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Abstract 
 

The paper presents development of a new tuning method for 
fractional order PID controller for the systems which have 
integer order transfer functions. All the parameters of the 
controller, namely proportional gain kp, integral gain ki, 
derivative gain kd, fractional order of integrator λ and 
fractional order of differentiator μ can be obtained by using 
this method. It is clearly shown that the fractional order 
controller, which the parameters obtained by the proposed 
method, gives better response than the integer order one for 
the same system.     

 
1. Introduction 

 
There is no doubt that the most common controllers used in 

industry have been PID controllers for many years. Widespread 
usage of these algorithms has motivated many researchers to 
look for better design methods or alternative controllers [1, 2]. 
For example, the fractional order algorithm for the control of 
dynamic systems has been introduced and performance of 
CRONE (French abbreviation for Commande Robuste d’Ordre 
Non Entier), over the PID controller, has been demonstrated by 
Oustaloup [3,  4]. Podlubny has proposed a generalization of the 
PID controller as μλ DPI  controller which is known as 
fractional order PID controller, where λ  is the non-integer 
order of integrator and μ  is the non-integer order of the 

differentiator term. He also demonstrated that the μλ DPI  
controller has better response than classical PID controller [5, 
6]. Frequency domain approaches of μλ DPI  controller are 
studied in [7]. Also many valuable studies have been done for 
fractional order controllers and their implementations in [8-13].  

Crucial importance of tuning of the controllers cannot be 
underestimated. Thus, many tuning techniques for obtaining the 
parameters of the controllers were introduced during last few 
decades. The most well known tuning rules for classical 
controllers are given by Ziegler-Nichols [1] and Åström-
Hägglund [2] which have been the milestones for developments 
of many other methods. Tuning methods of μλ DPI  controllers 
are a new research subject. Some results related with this subject 
are given in [14-16]. Reference [17] proposes a method based on 
optimization strategies. Tuning of ∞H  controllers for fractional 
SISO system suggested in [18]. A new design method for 

αPI controller is given in [19]. Some tuning rules for 
robustness to plant uncertainty for λPI controller are given in 
[20]. However in order to achieve better results, there are still 

needs for new methods to obtain the parameters of  μλ DPI  
controllers.    

 Controller tuning is the process of obtaining the controller 
parameters to meet given performance specifications. 
Especially, Zigler-Nichols rules are useful when mathematical 
model of the plant are not known [1].  

A point on a Nyquist curve of the plant G(jω) can be moved 
to another position on G(jω)C(jω) by choosing appropriate PI or 
PID parameters of C(jω). Thus, Åström-Hägglund used this 
property of Nyquist curve for their tuning method, which can 
provide transferring one point on a Nyquist curve to a desired 
position, to achieve specified phase and gain margins [21, 22]. 

The aim of this paper is to introduce a new tuning method for 
a μλ DPI  controller, which is inspired from classical Zigler-
Nichols and Åström-Hägglund tuning methods. The proposed 
method uses classical Zigler-Nichols tuning rules to obtain the 
values of pk  and ik . The initial value of dk  is obtained using 
Åström-Hägglund method. In order to achieve specified phase 
margin, two nonlinear equations have been obtained using 
critical point information, namely critical frequency cω  and 
critical gain ck using the idea of Åström-Hägglund tuning 
method. Fine tuning has been done for dk  to achieve the best 
numerical solutions of these two equations. The values of λ  and 
μ  are obtained from these equations using an optimization 
toolbox of MATLAB. Tuning of the controller parameters may 
be required to achieve better step response of the system. In that 
case, an optimization model, which has been developed using 
Simulink MATLAB, is used. This optimization model uses the 
controller parameters obtained by proposed method, as initial 
values. Then it produces new values for the controller 
parameters.    

The paper is organized as follows: A brief mathematical 
background is given in Section 2. Computation of controller 
parameters is given in Section 3. Tuning method for fractional 
order controller is given in Section 4. An application of the 
proposed method is given in Section 5. Section 6 includes 
concluding remarks. 

 
2. Brief Mathematical Background 

 
Orders of fractional calculus are real numbers [23]. Many 

different definitions for general fractional integro-differential 
operation can be found in the literature. Among them the most 
commonly used for general fractional integro-differential 
expressions are given by Cauchy, Riemann-Liouville, 
Grünwald-Letnikov and Caputo [7]. Caputo expression for 
fractional order differentiation is given as;  
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where γα += m , m  is an integer and 10 << γ . Caputo 
expression for fractional order integration is defined as [24];  
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Due to easy calculations, Laplace domain is commonly used to 
express the fractional integro-differential operations. Thus, 
Laplace transform of fractional order differentiation can be 
given as [24]; 
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If the derivatives of the function )(tf  are all equal to zero, the 
following equation can be written [24]. 
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A fractional differential equation for a fractional order control 
system can be written as: 
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where )(ty is output and )(tx  is the input of the system. The 
Laplace transform of  Eq. (5) can be obtained as [11].  
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where 001 ≥>>> − ααα ....nn  and 001 ≥>>> − βββ ....mm  

are satisfied, )n,...,,,k(ak 210=  and )n,...,,,k(bk 210=  
are constants. 

The analysis of the Laplace transform and inverse Laplace 
transform of fractional integro-differential operation at time 
domain are quite complicated. But frequency domain analysis of 
the fractional order control system is same as the integer order 
one. Since the power ωj is a real number, one can write the 
fractional power of jω  as follows, 
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where  α  is a real number. Thus, the frequency domain 
expression of the fractional order control system can easily be 
obtained by substituting s  with ωj  in the Laplace transform of 
the transfer function of the fractional order control system. 

 
3. Computation of μλ DPI  Controller Parameters 

 
Consider the negative unity feedback control system shown 

in Fig. 1. 
 

 
 

Fig. 1.  Negative unity feedback system 
 

Transfer function of the plant is an integer order. However the 
controller of the system is a fractional order μλ DPI  controller 
of the form, 
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One can obtain a classical PID controller by taking 1=λ  and 

1=μ  as, 
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In this study, a method has been proposed to obtain the 

proportional gain constant pk , the constant of integral term ik , 

the constant of derivative term dk , the fractional order of 
differentiator λ  and the fractional order of integrator μ . The 
method uses classical Zigler-Nichols tuning rules to obtain pk  

and ik . Initial value of dk  is obtained from Åström-Hägglund 
method, then some fine tunings has bees done for better 
numerical solution. The fractional orders λ  and μ  are obtained 
to achieve specified phase margin using the idea of  Åström-
Hägglund tuning method. 

Let pmφ  be the required phase margin and cpω  be the 

frequency of the critical point on the Nyquist curve of )(sG  at 

which o
cpjG 180))((arg −=ω  and define gain margin as, 
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Then, in order to make the phase margin of the system equal to 

pmφ  and 1)()( =cpcp jGjC ωω , the following equation must 

be satisfied.  
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Then, one can write )j(C cpω  using Eqs. (8) and (11) as; 

 

   C(s)  G(s) + _ 
R(s) Y(s) 

  controller  plant 
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Considering Eqs. (11) and (12), one can obtain, 
 

0
2

21

=−

++= −

)(cosk)picos(k

)picos(kk),(f

pmccpd

cpip

φμω

λωμλ

μ

λ

   (13) 

and 

0
2

22

=−

+−= −

)(sink)pisin(k

)pisin(k),(f

pmccpd

cpi

φμω

λωμλ

μ

λ

                     (14) 

The numerical solutions for λ and μ can be obtained from Eqs. 
(13) and (14).  

 
4. Tuning Method for μλ DPI  Controller  

 
All the parameters of the μλ DPI controller, which are given 

in Eq. (8), can be obtained by using the following procedure.  
1- Specify the value of required phase margin pmφ . 

2- Obtain  pk  and ik from classical Zigler-Nichols rules.  
3- Obtain Eqs. (13) and (14). 
4- Specify the initial value for dk  using the Åström-

Hägglund method.  
5- Simulation results show that especially variation on dk  

effect the numerical solution of the equations seriously. 
Therefore, fine tuning can be required for dk  to 
achieve the best numerical solution for the Eqs. (13) 
and (14). 

6- Find the numerical solutions for λ and μ  from Eqs. 
(13) and (14) by considering the new value of dk . 

7- If the step response of the system is not satisfactory 
enough, an optimization can be done by using 
optimization model to get better values for the 
controller parameters.   

 
5. Application of the Proposed Method 
 
Consider the negative unity feedback system given in Fig. 1. 

The transfer function of the system is given as, 
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Phase crossover frequency of the system can be obtained as 

2=cpω  and gain margin of the system can be obtained as 

6=ck . Constants of proportional, integral and derivative terms 
of the controller has been obtained by using the classical Zigler-
Nicholes rules as 6.3=pk , 63.1=ik  and 98.1=dk .  Let PID 
controller obtained from Zigler-Nichols method be C1(s) as, 
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Using the classical Åström-Hägglund method, the values of 

PID controller parameters have been calculated for specified 
phase margins which are shown in Table 1. Let C2(s) shows PID 
controller obtained from Åström-Hägglund method. For 
example, from Table 1, the PID controller for o

pm 40=φ  is 
given as,  

s
s

sC 48.351.159.4)(2 ++=    (17) 

 
The proposed method takes the values of pk  and ik from 

Zigler-Nicholes method. The initial values for derivative term 
dk  have been obtained by using the Åström-Hägglund method 

for the specified phase margins. Fine tuning has been done for 
the term dk  to achieve the best numerical solution of the Eqs. 
(13) and (14) for each specified phase margin. These two 
equations have been solved by using optimization toolbox 
“fsolve” of the MATLAB to obtain numerical values of λ and μ 
by considering the new value of dk  for each specified phase 
margin. Table 1 shows all the values of pk , ik , dk ,  λ and μ 
for each of the specified phase margin. Let C3(s) shows the 

μλ DPI  controller which can be written from Table 1 for 
o

pm 40=φ  as,  

             79.0
39.13 75.363.16.3)( s

s
sC ++=   (18) 

 
In order to obtain better step response, an optimization model 

has been developed using Simulink Library of MATLAB by 
considering Least Square Method for optimization. This 
optimization model has been used to get new optimized values 
for the parameters pk , ik , dk ,  λ and μ. Let C4(s) shows the 

μλ DPI  controller with optimized values, which can be written 
from Table 2 as,  

 

             86.0
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s
sC ++=   (19) 

 
Table 1. The values of PID controller parameters calculated by 

Åström-Hägglund and the μλ DPI  controller parameters 
obtained by proposed method for ooooo

pm ;;;; 6055504540=φ  
 

 Åström-
Hägglund 

Proposed method  

pmφ  pk  ik  dk  pk  ik  dk  λ  μ

40o 4.59 1.51 3.48 3.6 1.63 3.75 1.39 0.79 
45o 4.24 1.24 3.62 3.6 1.63 3.90 1.35 0.86 
50o 3.86 0.99 3.75 3.6 1.63 4.05 1.31 0.91 
55o 3.44 0.77 3.86 3.6 1.63 4.20 1.27 0.97 
60o 3.00 0.57 3.96 3.6 1.63 4.30 1.32 1.01 

 
Consequently, four type of controller namely C1(s), C2(s), 

C3(s) and C4(s), have been obtained for the given plant as 
follows, 
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- Parameters of C1(s) are calculated using Zigler-Nichols 
method, such as 6.3=pk , 63.1=ik  and 98.1=dk  for 
all specified phase margin 

- Parameters of C2(s) are calculated using Åström-
Hägglund method, for specified phase margins as 
shown in Table 1. 

- Parameters of C3(s) are obtained using the proposed 
method for the specified phase margins as shown in 
Table 1. 

- Optimization model has been used to get better step 
response for the controller C3(s). Values of the 
parameters of C3(s) are taken as initial values for 
optimization.  Then, new values for pk , ik , dk ,  λ 
and μ are obtained for C4(s) as shown in Table 2.  

 
Table 2 shows the optimization results of the controller 

parameters, which is obtained by taking the values of C3(s) for 
ooo

pm 60;50;40=φ  as initial value respectively. As seen from 
Table 2, the optimization results for the controller parameters 
for different phase margin are close to each other.  
 

Table 2. The values of 
μλ DPI  controller parameters obtained 

by optimization model by taking the values of C3(s) for 
ooo

pm 60;50;40=φ , as initial values for optimization.  
-  

 Optimization Results  
Referance 
Values 

pk  ik  dk  λ  μ

For pmφ = 40o  1.4379 2.6427 5.4828 0.5148 0.8630 

For pmφ =50o  1.9299 2.3928 5.4086 0.5274 0.8756 

For pmφ =60o  1.4571 2.5298 5.3283 0.4953 0.8622 

 
Step responses of the system for C1(s), C2(s) and C4(s) for 
o40  phase margin are given in Fig. 2 and the performance 

specifications for this value of phase margin are shown in Table 
3, where one can clearly observe that the proposed method has 
better response than the others.  
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Fig. 2. Step responses of the system for C1(s), C2(s) and C4(s) 
for o40  phase margin. 

 

Table 3. Step response specifications of C1(s), C2(s) and C4(s)  
 

Step response 
specifications  

Zigler-
Nichols 
PID 

Åström 
Hägglund 
PID 

Proposed 
Fractional 
PID 

Max. Overshoot (%) 73.5  43.0 27.9  
Peak time (s) 3.25 2.95 1.74 
Rise time (s) 1.67 1.66 0.96 
Settling time (%5) 12.5 6.67 4.65 
Settling time (%2) 13.6 8.00 6.20 

 
As known, step response of the system gives valuable 

information such as, maximum overshoot, rise time, peak time 
and settling time. Thus, step responses of the system for C1(s), 
C2(s) and C4(s) are obtained by using the simulink model and 
“nintblocks” of MATLAB, which is developed by Duarte 
Valério [25]. Table 3 gives step response specifications of the 
system for C1(s), C2(s) and C4(s). One can conclude from Fig. 2 
and Table 3 that the performance specifications of the proposed 
method are much better than the Zigler-Nichols and Åström-
Hägglund tuning methods. Especially, maximum overshoot, rise 
time and settling time of the system are much better for the 
proposed method. 
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Fig. 3.  Nyquist plot of the system for C3(s) for the phase 
margins  ooooo

pm 60;55;50;45;40=φ . 
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Fig. 4. Nyquist plot of the system for C4(s). 
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Nyquist plots of the system for the C3(s) for phase margins 
ooooo

pm ;;;; 6055504540=φ and Nyquist plot of the system 
for C4(s) are obtained by using the toolbox, which is developed 
in MATLAB by C. Yeroglu and N. Tan [26]. Nyquist plots are 
given for the frequency range of 1005.0 << ω  as shown in Fig. 
3 and 4. From Fig. 3, it can be seen that the system satisfies each 
of the specified phase margin for C3(s). As seen from Fig. 4, the 
values of the gain and phase margins of the system for C4(s) are 
suitable. 

 
6. Conclusion 

 
A method for tuning of μλ DPI  controller has been 

proposed. The presented method is based on the idea of using 
Zigler-Nichols and Åström-Hägglund method together. pk  and 

ik  parameters of μλ DPI  controller have been computed from 
Zigler-Nichols method and the remaining parameters dk , λ  
and μ have been found from Åström-Hägglund method using 
critical point information. Values of the controller parameters 
are optimized to achieve better step response. The simulation 
results demonstrated that the μλ DPI  controller has better 
response than the classical PID controllers. 

It is necessary to point out that there are many other tuning 
methods in the literature for PID controllers, which may give 
better results than Zigler-Nichols and Åström-Hägglund 
methods for some cases. Some tuning methods for μλ DPI  
controller are also proposed in recent years. The comparison 
study of the proposed methods for tuning of μλ DPI  controllers 
certainly will be very important. Research in this direction can 
be done in the future work. 
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