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ABSTRACT

In this study, electrostatic field problems were
investigated using parabolic boundary elements in
the Boundary Element Method (BEM). Moreover,
constant and linear boundary elements were
examined and three different programs were
developed for every three elements in MATLAB.
Coaxial cable specimens having homogenous and
non-homogenous regions were considered. In these
practices, potential values at any internal points
were obtained with the programs developed in
MATLAB after unknown values were calculated.
These results were compared with analytical
results.

I. INTRODUCTION
Many problems in engineering analyses are in the
form of region problems. The last developed method
BEM is one of the numerical solution methods to
solve these problems. Values obtained with solution
of the electrostatic field problems were calculated as
rapidly and accurately. [1]

BEM has been applied to both two-dimensional and
three-dimensional regions. In engineering analyses,
there are some types of equation that express the
problem regions mathematical. These equations are in
general Laplace, Helmholtz, Wave, Diffusion and
Navier’s equations. In this study, two-dimensional
electrostatic fields were examined with the solution of
Laplace equation.

II. BOUNDARY ELEMENT METHOD

In the problems that are analyzed by BEM, the
boundary of the region is divided arbitrarily. Each
piece is called “a boundary element” at boundaries.
On these elements, there are some values that are
known or to be calculated. These values are the
potentials (u) on the definition points of the element
(nodes) or the fluxes (q) that are the derivates of the
potentials with respect to the normal.

In BEM, general equation used for solution of the
problem is a Boundary Integral Equation. The
Boundary Integral Equation, which is obtained using

Green Theorem applied to 2D region integral, is 1D
integral in the boundary of problem domain.

ciui+juq*dS =.[qu*dS (1)
S S

In this equation, the potential to be calculated for the
node i on the boundary is denoted as “u;”. u is the

fundamental solution of the 2D Laplace equation:

w=L ln(lj ()
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First, unknown values on the boundaries have to be
calculated for analysis with BEM. Latter, the values
of internal points are calculated using these values of
boundary. [1]

Different boundary elements had been developed for
analyses of problem regions. These element that are
commonly constant, linear and parabolic. According
to this, in the constant element there is a node at the
center of the element. Also in the linear element, there
are two node and are at the end of the element. In the
parabolic element, there are three nodes. One of these
nodes is at the center and others are at the end of the
element. These boundary elements have been defined
with different interpolation functions. [2]
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Figure 1. (a) Divided problem region, (b) Constant
element, (¢) Linear element, (d) Parabolic element
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CONSTANT ELEMENT

In elements of this kind it is assumed that the
variables of the boundary have a constant value along
the element and these values defined with one node
are at the center of the element. After the boundary of
the problem domain is analyzed with N elements, the
Boundary Integral Equation can be written for node i
on the element as with follows:

ciui+ijuq*dszijqu* ds 3)
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A linear equation system is obtained after integrals
belonging to elements are solved by numerical
integration method:

Hu=Gq “4)

If this equation system is solved, unknown values (u
and/or q) on the boundary will be obtained.
Afterwards, the formulation of the internal point is
used to calculate the potential of any point i through
the boundary values that are known and obtained from
eqn.3. [3]

LINEAR ELEMENT
In element of this kind, it is assumed that the
boundary values, u and q, have a linear evolution
between two nodes, which are both the ends of the
element.

The functions of the linear interpolation defining the
physical values on the elements are as follows: [4]

o = 0 =5 (1+¢) ©)

In these equations, the values of & are local coordinate
that varies between the end points (1 to —1). The
general equation on boundary points can be written,
by substituting the linear interpolation functions into
eqn.3, as:
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Values u and q on the boundary are obtained when
this equation is solved. Moreover, coefficient ¢; must

be calculated depending on the angle that is between
the former and the following elements from the node.
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Figure 2. The angle between two elements
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According to the values (u and q) on the boundary, the
potential on any internal point i is obtained from
eqn.5.

PARABOLIC ELEMENT
In element of this kind it is assumed that the node
values (u and q) on the element have a parabolic
evolution along the element.
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Figure 3. General illustration of the parabolic element
on the problem domain

In this method, one of the nodes is at the center of the
element and others are at the ends of the element. In
fig.3, the raked region refers to variation of the values
on the element j.

In the parabolic element, the boundary of the element
has changeability as equal to the boundary of the
problem. Above feature, provides very important
advantage and obtained results are quite accurate.
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Figure 4. The parabolic element with local coordinate



In the parabolic element, the interpolation functions of
the nodes are defined as the following: [4]

b =586 1), b =1-8 by =2 EEHD) )

By substituting the values u and q on nodes and the
interpolation functions into eqn.3 we obtain:
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When eqn.10 is solved using the numerical integration
method, unknown values (u and/or q) on boundary are
obtained. Coefficient c; in eqn.10 is also calculated by
eqn.8.

As in the linear element, the potential on any internal
point i is obtained from eqn.5 that was added the
functions of the parabolic interpolation.

SUBREGIONS

If the analyzed problem has non-homogenous
structure, the numerical procedures can apply after the
problem region is separated into homogenous
subregions having the same properties. In the between
joining these regions, the boundary conditions are
continuity of the potential and discontinuity of the
flux. When the equation sets belonging to each
subregion are added, a general equation is obtained
for all regions. [3]
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Figure 5. Geometrical definitions of subregions

In fig.5, D region was divided to A and B subregion
having &, and &, dielectric constants.

The boundary values at the interface are the same.
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u =u q° =q (11)

I11. APPLICATIONS

The programs concerning to three different elements
were written to solve 2D electrostatic field problems.
The programs of the constant, linear and parabolic
elements are called SABEL, LINEL and PAREL,
respectively. As an example of application, a quarter
section of the coaxial cable sample was examined. In
the first application, after these three programs were
applied to quarter section of the coaxial cable sample
that was divided into 28 boundary elements, solutions
at the definition points were obtained. These solutions
were compared with the analytical solution values at
the definition points. Latter, the program PAREL was
applied after the coaxial cable sample was divided
into two subregions that have two different dielectric
constants. Thus, the solution values were illustrated
with the equipotential contours.
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Figure 6. A quarter section of the coaxial cable

Table 1. The potential distribution of a quarter section
of the coaxial cable divided into 28 boundary
elements in radial direction

Cal. Coordinates SABEL  LINEL PAREL Analytical
Pnt.  x y  Program Program Program _ Solves
1 325 325 8822 82.63 8247 84.74
2 3.67 3.67 7348 66.77 69.88 71.36
3 410 4.10 60.52 5507 5834 5944
4 452 452 4442 4450 47.83 48.70
5 494 494 3295 3484 3822 3892
6 537 537 2412 2596 2939 29095
7 579 579 1589 17.72 21.21 21.65
8 622 6.22 8.18 10.06 13.61 13.95
9 6.64 6.64 1.10 2.88 6.51 6.75
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Figure 7. The potential distribution in the radial
direction
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Figure 8. The Equipotential contours
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Figure 9. A quarter section of the coaxial cable that
was divided in two subregions

Figure 10. The Equipotential contours

IV. CONCLUSION

In this study, after the mathematical theory of BEM
was investigated, 2D electrostatic field problems were
solved with parabolic element used in this method.
For this purpose, a computer program named PAREL
was written in MATLAB by using parabolic element.
Also, constant and linear elements that were other
functions of the method were described and their
numerical formulations were given. For these
elements the programs SABEL and LINEL were
written. First, in the coaxial cable system chosen as an
example of application, the boundary of the quarter
section coaxial cable was divided into 28 elements
and results were obtained separately with these three
programs. Since the geometry of the parabolic
element was coincident with the boundary, it is
observed that the potential values at the internal points
are very precise. In the second application, the quarter
section cable is divided in to two subregions having
dielectric constants 1 and 3 respectively. When the
PAREL program was applied, the precise values of
the solution were obtained.
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