGA code breaker, you can probably afford the electricity 

to power it).  For such individuals, we offer a comparison of the raw speed of various 

cryptosystems without regard to their power requirements. 

 

Ultra-low power consumption is needed in devices that typically have little or no 

battery power and/or recharging ability.  Examples include ‘single use’ military sensors 

that are interrogated via RF, ‘smart cards’ that are powered by a (very) low power incident 

electromagnetic field, and ultra-miniature electronic devices such as pager watches, etc.  

We will briefly review low-power design techniques and examine various low power 

implementations in details. 

 

Many everyday devices such as PDAs, laptop computers, and cell phones would 

prefer to have their cake (high encryption speeds) and eat it too (as opposed to eating their 
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batteries).  Although these devices have ‘reasonable’ energy stores (typically >=1000J), the 

use cryptographic protocols can significantly influence the overall energy usage of the 

device.  One of the significant considerations in the case of these devices is whether a 

hardware, software, or programmable logic solution is best at providing the necessary 

cryptographic performance.  We don’t consider the price of adding hardware (an ASIC or 

FPGA), but we will show the performance they can add to the system. 

 

2.5.1.  Symmetric-Key Cryptography 

Symmetric-key cryptography refers to encryption methods in which both the sender 

and receiver share the same key (or, less commonly, in which their keys are different, but 

related in an easily computable way). This was the only kind of encryption publicly known 

until June 1976. 

  

The modern study of symmetric-key ciphers relates mainly to the study of block 

ciphers and stream ciphers and to their applications. A block cipher is, in a sense, a modern 

embodiment of Alberti's polyalphabetic cipher: block ciphers take as input a block of 

plaintext and a key, and output a block of ciphertext of the same size. Since messages are 

almost always longer than a single block, some method of knitting together successive 

blocks is required. Several have been developed, some with better security in one aspect or 

another than others. They are the mode of operations and must be carefully considered 

when using a block cipher in a cryptosystem. 

 

The most commonly used conventional encryption algorithms are block ciphers. A 

block cipher processes the plaintext input in fixed-size blocks and produces a block of 

ciphertext of equal size for each plaintext block. The two most important conventional 

algorithms, both of which are block ciphers, are the Data Encryption Standard (DES), and 

Triple Data Encryption Algorithm (TDEA). [9]

 

The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) 

are block cipher designs which have been designated cryptography standards by the US 

government (though DES's designation was finally withdrawn after the AES was adopted). 

Despite its deprecation as an official standard, DES (especially its still-approved and much 
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more secure triple-DES variant) remains quite popular; it is used across a wide range of 

applications, from ATM encryption to e-mail privacy and secure remote access. Many 

other block ciphers have been designed and released, with considerable variation in 

quality. Many have been thoroughly broken. 

 

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key 

material, which is combined with the plaintext bit-by-bit or character-by-character, 

somewhat like the one-time pad. In a stream cipher, the output stream is created based on 

an internal state which changes as the cipher operates. That state's change is controlled by 

the key, and, in some stream ciphers, by the plaintext stream as well. RC4 is an example of 

a well-known stream cipher. 

 

In this project, we used Extended Block Tiny Encryption Algorithm (XXTEA). The 

algorithm is explained on Appendix D in details. Tiny Encryption Algorithm (TEA) is a 

block cipher notable for its simplicity of description and implementation (typically a few 

lines of code). Executing encryption software on a microcontroller is a fine balance 

between security level, size, and cycles. In general, the more secure an algorithm, the more 

cycles that are required. The TEA was chosen because it offers the best security-to-cycles 

ratio. As written, it does 32 iterations, with any single bit change in the input data being 

fully propagated in 4 iterations. The security is similar to DES, but it is done with one-third 

the cycles of DES. This is accomplished by using less-complicated equations but executing 

more iterations. 

 

Like TEA, XTEA is a 64-bit block Feistel network with a 128-bit key and a 

suggested 64 rounds. Several differences from TEA are apparent, including a somewhat 

more complex key-schedule and a rearrangement of the shifts, XORs, and additions. [10]

 

Presented along with XTEA was a variable-width block cipher termed Block TEA, 

which uses the XTEA round function but applies it cyclically across an entire message for 

several iterations. Because it operates on the entire message, Block TEA has the property 

that it does not need a mode of operation. An attack on the full Block TEA was described 

in (Saarinen, 1998), which also details a weakness in Block TEA's successor, XXTEA. [11]
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Corrected Block TEA (often referred to as XXTEA) is a block cipher designed to 

correct weaknesses in the original Block TEA (Tiny Encryption Algorithm). If the block 

size is equal to the entire message, XXTEA has the property that it does not need a mode 

of operation: the cipher can be directly applied to encrypt the entire message. XXTEA is 

likely to be more efficient than XTEA for longer messages. 
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3.  HARDWARE DESCRIPTION 

3.1.  Development Boards 

We have used two types of development board. First, we have the first revision that 

has no audio I/O. We developed the network protocol on it. The second revision has audio 

I/O and final development is done on that. Both boards are designed by my supervisor, 

Mustafa Turkboylari. 

 

 

Figure 3.1: First revision of development board. 

Both boards has wireless module slot. Wireless chip is on removable modules (i.e. 

daughter board). This daughter board is easily removable. Both revisions of boards have 

LCD slot and UART connectivity on them. Also, both has configurable buttons. 
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Figure 3.2: Second revision of the board. 

Second revision of development board has both audio input and output jack and on-

board microphone and speaker. It also has two extra switches of 8 pins, and two LEDs. 

 

The board has a connector for Chipcon’s RF modules and another connector for 

Hitachi compatible LCD. 
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Figure 3.3: Chipcon CC1100 RF Module. 

3.2.  Processing Unit – MSP430 MCU 

The MSP430 is a microcontroller family from Texas Instruments. Built around a 16-

bit CPU, the MSP430 is designed for low cost, low power consumption embedded 

applications. The MSP430 is particularly well suited for wireless RF or battery powered 

applications. [12]

 

The device comes in a variety of configurations featuring the usual peripherals: 

internal oscillator, timer including PWM, watchdog, USART, SPI, I2C, 10/12/14/16-bit 

ADCs, and brownout reset circuitry. Some less usual peripheral options include 

comparators (that can be used with the timers to do simple ADC), on-chip op-amps for 

signal conditioning, 12-bit DAC, LCD driver, hardware multiplier, and DMA for ADC 

results. Apart from some older EPROM (PMS430E3xx) and high volume mask ROM 

(MSP430Cxxx) versions, all of the devices are in-system programmable via JTAG or a 

built in bootstrap loader (BSL) using RS-232. 

 

The MSP430 is a popular choice for low powered measurement devices. The current 

drawn in idle mode can be less than 1 microamp. The top CPU speed is 16 MHz. It can be 

throttled back for lower power consumption. Note that MHz is not equivalent to MIPS, and 

there are more efficient architectures that obtain higher MIPS rates at lower CPU clock 
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frequencies, which can result in lower dynamic power consumption for an equivalent 

amount of processing. [13]

 

There are, however, limitations that prevent it from being used in more complex 

embedded systems. The MSP430 does not have an external memory bus, so is limited to 

on-chip memory (up to 120 KB Flash and 10 KB RAM) which might be too small for 

applications that require large buffers or data tables. 

 

The MSP430 CPU uses Von-Neumann architecture, with a single address space for 

instructions and data. Memory is byte-addressed, and pairs of bytes are combined little-

endian to make 16-bit words. 

 

The processor contains 16 16-bit registers. R0 is the program counter, R1 is the stack 

pointer, R2 is the status register, and R3 is a special register called the constant generator, 

providing access to 6 commonly used constant values without requiring an additional 

operand. R4 through R15 are available for general use. 

 

The instruction set is very simple; there are 27 instructions in three families. Most 

instructions are available in 8-bit (byte) and 16-bit (word) versions, depending on the value 

of a B/W bit - the bit is set to 1 for 8-bit and 0 for 16-bit. Byte operations to memory affect 

only the addressed byte, while byte operations to registers clear the most significant byte. 

 

3.2.1.  Key Features 

Key features of the MSP430x1xx family include: 

 

• Ultralow-power architecture extends battery life 

o 0.1-µA RAM retention 

o 0.8-µA real-time clock mode 

o 250-µA / MIPS active 
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• High-performance analog ideal for precision measurement 

o 12-bit or 10-bit ADC — 200 ksps, temperature sensor, VRef 

o 12-bit dual-DAC 

o Comparator-gated timers for measuring resistive elements 

o Supply voltage supervisor 

 

• 16-bit RISC CPU enables new applications at a fraction of the code size. 

o Large register file eliminates working file bottleneck 

o Compact core design reduces power consumption and cost 

o Optimized for modern high-level programming 

o Only 27 core instructions and seven addressing modes 

o Extensive vectored-interrupt capability 

 

• In-system programmable Flash permits flexible code changes, field upgrades 

and data logging 

 

Details and specification of MSP430 is not included in this report. You can find very 

detailed description and specifications of MSP430F169 in MSP430x1xx Family User 

Guide and MSP430F169 Datasheet. 

 

3.2.2.  History of MSP430 

The MSP430 family is a microcontroller family which is established for approx. 10 

years. However, the primary usage was in measurement applications which are battery 

powered, e.g. intelligent sensors, with or without LCD-display. Peripherals were included 

with these applications in mind. In the beginnings, no UARTs were supported. And the 

development tools were not very attractive for those having smaller target quantities in 

mind. In short: The MSP430 was a good choice for OEM´s. 

 

By end of the nineties the MSP430 family and its development tools have become 

attractive for a vast range of potential applications and also for low quantities, since the 

cost of developent tools has been lowered dramatically, especially due to the introduction 

of JTAG-based programming & debugging in flash-based devices. Alas, competitors in the 
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low budget range already control these low budget markets, especially Microchip (PIC) 

and later Atmel (AVR). Of course, the old mobile under the 8-bit controllers, the 8051-

family may be considered a part of these low-budget markets. 

 

3.2.3.  Pros 

For medium to bigger projects, there is an economical argument to switch over to 

MSP430, when current targets are 8051, PIC or AVR. The creation of software will be less 

error-prone and provides a better overview when MSP430 is targeted. 

 

An example of less susceptibility to software errors: the 16-bit architecture provides 

single transfer of up to 16 bit memory or peripheral values to registers and vice versa. This 

allows for variable updating in interrupt routines without the need to temporarily disable 

interrupts when reading such values in the main program. C-programmers often forget 

these pitfalls. They firstly must study the macro names of their compiler which takes care 

for these interrupt enables & disables, and secondly: they must be applied. 

 

Why a better overview? This is due to the linear memory organization of the 

MSP430 architecture. In the past, the Harvard architecture was praised as being 

economical because of providing separate address spaces for code and data. Practically, 

this limits the comfortability of maintaining (high-level) programs, especially when more 

than one data space is available (PIC: RAM-banks, 8051: internal & external data 

memory). This affects maintainability, portability and reusability of programs & modules. 

This topic is extensively explained here. At this point it should be understood that long 

term effects are clearly gained when switching over from 8 bit to 16 bits with linear 

address space. Note that many 16 bit processors still have separate code & data spaces. 

 

For the sake of completeness, it should be noted here that several good architectures 

exists which support linear memory and good code utilization. Bigger projects, especially 

when program code is beyond 60KB are managed better with ARM or MIPS based MCUs. 
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3.2.4.  Cons 

Given this constellation, it is very difficult for the MSP430 family to raise its market 

potential, despite its significant better properties in all relevant issues. Of course, this is 

due to present usage of these competitor products and corresponding development tools. 

Further, the time which was spent in learning a new architecture is considerable. And last 

but not least, the software pool of these products is immense. But the fact of common 

usage of C lowers this as a factor of keeping "old" products. The only problem is the 

conversion of low level peripheral related modules to new modules. 

 

3.3.  RF Radio Chip - Chipcon CC1100 

The CC1100 is a low cost true single chip UHF transceiver designed for very low 

power wireless applications. The circuit is mainly intended for the ISM (Industrial, 

Scientific and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868 

and 915 MHz, but can easily be programmed for operation at other frequencies in the 300-

348 MHz, 400-464 MHz and 800-928 MHz bands. [14]

 

The RF transceiver is integrated with a highly configurable baseband modem. The 

modem supports various modulation formats and has a configurable data rate up to 500 

kbps. The communication range can be increased by enabling a Forward Error Correction 

option, which is integrated in the modem.  

 

CC1100 provides extensive hardware support for packet handling, data buffering, 

burst transmissions, clear channel assessment, link quality indication and wake-on-radio. 

 

The main operating parameters and the 64- byte transmit/receive FIFOs of CC1100 

can be controlled via an SPI interface. In a typical system, the CC1100 will be used 

together with a microcontroller and a few additional passive components. CC1100 is part 

of Chipcon’s 4th generation technology platform based on 0.18 µm CMOS technology. 
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Figure 3.4: Simplified block diagram of CC1100. 

3.3.1.  Key Features / Benefits 

The CC1100 is a low cost, true single-chip RF transceiver designed for very low 

power wireless applications. The circuit is intended for the ISM (Industrial, Security, and 

Medical) and SRD (Short Range Device) frequency bands. The RF transceiver is 

integrated with a highly configurable baseband modem. The modem supports various 

modulation formats and has a configurable data rate of up to 500 kbps. The CC1100 

provides extensive hardware support for effective RF communications, such as packet 

handling, data buffering, burst transmissions, clear channel assessment, link quality 

indication, and WOR. The main operating parameters and the 64-byte transmit and receive 

buffer FIFOs can be controlled via standard 3-wire SPI interface. Only a few passive 

components are required to interface the CC1100 with the MSP430 ultralow-power 

microcontroller. By using the TI CC1100 device, the following features greatly benefit the 

system with respect to RF communications: 
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• Automated packet handling – automates training, frame synchronization, 

addressing, and error detection 

• Wake-On-Radio (WOR) – achieves automatic low-power periodic Receiver 

polling 

• Tx-If-CCA™ feature (CCA) – prevents multiple Transmitter collisions and 

automatically arbitrates the data direction for listen-before-talk systems 

• Forward error correction (FEC) with interleaving – reduces gross bit error 

rate when operating near the sensitivity limit 

• Carrier sense (CS) – enables detection of busy channels used by other 

potentially interfering systems (e.g., wireless router, cordless phone) 

• Link quality indicator (LQI) – estimates how easily a received signal can be 

demodulated; can be used as a relative measurement of the link quality 

• Automatic frequency compensation (AFC) – align own frequency to the 

received center frequency 

• Manchester encoding – provides an additional level of data integrity for 

packet transmissions 

• Deep 64-byte Tx FIFO data buffer – allows MCU to store sufficient amounts 

of data pending to be transmitted by the CC1100 at any time, regardless of 

what the CC1100 is doing 

• Deep 64-byte Rx FIFO data buffer – allows CC1100 to store sufficient 

amounts of received data and save it for the MCU to be read at any time 

• Efficient standard SPI interface – all registers can be programmed with one 

"burst" transfer 

• Digital RSSI output – allows the MCU to quickly read (in real-time) a simple 

8-bit byte representing the Received Signal Strength Indicator of the last 

received data packet 

 

Details and specification of Chipcon CC1100 chip is not included in this report. You 

can find very detailed description and specifications of CC1100 in CC1100 user guide. 
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3.3.2.  Used Features 

In this project, we used CC1100 in 433 MHz frequency band and 250 kbps data rate 

with MSK modulation. Also, varieties of features supported by CC1100 are implemented. 

 

CC1100 can be configured to achieve optimum performance for many different 

applications. Configuration is done using the SPI interface. The following key parameters 

can be programmed: 

 

• Power-down / power up mode 

• Crystal oscillator power-up / power-down 

• Receive / transmit mode 

• RF channel selection 

• Data rate 

• Modulation format 

• RX channel filter bandwidth 

• RF output power 

• Data buffering with separate 64-byte receive and transmit FIFOs 

• Packet radio hardware support 

• Forward Error Correction with interleaving 

• Data Whitening 

• Wake-On-Radio (WOR) 

 

3.3.2.1.  Radio State Machine 

 

CC1100 has a built-in state machine that is used to switch between different 

operational states (modes). The change of state is done either by using command strobes or 

by internal events such as TX FIFO underflow. 

 

The state machine diagram can be founded in CC1100 User Guide. 

 



 42

3.3.2.2.  Data FIFO 

 

The CC1100 contains two 64 byte FIFOs, one for received data and one for data to 

be transmitted. The SPI interface is used to read from the RX FIFO and write to the TX 

FIFO. The FIFO controller will detect overflow in the RX FIFO and underflow in the TX 

FIFO. 

 

When writing to the TX FIFO it is the responsibility of the MCU to avoid TX FIFO 

overflow. A TX FIFO overflow will result in an error in the TX FIFO content. Likewise, 

when reading the RX FIFO the MCU must avoid reading the RX FIFO past its empty 

value, since an RX FIFO underflow will result in an error in the data read out of the RX 

FIFO. The chip status byte that is available on the SO pin while transferring the SPI 

address contains the fill grade of the RX FIFO if the address is a read operation and the fill 

grade of the TX FIFO if the address is a write operation. 

 

The number of bytes in the RX FIFO and TX FIFO can be read from the status 

registers RXBYTES.NUM_RXBYTES and TXBYTES.NUM_TXBYTES respectively. If 

a received data byte is written to the RX FIFO at the exact same time as the last byte in the 

RX FIFO is read over the SPI interface, the RX FIFO pointer is not properly updated and 

the last read byte is duplicated. 

 

3.3.2.3.  Packet Format 

 

The CC1100 has built-in hardware support for packet oriented radio protocols. In 

transmit mode, the packet handler will add the following elements to the packet stored in 

the TX FIFO: 

 

• A programmable number of preamble bytes. 

• A two byte synchronization (sync.) word. Can be duplicated to give a 4-byte 

sync word (Recommended). 

• Optionally whiten the data with a PN9 sequence. 

• Optionally Interleave and Forward Error Code the data. 

• Optionally compute and add a CRC checksum over the data field. 
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• The recommended setting is 4-byte preamble and 4-byte sync word, except 

for 500 kbps data rate where the recommended preamble length is 8 bytes. 

 

In receive mode, the packet handling support will de-construct the data packet: 

 

• Preamble detection. 

• Sync word detection. 

• Optional one byte address check. 

• Optionally compute and check CRC. 

• Optionally append two status bytes with RSSI value, Link Quality Indication 

and CRC status. 

 

The format of the data packet can be configured and consists of the following items: 

 

• Preamble 

• Synchronization word 

• Length byte or constant programmable packet length 

• Optional Address byte 

• Payload 

• Optional 2 byte CRC 
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Figure 3.5: Packet Format 

The preamble pattern is an alternating sequence of ones and zeros (01010101…). 

The minimum length of the preamble is programmable. When enabling TX, the modulator 

will start transmitting the preamble. When the programmed number of preamble bytes has 

been transmitted, the modulator will send the sync word and then data from the TX FIFO if 

data is available. If the TX FIFO is empty, the modulator will continue to send preamble 

bytes until the first byte is written to the TX FIFO. The modulator will then send the sync 

word and then the data bytes. The number of preamble bytes is programmed with the 

NUM_PREAMBLE value. The synchronization word is a two-byte value set in the 

SYNC1 and SYNC0 registers. The sync word provides byte synchronization of the 

incoming packet. A one-byte synch word can be emulated by setting the SYNC1 value to 

the preamble pattern. It is also possible to emulate a 32 bit sync word by using 

SYNC_MODE=3 or 7. The sync word will then be repeated twice. 

 

CC1100 supports both constant packet length protocols and variable length 

protocols. Variable or fixed packet length mode can be used for packets up to 255 bytes. 

For longer packets, infinite packet length mode must be used. 
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3.3.2.4.  Wake-on-Radio 

 

The Wake on Radio (WOR) functionality enables CC1100 to periodically wake up 

from deep sleep and listen for incoming packets without MCU interaction. 

 

When WOR is enabled, the CC1100 will go to the SLEEP state when CSn is released 

after the SWOR command strobe has been sent on the SPI interface. The RC oscillator 

must be enabled before the WOR strobe can be used, as it is the clock source for the WOR 

timer. The on-chip timer will set CC1100 into IDLE state and then RX state. After a 

programmable time in RX, the chip will go back to the SLEEP state, unless a packet is 

received. 

 

CC1100 can be set up to signal the MCU that a packet has been received by using the 

GDO pins. If a packet is received, the RXOFF_MODE will determine the behavior at the 

end of the received packet. When the MCU has read the packet, it can put the chip back 

into SLEEP with the SWOR strobe from the IDLE state. The FIFO will loose its contents 

in the SLEEP state. 

 

3.3.2.5.  Forward Error Correction 

 

CC1100 has built in support for Forward Error Correction (FEC). To enable this 

option, set FEC_EN to 1. FEC is only supported in fixed packet length mode 

(LENGTH_CONFIG=0). FEC is employed on the data field and CRC word in order to 

reduce the gross bit error rate when operating near the sensitivity limit. Redundancy is 

added to the transmitted data in such a way that the receiver can restore the original data in 

the presence of some bit errors. 

 

The use of FEC allows correct reception at a lower SNR, thus extending 

communication range if the receiver bandwidth remains constant. Alternatively, for a given 

SNR, using FEC decreases the bit error rate (BER). 
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Finally, in realistic ISM radio environments, transient and time-varying phenomena 

will produce occasional errors even in otherwise good reception conditions. FEC will mask 

such errors and, combined with interleaving of the coded data, even correct relatively long 

periods of faulty reception (burst errors). 

 

The FEC scheme adopted for CC1100 is convolutional coding, in which n bits are 

generated based on k input bits and the m most recent input bits, forming a code stream 

able to withstand a certain number of bit errors between each coding state (the m-bit 

window). 

 

The convolutional coder is a rate 1/2 code with a constraint length of m=4. The coder 

codes one input bit and produces two output bits; hence, the effective data rate is halved. 

I.e. to transmit the same effective data rate when using FEC, it is necessary to use twice as 

high over-the-air data rate. This will require a higher receiver bandwidth, and thus reduce 

sensitivity. In other words the improved reception by using FEC and the degraded 

sensitivity from a higher receiver bandwidth will be counteracting factors. 

 

3.4.  Other Peripheral Components 

3.4.1.  LCD 

LCDs can add a lot to your application in terms of providing an useful interface for 

the user, debugging an application or just giving it a "professional" look. The most 

common type of LCD controller is the Hitachi 44780 which provides a relatively simple 

interface between a processor and an LCD. Using this interface is often not attempted by 

inexperienced designers and programmers because it is difficult to find good 

documentation on the interface, initializing the interface can be a problem and the displays 

themselves are expensive. [15]
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Figure 3.6: Picture of the LCD display. 

An Hitachi HD44780 compatible Character LCD is used on the board for this 

project. Its main features are: 

 

• 16 characters by 2 lines LCD has a large display area in a compact 84.0 (W) x 

44.0 (H) x 13.2 (D) millimeter package. 

• 4-bit or 8-bit parallel interface. 

• Standard Hitachi HD44780 equivalent controller. 

• Yellow-green array LED backlight with STN, positive, yellow-green, 

transflective mode LCD (displays dark characters on yellow-green 

background). 

• Wide temperature operation: -20°C to +70°C. 

• Direct sunlight readable. 

• RoHS compliant. 

 

To interface with LCD, a complete device driver is written. We have used 4-bit 

interface mode. 
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3.4.2.  Audio I/O Circuitry 

The MSP430F169 has an integrated 12-bit SAR A/D converter, a hardware 

multiplier module that allows efficient realization of digital filters, and an integrated 12-bit 

D/A converter module. Such a signal chain circuit is shown in Figure 3.2 using the 

MSP430F169. 

 

 

Figure 3.7: Audio Circuitry 

In this figure, microphone and speakers are shown. Additionally, we have Audio 

jacks connected parallel to both microphone and speaker on the board. This provides us the 

option to use this product with headphones. 

 

3.5.  Summary of Hardware Features 

According to main features of the board and the components on the board, the 

hardware has the following features: 

 

• Display 16x2 characters on LCD (with a switch to on/off the backlight). 

• Transmit-Receive wireless packets in up to 500 kbps. 

• Transmit-Receive messages from UART interface. 

• Get audio samples from Microphone and play sound on Speaker. 
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• General purpose 2 buttons and 2 LEDs. 

• General purpose 2x8 pin switches. 

• MSP430F169 Microcontroller can operate up to 8 MHz. 
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4.  SOFTWARE DESCRIPTION 

4.1.  Description of the Application 

I have listed the hardware features briefly on 3.5, and the rest is the software. The 

hardware is pretty well featured, and many different applications can be implemented 

using this hardware. On the scope of this project, we implemented a wireless entryphone 

application. Also, as a by-product, the software can be configured to implement a Walkie-

Talkie type radio communication application. So, this is also implemented. 

 

The block diagram of the system is given in the following figure. 

 

 

Figure 4.1: System block diagram. 

The application has 3 different operating modes: 

 

1. Entryphone Master: In this mode, the board behaves as the module at the door. 

Several slave modules will communicate with this master, on the same network. 

There should be only one master on one network. If multiple nodes are configured as 

master, they will be just replications of the master. Master node cannot talk directly 

with slaves. When a slave starts conversation, it can talk with only that slave in a 

timeout period. In this mode, Network ID is configured via 2nd and 3rd pins of dip-

switch. 
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2. Entryphone Slave: In this mode, the board behaves as the module in each flat, house 

or room. Slave nodes can talk directly with master. Each slave mode should have 

unique Slave ID. If two or more nodes are configured with same Slave ID, they will 

be just replications of each other. Network ID and Slave ID is configured with dip-

switch. 

 

3. Walkie-Talkie Mode: In this mode, the board behaves as a walkie-talkie. The 

walkie-talkie devices which are operating in the same channel can talk with each 

other directly. The radio channel to operate is configured with dip-switch. 

 

The operating mode can be configured by the rightmost 2 pins of the dip-switch. 

 

4.2.  Software State Machine 

A very flexible software state machine structure is created as a part of software 

architecture of the project. This design provides effortless addition of new states, 

modifying existing states and state transition tables, adding / removing something to 

application and understanding the application easily. 

 

When the board initialized (i.e. the hardware and MCU is configured), the code goes 

into an initial state. Then, every time, the execution is just in one state. State transition can 

be indirect call (setting the next state manually), by interrupt (interrupt service routine sets 

the next state from state transition table) or directly after one state finishes its execution. 

 

Every state has its corresponding function. This means, when board enters on this 

state, this function will be called. This function will call other functions or subroutines, 

enable / disable interrupts or changes the state. After the end of execution, code decides the 

next state by first the state that is set by current state indirectly, if not, by state transition 

table. CPU always sleeps between state transitions. For example, if one state finishes its 

code execution and the state transition is going to be fired by an interrupt, CPU is set to 

sleep and low power mode. This also provides ultra-low power application. 
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The whole application has just one state transition table. But it has different branches 

according to operating mode. So, all three operating modes share the same state transition 

table, but has slightly different state machines. This is by the flexibility of overriding the 

state transition in code execution. But this should be avoided because it makes hard to trace 

the states. 

 

Each state should have a title, responsibility and corresponding subroutine. The 

subroutine contains the code to handle the responsibility of the state. The state machines 

and description of states are given for each operating mode below. 

 

4.2.1.  Entryphone Master Mode 

 

Figure 4.2: Entryphone master mode state machine 

The description and responsibilities of each state is described below: 

 

Initial State: In initial state, application is in idle, waiting for an event. This event 

can be a button press, packet reception or playback DMA interrupt. CPU is off and the 

application is in low power mode in this state. In this state, radio is in receive mode. This 

state is responsible for initializing the idle mode (setting active / inactive buttons, 
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initializing the encoder etc.), getting ready for both tx and rx and displaying the message 

about the current state to user. 

 

Initial state is actually designed for the start state, but since Rx mode initialization is 

done in Rx init state, Rx init is the start state. 

 

Rx Init State: This state is responsible for stopping the peripherals (that probably 

activated in tx mode), flushing the buffer, initializing radio rx mode and activating the 

peripherals that is going to be used in reception (in playback). 

 

After this state, execution immediately switches to initial state. 

 

Tx Init State: This state is responsible for stopping the playback DMA, initializing 

radio to tx state and starting sampling. In this state, the tx process is started. This state 

starts the sampling timer and changes the state to tx wait state. After this state, received 

packets will be ignored. 

 

Tx Wait State: This state is just a dummy state with nothing to do. In this state, tx 

mode is already initialized and sampling timer is started. So, this state waits for sampling 

interrupt, and when an interrupt comes, it changes the state to tx send state, which will 

packetize the data and send over the air. This state is also waits for the tx ok interrupts and 

switches to corresponding state, that is tx ok state. 

 

Tx OK State: This state handles the tx ok interrupts and executes the desired code 

(notifying the user etc.) This state is not a subroutine, and not exists in state table, this state 

is handled by ISR, because it is interrupt specific. 

 

Tx Send State: This state is called when necessary samples are taken by ADC and 

DMA to packetize. So, this state is responsible for packaging the information and sending 

the packet over air. This state encodes the samples, encrypts the packet and assembles 

other contents of the packet, then calls sendPacket() routine. 
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This state also checks the user releases the tx button or not. If the user releases the 

button, the packet is not generated and sent, instead, the state is changed to rx init state 

which indicated the end of tx session. 

 

Rx overflow State: This state handles the rx overflow interrupt. When it is called, 

this state flushes the RX FIFO and buffer, and then returns the radio to rx state. This state 

is not a subroutine, and not exists in state table, this state is handled by ISR, because it is 

interrupt specific. 

 

Playback State: This state handles the Playback DMA interrupt. When it is called, 

this state swaps the buffer and restarts the DMA. So, the playback is continuously running. 

This state is not a subroutine, and not exists in state table, this state is handled by ISR, 

because it is interrupt specific. 

 

Rx OK State: This state is called from initial state when radio receives a packet. 

This state is also called by interrupt and not exists is state transition table. This state is 

responsible for checking the incoming packet. This state is one of the different states for 

different operating modes. Commonly, this state checks if the packet is a valid packet, then 

decrypts it, decodes it, switches the buffer and writes the contents to buffer. In Entryphone 

master mode, this state gets the packet, records the sender (for answering) and starts the 

playback timer. So, if the packet is valid, the packet is immediately starts to play on 

speaker. 

 

Lock wait State: This state has completely different behavior between different 

modes. In Entryphone master mode, this state is called just after the packet reception. In 

this state, a timer is started. In the timer period, the master mode sees the senders ID in the 

LCD and it is allowed to answer to the sender. After the timeout, state is changed to rx init 

state and master goes into idle mode. 
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4.2.2.  Entryphone Slave Mode 

The state machine in this mode is just slightly different than master mode. In the 

state perspective the only difference is lock wait state transition and behavior. 

 

 

Figure 4.3: Entryphone slave mode state machine. 

All states are same as the states in master mode, except Rx OK and lock wait states. 

 

Rx OK State: The difference from master mode is, this state calls lock wait state in 

master mode by default. But in slave mode, this states calls lock wait state when it sees the 

received packet is not belongs to current node. I.e. someone is talking to master mode, so, 

the line is busy. The line busy stuff is handled by lock wait state. 

 

Lock wait State: In Entryphone slave mode, this state is called just after when a 

different targeted packet than current node is received. In this state, software disables the tx 

button, because the line is busy, someone is talking to master. And a timer is started. Timer 

is restarted after each packet reception. After the timeout occurs, the board returns to initial 

state and tx button is re-enabled. 
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4.2.3.  Walkie-Talkie Mode 

Walkie-talkie mode is slightly different than Entryphone modes. In this mode, there 

is no timeout or that kind of things, the nodes in the same channel can just talk to each 

other. 

 

Figure 4.4: Walkie-Talkie mode state machine. 

In walkie-talkie state machine there is no lock wait state, as shown in Figure 4.3. 

 

4.3.  Transmission Protocol 

For this project, a unique transmission protocol is implemented. Because, a protocol 

that fits our requirements does not exists. 

 

 

 

 

 

 



 57

Our requirements are as follows: 

 

• Multiple nodes should be able to share the same channel. 

• We need to have a continuous real-time sound data transfer. (Guaranteed data 

rate) 

• Each node should be able to identify the source and destination of the packet, 

when they receive a packet. 

• Each node should be able to check if a correct packet for this protocol is 

received or not. 

• No acknowledgement mechanism or RTS / CTS mechanism. 

 

All modes are using the same protocol. But in walkie-talkie mode, there is no need 

for actual protocol. In this mode, source and destination address of a packet is not checked. 

So, the following scenario is for Entryphone mode. 

 

4.3.1.  Basic Transmission Scenario 

When the channel is idle, all the slave nodes are in idle state. If a slave node starts to 

transmit a packet, or if master node answers to a request, other nodes should be able to 

detect this conversation and take themselves in lock wait state. In lock wait state, they are 

not allowed to transmit any packet. 

 

The basic assumption in here is that, all nodes are hearing all others. So, the 

problems like hidden-node problem do not exist. 

 

When a slave node wants to transmit, it will transmit the audio data continuously. 

Slave mode starts to transmit packets with specifying its device id as source address and 

master node’s address as destination. Master node’s address is globally and statically 

defined in the software and cannot be changed. After the master mode receives a packet, it 

checks the packet and records the source address, because it is needed if the master wants 

to answer to that message. Other nodes than master mode also receives these packets and 

takes them into lock wait state. 

 



 58

When slave ends the transmission, it just goes into idle mode, and master node goes 

into lock wait state, that it can answer this message in a predefined time period. If, in this 

period, master decides to answer, it sends the answer with just specifying its address as 

source and the address of the corresponding node (that it was recorded after the last 

received packet) as destination. Master can send as many packets or messages as it want in 

the lock wait timeout period. 

 

Every node also receives these packets, but only the corresponding node plays this 

message. Others will update the timer and stay in lock wait state. 

 

So, a basic conversation is like this. After the timeout, all slaves will get out of lock 

wait state and go into idle state. 
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Figure 4.5: Transmission flowchart. 
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4.3.2.  Packet Format 

The format of the packet is as follows: 

 

• 1 byte destination address 

• 1 byte source address 

• 1 byte network id 

• 1 byte sequence number 

• 56 bytes of encoded audio data 

 

 

Figure 4.6: Packet Format. 

Destination address is the Device ID of the node that the packet is destined. 

Destination address is used by Slave nodes to determine if the packet belongs to it or not. 

Source address is sender’s Device ID. Source address is used by Master node, to detect 

which device sending the message. Network ID is the ID of the network that the sender 

device is in. Network ID is used to identify the networks. If someone near also has the 

same device, tow networks should be distinguished. Sequence number is to determine if 

any packets are lost. Nodes are storing the last received packet’s sequence number and 

comparing it by the current. Sequence number is sequential, i.e. increased once for each 

packet on the same conversation. Sequence number is conversation-based. After the last 

packet of conversation it is reset. If there are some lost packets, the receiver can be able to 

detect it. The encoded audio data is ADPCM encoded audio data. A packet has 56 bytes of 

audio data. Each uncompressed audio sample is 12 bits. ADPCM encoder encodes the 

samples and reduces the size to 4 bits. So, 56-byte encoded audio data has 112 samples. If 

we have a sampling rate of 8000 Hz, a packet carries an audio data of exactly 14 ms.  
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4.3.3.  Transmission / Data Rate Requirements 

As previously calculated, a packet contains 14 ms of audio samples. That means, we 

have to deliver or receive and process each packet in 14 ms, for continuous voice 

transmission. 

 

We have a packet of 60 bytes. But this packet is transmission protocol’s packet. This 

is the payload of the packet transmitted over the air. The transmitted packet has additional 

overhead. The exact packet format that is transmitted over the air is described in section 

3.3.2.3.  

 

We have used 64 bit preamble, 32 bit sync word and 16 bit CRC. We also used FEC 

encoding, which means doubling the size of encoded part. 

 

After all, the transmitted packet over the air is 128 bytes. Since we have to send a 

packet per 14 ms, the minimum required data rate is approximately 71.43 kilobits per 

second in theory. In practice, since we need additional time to sample, assemble, encrypt 

and encode the packet in transmitted side and decrypt, decode and play the packet in 

receiver side, we used the radio in 250 kbits/s mode. But minimum, 100 kbits/s can be 

used. 

 

The time chart including each operation is described in Section 5.3. 

 

4.4.  Device Driver Implementations 

In this project, we used various peripherals of MSP430 microcontroller. We also 

used external components like radio chip or LCD. To use them, device drivers of most of 

the modules of MSP430 and device drivers of external components are needed. Some 

hardware abstraction library is provided by vendor, but most of them are re-written as a 

part of this project. 

 

The idea of a hardware abstraction layer (HAL) is to provide a standard interface to 

hardware resources on any board.   
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The common part of the HAL contains the core functionality of the library, that is the 

functions for accessing the CC1100 and the CC2500 using the SPI interface. The common 

part can be reused on any MSP430 based target board. 

 

The target specific part of the HAL is necessary in order to configure the MCU – it 

sets up the clock system, configures I/O pins for general purpose use and dedicated 

peripherals etc. In addition, it contains functions for accessing target or board specific 

units, such as UART, LCD and LEDs. 

 

This section describes the brief specification and properties of the device drivers that 

are implemented as a part of this project. 

 

4.4.1.  DMA Controller 

The DMA Module of MSP430 is used for data transmission from ADC and to DAC 

modules of MSP430. DMA module is also used for UART transmission. DMA module is 

very useful because it can transfer data from / to various peripherals with zero CPU 

interruption. 

 

The DMA controller module of MSP430F169 has 3 independent channels. For more 

information about DMA module, please refer to User Guide of MSP430. 

 

The device driver is completely implemented as a part of this project. With the 

implemented device driver, each channel can be easily configured, initialized or disabled. 

Also, interrupt handlers for each channel can be easily configured and can be automatically 

assigned to any function or subroutine. 

 

4.4.2.  Timer Module 

MSP430F169 has two timer modules. Timer modules can be used to generate an 

interrupt after a specific timeout, or capture the current counter in the timer. For more 

information about Timer module, please refer to User Guide of MSP430. 



 63

Timer modules are used to generate the sampling frequency and generating the 

timeout of lock wait state in Entryphone mode. 

 

The device driver of timer module is enhanced and changed due to the changes on 

the board, with using the hardware abstraction library that is provided by the vendor. The 

implemented driver is capable of generating PWM signals, setting/resetting timer and 

easily connect / handle the interrupt. 

 

4.4.3.  USART Peripheral Interface 

The MSP430F169 Microcontroller has two USART modules, each is capable of 

working on UART, SPI or I2C modes. For more information about USART modules, 

please refer to User Guide of MSP430. 

 

In this project SPI is used to interface with Wireless Module, and UART is used to 

print debug output to PC on RS-232 serial console. The SPI device driver is supplied by 

TI, but the UART mode driver is completely written as a part of this project. 

 

The implemented UART driver is capable of printing a string, integer or hex to 

console easily. The reading part is not implemented, but the prototypes are added. The 

driver supports automatic configuration and initialization in baud rates of  9600 with 32k 

crystal and 115200 with 8 MHz crystal. The operation is very fast, and the driver is 

integrated with DMA driver, and it is possible to select the use of DMA when transmitting 

a long data with zero CPU interruption. 

 

4.4.4.  ADC Module 

The Analog-to-Digital converter (ADC) module of MSP430 is capable of taking 

samples in various modes and various speeds with using multiple channels. For more 

information, you can refer to family user guide of MSP430. 
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There was no HAL code provided by the vendor about ADC module, so, all driver is 

written as a part of this project. 

 

The implemented driver is capable of easily configuring the ADC module, starting-

stopping sampling and adjusting sampling and timing source. It can also be easily 

integrated with DMA module.  

 

4.4.5.  DAC Module 

MSP430 also has a very powerful Digital-to-Analog converter module. For more 

information, you can refer to family user guide of MSP430. 

 

This module is used to drive the audio output and playback the received audio data. 

Since it is heavily used in the project, a simple device driver is implemented as a part of 

this project, because there was no code provided by TI. 

 

The driver can easily configure, start and stop the DAC with various modes. DAC 

module is used with DMA in the project. The interrupts of DAC is automatically handled 

by DMA, and the interrupts of DMA is handled by the application. 

 

4.5.  Buffering Mechanism 

In computing, a buffer is a region of memory used to temporarily hold data while it is 

being moved from one place to another. Typically, the data is stored in a buffer as it is 

retrieved from an input device (such as a keyboard) or just before it is sent to an output 

device (such as a printer). However, a buffer may be used when moving data between 

processes within a computer. This is comparable to buffers in telecommunication. Buffers 

can be implemented in either hardware or software, but the vast majority of buffers are 

implemented in software. Buffers are typically used when there is a difference between the 

rate at which data is received and the rate at which it can be processed, or in the case that 

these rates are variable, for example in a printer spooler. 
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In telecommunication, a buffer is a routine or storage medium used in 

telecommunications to compensate for a difference in rate of flow of data, or time of 

occurrence of events, when transferring data from one device to another. The main purpose 

of buffer usage is to allow timing corrections to be made on a data stream. 

 

In this project, we used a circular buffer structure. A circular buffer or ring buffer is a 

data structure that uses a single, fixed-size buffer as if it were connected end-to-end. This 

structure lends itself easily to buffering data streams. 

 

There are two pointers that point on the buffer: First one is for playback. Playback 

buffer pointer points to the current position to be played. Second pointer is the next buffer 

pointer to write incoming data. Two pointers are independent, and consumer (playback) 

and producer (writing to buffer) accesses the buffer independently. Controlling the buffer 

access is done by setting a “used” bit to each buffer space. 

 

The buffer system is illustrated in following figure. 

 

 

Figure 4.7: Circular buffer structure. 

The number of elements in the buffer is easily configured in the code. Note that, 

there should be at least 3 elements in the buffer to compensate possible delays in air and 

provide clear sound. The number of elements will be increased to compensate more packet 
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losses. But increased number of elements will cause delay in the sound, because half of the 

elements should be filled to start playback. Measurements show that, in practical, 5 

elements is the optimum for balanced delay and loss compensation. 

 

 Each element in the buffer contains decrypted, decoded and uncompressed audio 

data, ready to play on DAC. The playback process is fired when the half of the circular 

buffer is filled. 

 

The code written to ensure this buffering mechanism provides easy swapping, 

flushing or filling the buffer and auto-checking any possible buffer overrun case. 

 

4.6.  Audio Compression and Voice Encoding / Decoding 

4.6.1.  Sampling Theory and Implementation 

In signal processing, sampling is the reduction of a continuous signal to a discrete 

signal. A common example is the conversion of a sound wave (a continuous-time signal) to 

a sequence of samples (a discrete-time signal). A sample refers to a value or set of values 

at a point in time and/or space. 

 

A sampler is a subsystem or operator that extracts samples from continuous signal. A 

theoretical ideal sampler multiplies a continuous signal with a Dirac comb. This 

multiplication "picks out" values but the result is still continuous-valued. If this signal is 

then discretized (i.e., converted into a sequence) and quantized along all dimensions it 

becomes a discrete signal. 

 

A partial answer to the question “Under what circumstances is it possible to 

reconstruct the original signal completely?” is provided by the Nyquist–Shannon sampling 

theorem, which provides a sufficient (but not always necessary) condition under which 

perfect reconstruction is possible. The sampling theorem guarantees that bandlimited 

signals (i.e., signals which have a maximum frequency) can be reconstructed perfectly 

from their sampled version, if the sampling rate is more than twice the maximum 
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frequency. Reconstruction in this case can be achieved using the Whittaker–Shannon 

interpolation formula. [16]

 

The frequency equal to one-half of the sampling rate is therefore a bound on the 

highest frequency that can be unambiguously represented by the sampled signal. This 

frequency (half the sampling rate) is called the Nyquist frequency of the sampling system. 

Frequencies above the Nyquist frequency fN can be observed in the sampled signal, but 

their frequency is ambiguous. That is, a frequency component with frequency f cannot be 

distinguished from other components with frequencies NfN + f and NfN – f for nonzero 

integers N. This ambiguity is called aliasing. To handle this problem as gracefully as 

possible, most analog signals are filtered with an anti-aliasing filter (usually a low-pass 

filter with cutoff near the Nyquist frequency) before conversion to the sampled discrete 

representation. 

 

A more general statement of the Nyquist–Shannon sampling theorem says more or 

less that the signals with frequencies higher than the Nyquist frequency can be sampled 

without loss of information, provided their bandwidth (non-zero frequency band) is small 

enough to avoid ambiguity, and the bandlimits are known. 

 

In practice, the continuous signal is sampled using an analog-to-digital converter 

(ADC), a non-ideal device with various physical limitations. This results in deviations 

from the theoretically perfect reconstruction capabilities, collectively referred to as 

distortion. 

 

When it is necessary to capture audio covering the entire 20–20,000 Hz range of 

human hearing, such as when recording music or many types of acoustic events, audio 

waveforms are typically sampled at 44.1 kHz (CD) or 48 kHz (professional audio). The 

approximately double-rate requirement is a consequence of the Nyquist theorem. 

 

Speech signals, i.e., signals intended to carry only human speech can usually be 

sampled at a much lower rate. For most phonemes, almost all of the energy is contained in 

the 5Hz-4 kHz range, allowing a sampling rate of 8 kHz. This is the sampling rate used by 

nearly all telephony systems, which use the G.711 sampling and quantization 

specifications. In this project, we used a sample rate of 8 kHz. 
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4.6.2.  The ADPCM Codec 

Adaptive PCM or ADPCM is a further development of DPCM where the quantizer 

and/or the predictor is adaptive. This means they are adjusted according to the nature of the 

input signal. If the input signal is small, the quantizer steps are small, if the input signal is 

large, the quantizer steps are large. This gives less error than the fixed nonlinear quantizer 

and the low, constant bitrate can be maintained. For more information about DPCM and 

ADPCM, please refer to Appendix A of this report. 

 

4.6.2.1.  Implementation 

 

ADPCM is very widespread in telephone communications and speech coding and 

many different algorithms exist. The Interactive Multimedia Association (IMA) 

recommended a standard for ADPCM-codec in multimedia applications, known as IMA or 

DVI ADPCM, in the early 1990s. This algorithm is now used in most cross-platform 

ADPCM-based audio applications. In this report, a general explanation of the concepts 

behind ADPCM will be given in Appendix A, while any specifics will be in accordance 

with the IMA-standard.  

 

Embedded adaptive differential pulse coded modulation (ADPCM) algorithms 

quantize the difference between the input signal and the estimated signal into core bits and 

enhancement bits. This feature gives them an advantage over non-embedded algorithms 

because they allow an intermediate node to drop the enhancement bits without having to 

exchange control messages with the transmitting end. [17]

 

The proposed IMA-standard, now widely used in multimedia applications, uses an 

adaptive quantizer, but a fixed predictor to limit the computational complexity. The 

predictor is identical to the one in the DPCM. The compression level is 4:1, which means 

the 16-bit original signal is quantized to 4-bits. The stepsize of the quantization depends on 

the input signal, thus making it adaptive. The adaptation is based on the current stepsize 

and the quantizer output of the immediately previous input. This adaptation is done as a 

sequence of two table lookups. The three bits representing the number of quantizer levels 

serve as an index into the first table lookup whose output is an index adjustment for the 
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second table lookup. This adjustment is added to a stored index value, and the range-

limited result is used as the index to the second table lookup. The summed index value is 

stored for use in the next iteration of the stepsize adaptation. The output of the second table 

lookup is the new quantizer step size. If a start value is given for the index into the second 

table lookup, the data used for adaptation is completely deducible from the quantizer 

outputs, side information is not required for the quantizer adaptation. [18]

 

 

Figure 4.8: The ADPCM stepsize adaptation. 

When the quantizer knows its stepsize, the quantization is done based on binary 

search. Figure 4.8 shows a flowchart for the quantizer. 
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Figure 4.9: IMA ADPCM quantization . 

The adaptively quantized value is output from the quantizer. Since the lookup-table 

can be stored in both the encoder and the decoder, no overhead in form of additional 

information exists. Thus the compression ratio is constant and exactly 4:1. 

 

The simplest way to realize, for example, a voice recorder is to store the A/D 

conversion results (e.g., 12-bit samples) directly in the flash memory. Most of the time, the 

audio data does not use the complete A/D converter range, which means that redundant 

information is stored in the flash memory. Compression algorithms remove this redundant 

information, thereby reducing the data that must be stored, or transmitted over the air for 

example for this project. Adaptive differential pulse code modulation (ADPCM) is such a 

compression algorithm. Various ADPCM algorithms exist, and differential coding and 

adaptation of the step-size of the quantizer scheme is common to all. In this project, we 

used IMA implementation of ADPCM algorithm (known as IMA ADPCM). 

 

IMA implementation is one of the best for embedded devices. Because, it has very 

low computational complexity. There is no multiplication, or division operations in the 

algorithm. There is just addition, subtraction, XOR and shift operations, that can be 
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executed very fast on ALU. Also, IMA implementation has small codesize and memory 

usage. 

 

More information and analysis about code size and CPU usage is done in analysis 

section. 

 

4.7.  Security Implementation and Encryption 

Wireless networking is revolutionizing the way people work and play. By removing 

physical constraints commonly associated with high-speed networking, individuals are able 

to use networks in ways never possible in the past. Students can be connected to the 

Internet from anywhere on campus. Family members can check email from anywhere in a 

house. Neighbors can pool resources and share one high-speed Internet connection. Over 

the past several years, the price of wireless networking equipment has dropped 

significantly. 

 

Unfortunately, wireless networking is a double-edged sword. Wireless users have 

many more opportunities in front of them, but those opportunities open up the user to 

greater risk. The risk model of network security has been firmly entrenched in the concept 

that the physical layer is at least somewhat secure. With wireless networking, there is no 

physical security. The radio waves that make wireless networking possible are also what 

make wireless networking so dangerous. An attacker can be anywhere nearby listening to 

all the traffic from your network in your yard, in the parking lot across the street, or on the 

hill outside of town. By properly engineering and using your wireless network, you can 

keep attackers at bay. 

 

4.7.1.  Attacks and Risks 

Wireless networks cannot be physically secured the same way a wired network can 

be. An attack against a wireless network can take place anywhere: from the next office, the 

parking lot of your building, across the street in the park, or a bluff many miles away. 
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Understanding the details of various attacks against your wireless infrastructure is 

critical to determining how to defend. Some attacks are easy to implement but aren't 

particularly dangerous. Other attacks are much more difficult to mount but can be 

devastating. Like any other aspect of security, wireless security is a game of risk. By 

knowing the risks involved in your network and making informed decisions about security 

measures, you have a better chance at protecting yourself, your assets, and your users. 

 

The risks to users of wireless technology have increased as the service has become 

more popular. There were relatively few dangers when wireless technology was first 

introduced. Crackers had not yet had time to latch on to the new technology and wireless 

was not commonly found in the work place. However, there are a great number of security 

risks associated with the current wireless protocols and encryption methods, and in the 

carelessness and ignorance that exists at the user and corporate IT level. Cracking methods 

have become much more sophisticated and innovative with wireless. Cracking has also 

become much easier and more accessible with easy-to-use Windows-based and Linux-

based tools being made available on the web at no charge. 

 

For this project, although the transmitted information (voice) is not very security 

critical, a simple symmetric encryption algorithm is implemented and used. Thus, nobody 

except the nodes in the same network can easily capture and see the contents of the 

packets. 

 

4.7.2.  Tiny Encryption Algorithm and Variants 

The Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity of 

description and implementation (typically a few lines of code). It was designed by David 

Wheeler and Roger Needham of the Cambridge Computer Laboratory, and first presented 

at the Fast Software Encryption workshop in 1994. The cipher is not subject to any patents. 

 

The first published version of TEA was supplemented by a second version which 

incorporated extensions to TEA to make it more secure. 'Block TEA' (sometimes referred 

to as XTEA), operates on arbitrary-size blocks in place of the 64-bit blocks of the original. 
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A third version (XXTEA), published in 1998, described Corrections to xtea to 

enhance the security of the Block TEA algorithm. 

 

The history, description, cryptanalysis and details of TEA, XTEA and XXTEA are 

covered in Appendix B in more details. In this section, we will deal with implementation 

and benefits. 

 

4.7.2.1.  Implementation 

 

In this project, we implemented an optimized version on XXTEA. TEA is preferred 

because of its simple implementation and requires very low computational power. So, it is 

very fast. 

 

Executing encryption software on a microcontroller is a fine balance between 

security level, size, and cycles. In general, the more secure an algorithm, the more cycles 

that are required. The XXTEA was chosen because it offers the best security-to-cycles 

ratio. As written, it does 32 iterations, with any single bit change in the input data being 

fully propagated in 4 iterations. The security is similar to DES, but it is done with one-third 

the cycles of DES. This is accomplished by using less-complicated equations but executing 

more iterations. It was designed for a small memory footprint and low MIPS requirement. 

Instead of using a complex mathematical formula for encryption, TEA relies on a simple 

formula with many iterations. 

 

Our implementation has 128-bit hard coded key, and 56 bytes of blocks. So, each 

packet is a block. XXTEA provides configurable block size in multiplies of 64-bits. 

 

Encryption and Decryption is made by the same routine. Decryption is just the 

reverse of encryption, and has nearly the same computational complexity. Analysis of the 

computational power, time and memory requirements are done in analysis section. 
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4.7.2.2.  Key Features & Benefits 

 

The key features and benefits of XXTEA contain: 

 

• 128-bit key. 

• Multiples of 32-bit block size (Minimum 64 bit) 

• Very low computational power and memory requirements. 

• Offers the best security-to-cycles ratio 

• Easy to implement. 

• Provides good security in much less cycles. 

• More efficient for longer messages. 

• Publicly available, no patent or license issues. 
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5.  ANALYSIS 

Analysis is an important part of a report, especially for embedded hardware or 

software design. Because, embedded devices has more limited computation power, storage 

space, memory or input power limitations than regular devices. 

 

In the scope of this report, Memory, CPU time and power analysis is done. Memory 

and CPU requirements are analyzed with IAR’s Embedded Workbench software. 

 

IAR Embedded Workbench software provides a very good compiler, debugger 

interface and simulator for MSP430 and many other popular microcontrollers. 

 

Note that, the implemented code has a modular design, so you can select the 

specification of the device in compile time. For example, you can specify LCD Module 

support, UART support and Encryption support when compiling the software. The analysis 

is done for each specific software module. 

 

 Power consumption requirements are taken from specific devices’ data sheets. 

 

5.1.  Memory Usage / Requirements 

According to linker output of IAR Compiler, the memory requirements are shown 

into following tables. 

Table 5.1: Memory usage of whole code. 

  Code Memory Data Memory Constant Memory 

No Optimization 9,256 bytes 1,683 bytes 1,030 bytes 
Code Size Optimized 7,502 bytes 1,683 bytes 1,029 bytes 
Speed Optimized 8,888 bytes 1,683 bytes 1,029 bytes 

Balanced Optimization 7,906 bytes 1,683 bytes 1,029 bytes 
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Table 5.2: Memory requirements of key modules (Balanced Optimization used). 

 Code Memory Data Memory Constant Memory 

Crypto Module  688 bytes  -  17 byte 

Lib Module 742 bytes  18 bytes 11 bytes 

UART Module 158 bytes  9 bytes - 
ADPCM Module 320 bytes 4 bytes 186 bytes 
LCD Module 510 bytes  1 byte  - 

 

 

Note that, the XXTEA crypto algorithm does not require any data memory. This is 

because the 16-byte key is stored as constant and other runtime variables are stored directly 

in CPU registers. This is especially optimized to run faster. 

 

5.2.  CPU Usage Analysis 

The following CPU usage data is collected with IAR Embedded Workbench 

Simulator. The code is compiled in Speed Optimization mode. Actually, final decision is to 

compile the code in speed optimized mode, because speed is more important issue than 

code size. 

 

These averages are taken for 100 different executions. 
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Table 5.3: CPU Usage analysis of key functions. 

  Cycles per call 
(average) Theoretical time spent (for 5 MHz) 

ADPCM_Encoder 107.41  21.5 us 
ADPCM_Decoder  71  14.2 us 
ADPCM_Init 11  -  
encodeData  15,595  3.119 ms 
decodeData 10,349   2.07 ms 
btea (in encryption) 20,615  4.123 ms  
btea (in decryption)  20,026 4 ms  
encryptPacket 20,625   4.125 ms 
decryptPacket  20,034 4.007 ms  

 

 

5.3.  CPU Timing 

The CPU time statistics are observed when the node transmitting or receiving 

something continuously. Otherwise, CPU is usually sleeping in low power mode. 

 

As previously explained, we are sampling the audio in 8 kHz. So, normally, we are 

sending / receiving one packet in each 14 ms period. So, the CPU timing charts given 

below is periodically repeating. We need to do the whole sampling, encoding, encryption, 

packaging and sending over the air. So, that’s why we have very limited resource in real 

time transmission, and that’s why this timing analysis is important.  

 

Note that the timecharts below is observed with oscilloscope, they are practical real 

values, instead of previous theoretical time estimations. 

 



 78

 

Figure 5.1: Transmit time chart. 
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Figure 5.2: Receive time chart. 
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5.4.  Power Consumption 

5.4.1.  CPU 

According to datasheet the power consumption of MSP430 for different operating 

modes is as follows: 

Table 5.4: Current consumption of MSP430F169 for different modes. 
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5.4.2.  Radio Chip 

According to datasheet of CC1100, the power consumption in idle, sleeping, RX and 

TX modes are as follows: 

Table 5.5: Current consumption of CC1100. 
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6.  CONCLUSION 

In the scope of this project, we developed a flexible but powerful framework to send, 

receive and process data wirelessly between nodes. Also, we developed various different 

device drivers including hardware abstraction library of some. 

 

We used MSP430 and CC1100. Results show that, these two is a good combination 

for low power and low cost applications. MSP430F169, with its 12-bit ADC and DAC, 

cooperating with DMA module and hardware multiplier is a powerful chip for censoring or 

simple signal processing applications. CC1100 is a powerful RF Transceiver operating in 

various frequencies in sub-1 GHz and provides up to 500 kbps data rate is a good solution 

for wireless support. 

 

Another observation is, this hardware has much more technology (in the means of 

hardware and software) than required for an Entryphone application or Walkie-Talkie. 

 

IMA’s ADPCM implementation is a good solution for this kind of limited 

applications, providing good sound quality. Since MSP430 has limited computational 

power, we can’t use any more complicated codec. But, for further development, a better 

codec can be implemented and used. The codec is very important because it directly affects 

data rate, and data rate is directly affecting the radio sensitivity limit and operating range. 

 

XXTEA is a really good algorithm providing a very good security as well as 

requiring low computational power and memory. Any other crypto algorithm cannot be 

used for this project because of the limited resources. 
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6.1.  Further Development 

This project can be further developed in some ways: 

 

• A RTS/CTS mechanism can be implemented, and a solution is also should be 

implemented for hidden node problem, for the transmission protocol. 

 

• The range of this system is very limited for an advanced Entryphone system 

that can be applied to a tall building for example. So, a repeating system 

should be implemented between nodes. But, it is really hard and complicated 

because of the real-time data transfer. 

 

• A better codec or encryption system can be used with running CPU in higher 

frequencies (like 8 MHz) in trade of power consumption. 

 

• An external codec chip or encryption chip can be used to reduce the load on 

CPU and enhance the remaining mechanism. 

 

• A MCU or chip that has integrated encryption peripheral can be used, but 

MSP430 does not have that kind of variant. 
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APPENDIX A: THE DPCM AND ADPCM CODECS 

1. Pulse-Code Modulation 

 

Pulse-code modulation (PCM) is a digital representation of an analog signal where 

the magnitude of the signal is sampled regularly at uniform intervals, then quantized to a 

series of symbols in a numeric (usually binary) code. PCM has been used in digital 

telephone systems and is also the standard form for digital audio in computers. 

 

 

Figure A.1: Sampling and quantization of a sine wave for 4-bit PCM. 

In figure A.1, a sine wave (red curve) is sampled and quantized for PCM. The sine 

wave is sampled at regular intervals, shown as ticks on the x-axis. For each sample, one of 

the available values (ticks on the y-axis) is chosen by some algorithm (in this case, the 

floor function is used). This produces a fully discrete representation of the input signal 

(shaded area) that can be easily encoded as digital data for storage or manipulation. For the 

sine wave example at right, we can verify that the quantized values at the sampling 

moments are 7, 9, 11, 12, 13, 14, 14, 15, 15, 15, 14, etc. Encoding these values as binary 

numbers would result in the following set of nibbles: 0111, 1001, 1011, 1100, 1101, 1110, 
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1110, 1111, 1111, 1111, 1110, etc. These digital values could then be further processed or 

analyzed by a purpose-specific digital signal processor or general purpose CPU. Several 

Pulse Code Modulation streams could also be multiplexed into a larger aggregate data 

stream, generally for transmission of multiple streams over a single physical link. This 

technique is called time-division multiplexing, or TDM, and is widely used, notably in the 

modern public telephone system. 

 

There are many ways to implement a real device that performs this task. In real 

systems, such a device is commonly implemented on a single integrated circuit that lacks 

only the clock necessary for sampling, and is generally referred to as an ADC (Analog-to-

Digital converter). These devices will produce on their output a binary representation of 

the input whenever they are triggered by a clock signal, which would then be read by a 

processor of some sort. 

 

In conventional PCM, the analog signal may be processed (e.g. by amplitude 

compression) before being digitized. Once the signal is digitized, the PCM signal is usually 

subjected to further processing (e.g. digital data compression). 

 

Some forms of PCM combine signal processing with coding. Older versions of these 

systems applied the processing in the analog domain as part of the A/D process, newer 

implementations do so in the digital domain. These simple techniques have been largely 

rendered obsolete by modern transform-based audio compression techniques. 

 

2. Differential Pulse Code Modulation (DPCM) 

 

Differential (or Delta) pulse-code modulation (DPCM) encodes the PCM values as 

differences between the current and the previous value. For audio this type of encoding 

reduces the number of bits required per sample by about 25% compared to PCM. Predict 

the next sample based on the last few decoded samples. 

 

One of the simplest and fastest methods for lossy audio compression is differential 

pulse code modulation or DPCM. This algorithm utilizes the fact that the ear is sensitive 

for small differences when the volume is low, while, when the volume is loud, we can not 

perceive subtle details to the same extent. Since there is no subband filtering, the noise 
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level must be below the lowest masking threshold level (see figure 19) at any frequency (as 

compared to within the subband for algorithms with filterbanks) for the compression to be 

transparent. Since the threshold is highly dependent on the level of the signal, a non-linear 

quantization is performed, where the quantization steps are fine for low values and coarse 

for large values. In addition, the signal being quantized is the difference between adjacent 

samples, which have a smaller probability of large values. As explained earlier, this is 

equivalent to a first order predictor where the prediction residuals are the ones being 

coded. Of course, more sophisticated predictors can be constructed to decrease the entropy 

further before re-quantization. 

 

 

Figure A.2: DPCM Encoder block diagram. 

The encoder shown in figure A.2 calculates the difference between a predicted 

sample and the original sample. To avoid accumulation of errors the predicted sample is 

the previously decoded sample. The residual is then quantized to 4-bits using a nonlinear 

quantizer and fed to the output. The quantization operation is shown in table A.1. By using 

15 values for encoding, the code is made symmetric and a level in the binary search tree 

can be omitted. 
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Table A.1: DPCM non-linear quantization code. 

 
 

 

The decoding is very simple. The 4-bit word is requantized to 8-bits using a 

quantizer with an opposite transfer function of the one given in table 5. Then the necessary 

prediction is done (when the input is the difference between two adjacent samples, the next 

output value is obviously the sum of the current output value and the next difference). 

 

 

 

Figure A.3: DPCM decoder block diagram. 

One other thing should also be noted when regarding prediction in combination with 

requantization: the predicted values are small when the differences between samples are 

small and big when the differences are big. Small differences of course mean low 

frequencies, while big differences mean high frequencies. Thus a noise-shaping is 

performed, where the noise is moved up in frequency. When one look at the equal loudness 

curves or the masking curve in figure 19, it becomes evident that moving the noise to high 

frequencies is a good thing. Also, the total noise effect will decrease since less energy 

exists in the high treble range. Actually, prediction is equivalent to delta-modulation, a 
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technique often used in audio converters (delta-sigma converters) where a low noise level 

in the baseband is desirable. 

 

The range of the PCM values is between 26 and 203, with a delta of 177 steps. The 

encoded DPCM values are within a range of –44 and 46, with a delta of 90 steps. Despite a 

quantizer step size of one, this DPCM encoding already shows a compression of the input 

data. The range of the encoded DPCM values could be further decreased by selecting a 

higher quantizer step size. 

 

 

Figure A.4: Comparison of 8-bit audio data and difference of successive samples. 
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3. Adaptive Differential Pulse Code Modulation (ADPCM) 

 

Adaptive PCM or ADPCM is a variant of DPCM that varies the quantization step 

size. Amplitude variations of speech input signals are seen between different speakers or 

between voiced and unvoiced segments of the speech input signal. The adaptation of the 

quantizer step size takes place every sample and ensures equal encoding efficiency for both 

low and high input signal amplitudes. 

 

ADPCM is a further development of DPCM where the quantizer and/or the predictor 

is adaptive. This means they are adjusted according to the nature of the input signal. If the 

input signal is small, the quantizer steps are small, if the input signal is large, the quantizer 

steps are large. This gives less error than the fixed nonlinear quantizer and the low, 

constant bitrate can be maintained. 

 

ADPCM is very widespread in telephone communications and speech coding and 

many different algorithms exist. The Interactive Multimedia Association (IMA) 

recommended a standard for ADPCM-codec in multimedia applications, known as IMA or 

DVI ADPCM, in the early 1990s. This algorithm is now used in most cross-platform 

ADPCM-based audio applications. In this report, a general explanation of the concepts 

behind ADPCM will be given, while any specifics will be in accordance with the IMA-

standard. 

 

The ADPCM-structure is very similar to the normal DPCM-structure, the difference 

being that the quantizer, the predictor or both are adaptive. 
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Figure A.5: ADPCM encoder and decoder block diagram. 

 

4. IMA ADPCM Adaptive Quantizer 

 

The proposed IMA-standard, now widely used in multimedia applications, uses an 

adaptive quantizer, but a fixed predictor to limit the computational complexity. The 

predictor is identical to the one showed previously in the DPCM chapter. The compression 

level is 4:1, which means the 16-bit original signal is quantized to 4-bits. The stepsize of 

the quantization depends on the input signal, thus making it adaptive. The adaption is 

based on the current stepsize and the quantizer output of the immediately previous input. 

This adaptation is done as a sequence of two table lookups. The three bits representing the 

number of quantizer levels serve as an index into the first table lookup whose output is an 

index adjustment for the second table lookup. This adjustment is added to a stored index 

value, and the range-limited result is used as the index to the second table lookup. The 

summed index value is stored for use in the next iteration of the stepsize adaptation. The 

output of the second table lookup is the new quantizer step size. If a start value is given for 

the index into the second table lookup, the data used for adaptation is completely deducible 
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from the quantizer outputs, side information is not required for the quantizer adaptation. 

Tables A.2 and A.3 show the table lookup contents. 

Table A.2: First table lookup for IMA ADPCM quantizer adaptation. 
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Table A.3: Second table lookup for IMA ADOCM quantizer adaptation. 

 
 

 

 

 

Figure A.6: IMA ADPCM stepsize adaptation. 

The adaptively quantized value is output from the quantizer. Since the lookup-table 

can be stored in both the encoder and the decoder, no overhead in form of additional 

information exists. Thus the compression ratio is constant and exactly 4:1. A fortunate side 

effect of the ADPCM scheme is that decoder errors caused by isolated code word errors or 
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edits, splices or random access of the compressed bit stream generally do not have a 

disastrous impact on the decoder output. Since prediction relies on the correct decoding of 

previous samples, errors in the decoder tend to propagate. 

 

 

Figure A.7: IMA ADPCM quantization. 
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APPENDIX B: XXTEA ENCRYPTION ALGORITHM 

The Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity of 

description and implementation (typically a few lines of code). It was designed by David 

Wheeler and Roger Needham of the Cambridge Computer Laboratory, and first presented 

at the Fast Software Encryption workshop in 1994. The cipher is not subject to any patents. 

 

TEA operates on 64-bit blocks and uses a 128-bit key. It has a Feistel structure with a 

suggested 64 rounds, typically implemented in pairs termed cycles. It has an extremely 

simple key schedule, mixing all of the key material in exactly the same way for each cycle. 

Different multiples of a magic constant are used to prevent simple attacks based on the 

symmetry of the rounds. The magic constant, 2654435769 or 9E3779B916 is chosen to be  

where  is the golden ratio. 

 

 

 

Figure B.1: Two rounds of the Tiny Encryption Algorithm. 
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TEA has a few weaknesses. Most notably, it suffers from equivalent keys — each 

key is equivalent to three others, which means that the effective key size is only 126 bits. 

As a result, TEA is especially bad as a cryptographic hash function. This weakness led to a 

method for hacking Microsoft's Xbox game console, where the cipher was used as a hash 

function. TEA is also susceptible to a related-key attack which requires 223 chosen 

plaintexts under a related-key pair, with 232 time complexity. Because of these 

weaknesses, a number of revisions of TEA have been designed. 

 

The unusually small size of the TEA algorithm would make it a viable option in 

situations where there are extreme constraints e.g. legacy hardware systems (perhaps 

embedded) where the amount of available RAM is minimal. 

 

The first published version of TEA was supplemented by a second version which 

incorporated extensions to TEA to make it more secure. 'Block TEA' (sometimes referred 

to as XTEA), operates on arbitrary-size blocks in place of the 64-bit blocks of the original. 

 

A third version (XXTEA), published in 1998, described Corrections to xtea to 

enhance the security of the Block TEA algorithm. 

 

XTEA (eXtended TEA) is a block cipher designed to correct weaknesses in TEA. 

Like TEA, XTEA is a 64-bit block Feistel network with a 128-bit key and a suggested 64 

rounds. Several differences from TEA are apparent, including a somewhat more complex 

key-schedule and a rearrangement of the shifts, XORs, and additions. 
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Figure B.2: Two rounds of the XTEA block cipher. 

Presented along with XTEA was a variable-width block cipher termed Block TEA, 

which uses the XTEA round function but applies it cyclically across an entire message for 

several iterations. Because it operates on the entire message, Block TEA has the property 

that it does not need a mode of operation. An attack on the full Block TEA was described 

in (Saarinen, 1998), which also details a weakness in Block TEA's successor, XXTEA. 

 

Corrected Block TEA (often referred to as XXTEA) is a block cipher designed to 

correct weaknesses in the original Block TEA (Tiny Encryption Algorithm), which was 

first published together with a paper on ‘Tea extensions’. 

 

The cipher’s designers were Roger Needham and David Wheeler of the Cambridge 

Computer Laboratory, and the algorithm was presented in an unpublished technical report 

in October 1998 (Wheeler and Needham, 1998). It is not subject to any patents. 

 

Formally speaking, XXTEA is a consistent incomplete source-heavy heterogenous 

UFN (unbalanced Feistel network) block cipher. XXTEA operates on variable-length 

blocks that are some arbitrary multiple of 32 bits in size (minimum 64 bits). The number of 
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full cycles depends on the block size, but there are at least six (rising to 32 for small block 

sizes). The original Block TEA applies the XTEA round functions to each word in the 

block and combines it additively with its leftmost neighbor. Slow diffusion rate of the 

decryption process was immediately exploited to break the cipher. Corrected Block TEA 

uses a more involved round function which makes use of both immediate neighbors in 

processing each word in the block. 

 

 

Figure B.3: XXTEA cipher. 

If the block size is equal to the entire message, XXTEA has the property that it does 

not need a mode of operation: the cipher can be directly applied to encrypt the entire 

message. 

 

XXTEA is likely to be more efficient than XTEA for longer messages. 
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Needham & Wheeler make the following comments on the use of Block TEA: 

 

• For ease of use and general security the large block version is to be preferred 

when applicable for the following reasons. 

 

• A single bit change will change about one half of the bits of the entire block, 

leaving no place where the changes start.  

 

• There is no choice of mode involved.  

 

• Even if the correct usage of always changing the data sent (possibly by a 

message number) is employed, only identical messages give the same result 

and the information leakage is minimal.  

 

• The message number should always be checked as this redundancy is the 

check against a random message being accepted.  

 

• Cut and join attacks do not appear to be possible.  

 

• If it is not acceptable to have very long messages, they can be broken into 

chunks say of 60 words and chained analogously to the methods used for 

DES.  
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