
 
 
 

SOLUTION OF ELECTROSTATIC FIELD PROBLEM WITH PARABOLIC 
BOUNDARY ELEMENTS  

 
Selçuk YILDIRIM    Belkıs ERİŞTİ  Hüseyin ERİŞTİ 
e-mail: syildirim@firat.edu.tr   e-mail: erismen@tnn.net               e-mail: heristi@firat.edu.tr   
Fırat University, Faculty of Technical Education, Department of Electrical Education, Elazığ, Turkey 

 
Key words: Electrostatic Field, Boundary Element Method, Constant, Linear and Parabolic Element  
 

ABSTRACT 
In this study, electrostatic field problems were 
investigated using parabolic boundary elements in 
the Boundary Element Method (BEM). Moreover, 
constant and linear boundary elements were 
examined and three different programs were 
developed for every three elements in MATLAB. 
Coaxial cable specimens having homogenous and 
non-homogenous regions were considered. In these 
practices, potential values at any internal points 
were obtained with the programs developed in 
MATLAB after unknown values were calculated. 
These results were compared with analytical 
results.  
 

I. INTRODUCTION 
Many problems in engineering analyses are in the 
form of region problems. The last developed method 
BEM is one of the numerical solution methods to 
solve these problems. Values obtained with solution 
of the electrostatic field problems were calculated as 
rapidly and accurately. [1] 
 
BEM has been applied to both two-dimensional and 
three-dimensional regions. In engineering analyses, 
there are some types of equation that express the 
problem regions mathematical. These equations are in 
general Laplace, Helmholtz, Wave, Diffusion and 
Navier’s equations. In this study, two-dimensional 
electrostatic fields were examined with the solution of 
Laplace equation. 
 

II. BOUNDARY ELEMENT METHOD 
In the problems that are analyzed by BEM, the 
boundary of the region is divided arbitrarily. Each 
piece is called “a boundary element” at boundaries. 
On these elements, there are some values that are 
known or to be calculated. These values are the 
potentials (u) on the definition points of the element 
(nodes) or the fluxes (q) that are the derivates of the 
potentials with respect to the normal. 
 
In BEM, general equation used for solution of the 
problem is a Boundary Integral Equation. The 
Boundary Integral Equation, which is obtained using 

Green Theorem applied to 2D region integral, is 1D 
integral in the boundary of problem domain. 
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In this equation, the potential to be calculated for the 
node i on the boundary is denoted as “ui”. u*  is the 
fundamental solution of the 2D Laplace equation: 
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First, unknown values on the boundaries have to be 
calculated for analysis with BEM. Latter, the values 
of internal points are calculated using these values of 
boundary. [1] 
 
Different boundary elements had been developed for 
analyses of problem regions. These element that are 
commonly constant, linear and parabolic. According 
to this, in the constant element there is a node at the 
center of the element. Also in the linear element, there 
are two node and are at the end of the element. In the 
parabolic element, there are three nodes. One of these 
nodes is at the center and others are at the end of the 
element. These boundary elements have been defined 
with different interpolation functions. [2]  
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Figure 1. (a) Divided problem region, (b) Constant 
element, (c) Linear element, (d) Parabolic element 
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CONSTANT ELEMENT 

In elements of this kind it is assumed that the 
variables of the boundary have a constant value along 
the element and these values defined with one node 
are at the center of the element. After the boundary of 
the problem domain is analyzed with N elements, the 
Boundary Integral Equation can be written for node i 
on the element as with follows:  
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A linear equation system is obtained after integrals 
belonging to elements are solved by numerical 
integration method: 
 
                                                                 (4) GqHu =
 
If this equation system is solved, unknown values (u 
and/or q) on the boundary will be obtained. 
Afterwards, the formulation of the internal point is 
used to calculate the potential of any point i through 
the boundary values that are known and obtained from 
eqn.3. [3]   
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LINEAR ELEMENT 
In element of this kind, it is assumed that the 
boundary values, u and q, have a linear evolution 
between two nodes, which are both the ends of the 
element. 
 
The functions of the linear interpolation defining the 
physical values on the elements are as follows: [4] 
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In these equations, the values of ξ are local coordinate 
that varies between the end points (1 to –1). The 
general equation on boundary points can be written, 
by substituting the linear interpolation functions into 
eqn.3, as:   
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                                                                                  (7) 
Values u and q on the boundary are obtained when 
this equation is solved. Moreover, coefficient ci must 

be calculated depending on the angle that is between 
the former and the following elements from the node. 
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            Figure 2. The angle between two elements 
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According to the values (u and q) on the boundary, the 
potential on any internal point i is obtained from 
eqn.5. 
 

PARABOLIC ELEMENT 
In element of this kind it is assumed that the node 
values (u and q) on the element have a parabolic 
evolution along the element. 
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Figure 3. General illustration of the parabolic element 
on the problem domain 
 
In this method, one of the nodes is at the center of the 
element and others are at the ends of the element. In 
fig.3, the raked region refers to variation of the values 
on the element j.  
 
In the parabolic element, the boundary of the element 
has changeability as equal to the boundary of the 
problem. Above feature, provides very important 
advantage and obtained results are quite accurate. 
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Figure 4. The parabolic element with local coordinate 
 



III. APPLICATIONS In the parabolic element, the interpolation functions of 
the nodes are defined as the following: [4]  The programs concerning to three different elements 

were written to solve 2D electrostatic field problems. 
The programs of the constant, linear and parabolic 
elements are called SABEL, LINEL and PAREL, 
respectively. As an example of application, a quarter 
section of the coaxial cable sample was examined. In 
the first application, after these three programs were 
applied to quarter section of the coaxial cable sample 
that was divided into 28 boundary elements, solutions 
at the definition points were obtained. These solutions 
were compared with the analytical solution values at 
the definition points. Latter, the program PAREL was 
applied after the coaxial cable sample was divided 
into two subregions that have two different dielectric 
constants. Thus, the solution values were illustrated 
with the equipotential contours.    
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By substituting the values u and q on nodes and the 
interpolation functions into eqn.3 we obtain: 
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When eqn.10 is solved using the numerical integration 
method, unknown values (u and/or q) on boundary are 
obtained. Coefficient ci in eqn.10 is also calculated by 
eqn.8. 
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As in the linear element, the potential on any internal 
point i is obtained from eqn.5 that was added the 
functions of the parabolic interpolation. 
 

SUBREGIONS 
If the analyzed problem has non-homogenous 
structure, the numerical procedures can apply after the 
problem region is separated into homogenous 
subregions having the same properties. In the between 
joining these regions, the boundary conditions are 
continuity of the potential and discontinuity of the 
flux. When the equation sets belonging to each 
subregion are added, a general equation is obtained 
for all regions. [3] 

 
   Figure 6. A quarter section of the coaxial cable 
 
 
Table 1. The potential distribution of a quarter section 
of the coaxial cable divided into 28 boundary 
elements in radial direction  
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Figure 5. Geometrical definitions of subregions 
 
In fig.5, D region was divided to A and B subregion 
having ε1 and ε2 dielectric constants.  
 
The boundary values at the interface are the same. 
  
                                       (11)  BAAB uu = BAAB qq =
  

Cal.   Coordinates      SABEL       LINEL      PAREL   Analytical 
Pnt.     x            y       Program     Program    Program      Solves 
  1   3.25    3.25      88.22      82.63     82.47     84.74 

  2   3.67    3.67      73.48      66.77      69.88    71.36 

  3   4.10    4.10      60.52      55.07      58.34    59.44 

  4   4.52    4.52      44.42      44.50      47.83    48.70 

  5   4.94    4.94      32.95      34.84      38.22    38.92 

  6   5.37    5.37      24.12      25.96      29.39    29.95 

  7   5.79    5.79      15.89      17.72      21.21    21.65 

  8   6.22    6.22       8.18       10.06      13.61    13.95 

  9   6.64    6.64       1.10         2.88       6.51      6.75 
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                          Figure 10. The Equipotential contours  Figure 7. The potential distribution in the radial 
direction  

IV. CONCLUSION  
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In this study, after the mathematical theory of BEM 
was investigated, 2D electrostatic field problems were 
solved with parabolic element used in this method. 
For this purpose, a computer program named PAREL 
was written in MATLAB by using parabolic element. 
Also, constant and linear elements that were other 
functions of the method were described and their 
numerical formulations were given. For these 
elements the programs SABEL and LINEL were 
written. First, in the coaxial cable system chosen as an 
example of application, the boundary of the quarter 
section coaxial cable was divided into 28 elements 
and results were obtained separately with these three 
programs. Since the geometry of the parabolic 
element was coincident with the boundary, it is 
observed that the potential values at the internal points 
are very precise. In the second application, the quarter 
section cable is divided in to two subregions having 
dielectric constants 1 and 3 respectively. When the 
PAREL program was applied, the precise values of 
the solution were obtained. 

              Figure 8. The Equipotential contours 
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