

YILDIZ TECHNICAL UNIVERSITY
FACULTY OF ELECTRICS - ELECTRONICS
COMPUTER ENGINEERING DEPARTMENT

 SENIOR PROJECT

FAST DATA TRANSFERRING VIA NETWORK

USING CELL BE PROCESSOR

Project Supervisor: Yrd. Doç. Dr. Sırma YAVUZ

Project Group

03011504 Aytunç BEKEN

04011065 Burak ÇAKIL

İstanbul, 2008

 iii

© Bu projenin bütün hakları Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü’ne aittir.

 iv

CONTENTS

ABBREVIATION LIST .. vi

FIGURE LIST...vii

TABLE LIST ...viii

PREFACE.. ix

Özet... x

ABSTRACT... xi

1. INTRODUCTION .. 12

1.1. System Architecture... 13

1.1.1. System Main Modules .. 13

1.2. Cell BE Processor .. 14

1.3. RapidMind Multi-Core Development Platform... 16

1.3.1. Impact of multi-core on software development.. 16

1.3.2. Gain a competitive advantage with RapidMind ... 16

1.3.3. RapidMind benefits... 16

1.3.4. Productivity... 17

1.3.5. Performance .. 17

1.3.6. Portability.. 17

1.3.7. Using RapidMind.. 17

1.3.8. API .. 17

1.3.9. Platform .. 18

2. FEASIBLITY ANALYSIS... 19

2.1. Technical Feasibility.. 19

2.1.1. Software Used In The Project ... 19

2.1.2. Hardware Used In The Project.. 19

2.2. Economical Feasibility .. 20

2.3. Legal Feasibility .. 20

2.4. Gantt Chart... 20

3. IN-Depth ANALYSIS .. 22

3.1. Detailed Architecture of Cell BE Processor .. 22

3.2. User commands of the Program... 25

3.2.1. Program Initialization ... 25

 v

3.2.2. Set Commands .. 25

3.2.3. Get Commands ... 27

3.2.4. Add Command.. 27

3.2.5. Rem Command ... 28

3.2.6. Send Command... 28

3.2.7. Exit Command .. 28

3.2.8. Reset Command.. 28

3.3. Ncurses Library.. 29

 3.4. SPE Programming..30

4. PROGRESS OF THE PROJECT ... 31

4.1. Implementation Changes ... 31

4.2. Performance Benchmarks (Without Parallelization) ... 32

4.3. Performance Benchmarks (After Parallelization).. 32

CONCLUSION...34

APPENDICES...35

REFERENCS.. 38

 vi

ABBREVIATION LIST

MTMP Multi-Threaded Multi-Ported

CELL BE Cell Broadband Engine

PPE Power Processing Element

SPE Synergistic Procesing Element

EIB Element Interconnect Bus

IP Internet Protocol

MFC Memory Flow Controller

SPU Synergistic Processing Unit

PPU Power Processing Unit

SP Single Precision

DP Double Precision

API Application Programming Interface

GUI Graphical User Interface

DMA Direct Memory Access

 vii

FIGURE LIST

Figure 1-1 System Architecture.. 14

Figure 1-2 Cell BE Architecture...16

Figure 1-3 RapidMind System Diagram...18

Figure 2-1 Gantt Chart Of The Project..22

Figure 3-1 Internal Architecture of an SPE...23

Figure 3-2 Internal Architecture of a PPE...24

Figure 3-3 In-Depth Architecture of a Cell BE Processor...25

Figure 3-4 Performance Comparison Between Processors...26

 viii

TABLE LIST

Table 2-1: Total Cost Distribution...21

Table 3-1: Performance Table of Cell BE...25

 ix

PREFACE

 As the developers, we expect this project to be a perfect solution for everyone

that needs massive data transfer, especially business users. We also foresee that this

project will be a great progress in Information Technology. We would like to thank to

everyone who contributed to this project, foremost, to our project supervisor Asst. Prof.

Sırma Yavuz and all the other instructors in the Computer Engineering Department and

Server Systems Operations Manager of IBM Turkey, Serkan Şahin. We also would like

to thank Turhan Karadeniz and Onur Can Ulusel for their technical support on Cell BE

Processor, and Arda Durukan for IBM Turkey University Relations for his additional

support.

 x

ÖZET

 Proje çalışması olarak Cell BE işlemcisinin sağladığı teknik özelliklerden

faydalanarak ağ üzerinden hızlı ve güvenli veri transferi gerçekleştirilmesi

amaçlanmaktadır. Proje kapsamında Multi-port Bağlantı ve Cell BE işlemcisinin

getirdiği gelişmiş multi-threading desteğinden faydalanılacaktır. Gerçekleştirilen

uygulama ile, büyük boyulardaki dosyalar, yüksek çözünürlüklü görüntü ve ses gibi

verilerin, yüksek hızlarda ve güvenli şekilde iki istemci bilgisayar arasında transferi

sağlanacaktır. Uygulama, gerek şifreleme gerekse yönetilebilirlik açısından en

optimum çözümleri sunmaktadır. Bunlarında arasında, veri gönderiminde kullanılacak

olan RSA Şifreleme Algoritması gibi modüller bulunmaktadır.

 xi

ABSTRACT

 The main goal of this project is to implement a fast and secure data transfer via

network by using the technical features of the Cell BE processor. In the project, multi-

port connection and multi-threading technologies will be taken advantage of. The

implementation of the project will make possible to move large amounts of data like,

high definition graphics and sound, between two peers (computers) . The application

offers optimum solutions for both security and manageability. These solutions include

the RSA algorithm which will be used for encryption.

1. INTRODUCTION

 As technology evolves, Internet connection speed raises day by day and neccessity of

stream transfering becomes more important. Today, thousands of computers are transferring

streams like video, sound, file, text over the internet or over the network and some of these

compters are serving as big servers of companies,banks,governments, etc. These servers,

mainframes transfer huge amount of streams over the network for the purpose of backing up

data and transfering from one place to another. On these processes there are some important

considerations like speed and security. This project brings a new solution to these

considerations.

 This project uses a new algorithm which is developed by the project group for

transmitting massive streams on high speed and on secure environment. The algorithm is

based on multi-threaded stream transmission on mutli-ported peer-to-peer connection and

parallel programming. Further information about the algorithm can be found on Chapter 1-1

System Architecture. Results of the researches showed that, the most appropriate hardware for

this project on current conditions is the Cell BE Proccessor.

 Cell BE Proccessor is a microprocessor architecture jointly developed by Sony

Computer Entertainment, Toshiba, and IBM. Cell combines a general-purpose Power

Architecture core of modest performance with streamlined coprocessing elements (cores)

which greatly accelerate multimedia and vector processing applications, as well as many other

forms of dedicated computation. This architecture shows great performance on MT-MP

Stream Transmission algorithm. Further information can be found on Chapter 1-3 Cell

Architecture.

 On this Project, parallel programming techniques are used for implementation of

multi-threaded programming. The RapidMind Multi-core Development Platform[2] enables

software engineers develop manageable, single-threaded applications that leverage the full

potential of multi-core processors from AMD® and Intel®. Seamlessly take advantage of the

application acceleration available from GPUs and the Cell

Broadband Engine™. Further information can be found on Chapter 1-2, and Chapter 3-1.

 13

1.1. System Architecture

 In this chapter detailed information about the algorithm will be given. As mentioned

before, algorithm is based on multi-threaded multi-ported stream transmission. The aim of the

algorithm is to put the stream into piecss with independent threads and send the stream

simultaneously to receiver. The receiver takes the streams by independent threads. All the

theads runnig on both sides, divide streams into pieces sized equal to the buffer size which is

going to be used globally between both sides. After one thread takes a piece of stream it

sends it to the receiver immediately.

 On the recevier side, threads wait for the streams. After one thread receives a stream, it

writes the stream on a temporary location. After the whole transmission is finished, receiver

side assembles all stream pieces together. Graphical description of algorithm can be seem on

the Figure 1-1. This approach was later modified to be able to support multiple file

transmission. In this algorithm, threads are created equal to the port count specified as well,

but each thread handles one file at a time. When a thread finishes sending a file, it

immediately starts sending another file in the queue, if there is any. This change is also

emphasized in Chapter 4 – Progress of The Project

1.1.1. System Main Modules

 In this chapter, main modules of the algorithm is detailed.

1.1.1.1 Program Main Control

 Program main module has several functions. One of them is the entrance of the

program. In the program logic, user must run the program as root. Another main function

controls the program logic, which takes commands from user and parses them. After correct

parsing, function calls neccessary other functions to execute the command.

 There are also other functions that control buffer size management, port management,

username and password management.

1.1.1.2 Multi Threaded Streaming Module

 This module creates threads equal to the number of available ports that is given by the

user, and it opens connections. The main purpose of the module is to read the files from the

file list, and assign each file to a thread. Assigned files then are read to buffer for

transmission.

 14

Figure 1-1 System Architecture

1.2. Cell BE Processor

 Cell BE (Broadband Engine) Processor is a microprocessor developed by IBM,

Toshiba and Sony Corporations. Cell combines a general-purpose Power Architecture core of

modest performance with streamlined coprocessing elements which greatly accelerate

multimedia and vector processing applications, as well as many other forms of dedicated

computation [1].

 Cell BE processor architecture consists of 9 cores. One of the cores is named Power

Processing Element (PPE) which controls the other 8 cores . These cores are named

Synergistic Power Elements (SPE). Each SPE work seperately from each other, which means

that up to 8 simultaneous threads could run in a Cell BE processor. This applies if a single

thread is running on each SPE.

 The part that connects these 8 SPE and the PPE is called Element Interconnect Bus

(EIB), this bus also connects these elements with the memory controller, and the I/O ports.

The bandwidth of the EIB can theoretically increase up to 204.8 GB/s

 An undetailed version of the Cell BE architecture can bee seen in Figure 1-2 below.

 15

Figure 1-2 Cell BE Architecture

 16

1.3. RapidMind Multi-Core Development Platform

 Software developers are using RapidMind today to create manageable, single-threaded

applications that leverage the full potential of multi-core processors from AMD® and Intel®.

In addition, RapidMind allows developers to seamlessly take advantage of the application

acceleration available from GPUs and the Cell Broadband Engine™ [2].

1.3.1. Impact of multi-core on software development

 Multi-core processors offer tremendous performance gains, but few applications take

full advantage of this new technology because of the significant complexity of parallelizing

across the multiple cores.

 Applications that are not multi-core enabled will suffer a performance decrease as it

will only run on a single core, and will not scale as the number of cores increases.

While efforts to multi-thread an application may take advantage of multiple cores, these

projects are ambitious, time-consuming and error-prone. Multi-threaded applications are

harder to develop and test, which requires a level of development expertise which is difficult

to find [3] . Software organizations are all too aware of the real fear of releasing an unstable

solution that quickly fails in the field.

1.3.2. Gain a competitive advantage with RapidMind

 Multi-core processing presents an opportunity for software organizations to gain a

competitive advantage. The award-winning RapidMind Multi-core Development Platform

simplifies the development of parallel applications, reducing the cost and timelines of

software development when compared to multi-threaded projects, and greatly improves the

likelihood of project success.

1.3.3. RapidMind benefits

Improve application performance by over 10 times

More quickly build and deliver multi-core capable applications

Leverage multi-core using existing development expertise

Use your existing development practices, tools and compilers

Automatically scale your application to an increasing number of cores

 17

1.3.4. Productivity

Software developers focus their skills on the application and not the underlying

processor.

1.3.5. Performance

Resulting application fully leverages the potential of the processor and all its cores.

1.3.6. Portability

Applications are hardware independent and will automatically scale to additional cores

and future multi-core processors.

1.3.7. Using RapidMind

Unlike typical multi-threading approaches,

RapidMind is a development and runtime

platform that enables single-threaded, manageable

applications that fully leverage multi-core

processors. With RapidMind, developers continue

to write code in standard C++ and use their

existing skills, tools and processes and the

RapidMind platform then “parallelizes” across

multiple cores.

Figure 1-3 RapidMind System Diagram

1.3.8. API

Intuitive, integrates with C++, and requires no new tools, compilers or workflow

 18

1.3.9. Platform

• Code Optimizer analyzes and optimizes computations to remove overhead

• Load Balancer plans and synchronizes work to keep all cores fully utilized

• Data Manager reduces data bottlenecks

• Diagnostics detects and reports performance bottlenecks

 19

2. FEASIBLITY ANALYSIS

2.1. Technical Feasibility

Technical Feasibility can be observed in two different concepts: software and

hardware.

2.1.1. Software Used In The Project

The programming language the project is written in was chosen as C++ due to being a

fast and reliable language. It also meets the project’s needs by its advanced port and thread

controlling ability. Last but not least, C++ is currenlty the best programming language

amongst the languages that can be used for programming Cell BE processors.

For the purpose of passing the project into multi-core availability phase, a software named

RapidMind is used. RapidMind easily transforms the code into a form that can be used to

program a Cell BE processor,like adding multi-core capabilities, without the need of

additional coding.

Linux was chosen as the operating system because of its suitability for programming

environment. The C++ libraries included in Linux enables port and thread programming,

making the coding process much easier. Additionally, RapidMind software is compatible with

Linux operating system.

As development environment, Eclipse Development Platform was chosen, because of

its easy-to-use and user-friendly interface.

As being used in Linux, these softwares are entirely open-source therefore they are

free to use and distribute.

2.1.2. Hardware Used In The Project

The hardware used in the project consists of 2 client machines that both have Cell BE

processors, such as PlayStation3 game consoles, which cost approximately 850 YTL each.

Additionally, a cross conected cat-5 ethernet cable is used for connecting the clients together.

 20

2.2. Economical Feasibility

The total cost of this project comes from the hardware used, and labor. The cost of

labor is estimated as assumed that 2 people have developed the project. The Approximate

total cost is listed below.

2x Sony PlayStation3 Game Console 1700 YTL

1x Cat5 Ethernet Cable 6 YTL

2x Labor Cost

484 Work Hours

30$ Per Hour

29040 YTL

Total Cost 30746 YTL

Table 1-1: Total Cost Distribution

2.3. Legal Feasibility

This application have no legal disorders since it is programmed on fully open-source

software, which are protected by GPL (General Public License). The use of this application is

not against any kind of law.

2.4. Gantt Chart

The Gantt Chart of the project can be seen on Figure 2-1 below.

 21

Figure 2-1 Gantt Chart of The Project

 22

3. IN-DEPTH ANALYSIS

3.1. Detailed Architecture of Cell BE Processor

As previously specified, Cell BE Processor has 1 main core called Power Processing

Element (PPE) and 8 subcores called Synergistic Processing Elements (SPEs) The PPE has an

architecture of an 64-bit IBM PowerPC running on a frequency of 3.2 GHz. The PPE has a 32

KB L1 cache and a 512 KB L2 cache. L1 cache is located inside the Power Processing Unit

(PPU) which is the main core of the processor and executes the operations. L1 cache conducts

the communication between the PPU and L2 cache, while L2 cache does the same thing

between the PPU and the EIB (Element Interconnect Bus). Internal architecture of the PPE

can be seen on Figure 3-1.

 Figure 3-1 Internal Architecture of an SPE

The SPEs are total of 8 single-threaded co-processors which operate independently

from each other. However, the SPEs are not able to work on their own; they are obligated to

wait for commands from the PPE. Working simultaneously, the SPEs form the real power of

the processor. Each SPE has a local store of 512 Kbytes acting as a memory for local

operations. These local stores can be adressed both locally and globally. The SPEs also

support external storages with a maximum size of 4 Gbytes. They also have a Memory Flow

 23

Controller (MFC) which controls data flow between the SPEs and the EIB, thus the PPE.

Internal architecture of the SPE can be seen on Figure 3-2.

Figure 3-2 Internal Architecture of a PPE

The EIB is the communication bus between The PPE, SPEs and the Memory

Controller Units. This unit works on a speed of 96 bytes per clock cycle to be able to address

all 8 of the SPEs at the same time. Maximum bandwidth of the EIB is over 200 Gbytes per

second.

Looking overall, Cell BE is a processor which consists of 241 Million transistors and has an

operation capability of 200 GFlops with Single Precision (SP) and 20 GFlops with Double

Precision (DP). It can reach to a top frequency of over 4 GHz. The complete in-depth

architecture of the Cell BE can be seen on Figure 3-3, the performance summary table in

terms of operation types can be seen on Table 3-1 and a performance comparison chart can be

seen on Figure 3-4.

 24

Figure 3-3 In-Depth Architecture of Cell BE Processor

Table 3-1 Performance Table of Cell BE

 25

Figure 3-4 Performance Comparison of the Cell BE Processor

3.2. User commands of the Program

The user interface of the application has several input commands which enables the

user to manipulate the configuration, such as username, password, packet (buffer) size, ports

to be used, data to be sent, etc. Usage of all these commands are listed in this chapter.

3.2.1. Program Initialization

The Initialization of the program is auto-secured by the internal user authorization

mechanism of Linux operating system. Therefore, only users who has the rank of root can

access the program. After logging in as root, the application can be initialized by typing

 ./Cell

 in the terminal. The program needs ncurses library to be able to run. For more detail

on ncurses library, refer to Chapter 3-3.

3.2.2. Set Commands

Set keyword is used to change username, password ,buffer size, maximum and

minimum buffer size. This command gets parameters, the first of which is to specify the

 26

configuration to be set, and if neccessary the second is to specify the new value of the

configuration. Set operations writes new configurations to config file of the program.

Avaliable set commands are as follows:

set –b

 This command sets the buffer size of the program which is going to be used on

transmisson on both sides. This commnad lists the avaliable buffer size values and enables the

user to make a choice among them. But the value of the chosen buffer size must be between

the local maximum and minimum buffer size values.

set –maxb

 This command sets the local maximum buffer size. This value is important for remote

side for the transmission. Remote buffer size value must be between the max and min values

of the receiver side.

set –minb

 This command sets the local minimum buffer size of the system.

set –u <username>

 This command changes the local username of the system. As mentioned before,

username is a must to enter the program. The parameter <username> is set as the new

username of the program.

set –p

 This command sets the new local password of the system. User must enter the old

password, then enter the new password twice. If the new passwords match, the new password

is written to system.

set –maxpc <maxportcount>

 This command sets the maximum number of ports that is going to be used on

transmission.

set –minpc <minportcount>

 27

 This command sets the minimum number of ports that is going to be used on

transmission.

3.2.3. Get Commands

Get keyword is used to get configuration and system values. Get command takes one

argument that specifies the options. Command prints the value to the screen and do not

change the value of the option.

get –b

 This command prints the buffer size value on screen.

get –maxb

 This command prints the local maximum buffer size value on screen.

get –minb

 This command prints the local minimum buffer size value on screen

get –maxpc

 This command prints the local maximum port number on screen.

get –minpc

 This command prints the local minimum port number on screen

get –p

 This command lists the avaliable ports which are added by user and will be used on

transmission.

get –u

 This command prints the local username of the program on screen.

3.2.4. Add Command

Add keyword is used for adding ports to the system configuration. These ports is

neccessary for transmission. The number of ports that is added must be between local

maximum and minimum port count.

add –p <portnum>

 This command add the port to the port list. If the number of ports reaches the

maximum port number then no add operation is done.

 28

add –p <start_port_number>-<finish_port_number>

 This command add the ports within the given interval. If the number of ports reaches

the maximum port number then no add operation is done.

3.2.5. Rem Command

Rem keyword is used for removing ports from the port list.

rem –p <port_number>

 This command removes the given port number from the port list and writes changes to

configuration file.

rem –p –all

 This command flushes the port list of the system.

3.2.6. Send Command

Send command is used to start the transmission and send a file with. Send command

takes 2 arguments which are neccessary for the transmission to be initiated.

send –u <username> -ip <remote_ip_address>

 The parameter username is the value of remote side. This authentication is neccessary

for the transmission to start. The remote_ip_address is the IP address of the remote system.

When this command is entered, the system asks for the remote password. The transmission is

started just after the password is entered correctly. The list of files to be sent is read from the

file “files.zen” located within the same directory.

3.2.7. Exit Command

This command is neccessary for exiting program.

3.2.8. Reset Command

This command resets the configuration file to default settings.

 29

3.3. Ncurses Library

Ncurses library is a programming library providing an API, allowing the programmer

to write text user interfaces ina a terminal- independent manner. It’s a toolkit for developing

“GUI-like” apps which run under a terminal emulator. It also optimizes screen changes, in

order to reduce the latency experienced when using remote shells [4].

 Ncurses library functions are extremely useful, enabling the programmer to navigate

the terminal cursor freely, thus printing anything to or getting input from anywhere on the

terminal screen. In this way, the terminal console can be used like a GUI screen.

 The programmer can also create sub-windows, which he can use independently from

other windows or the console itself. The border and text styles, attributes, colors etc. can be

adjusted as well.

 One of the best features of ncurses library is the ability to use the mouse. All the

mouse events like click, double click, move, release button can be captured, and a handler

function can be triggered with these events.

 Additionally, features like menus, forms, panels can be created and functionalized

easily with the ncurses library. The user interface of the console version of a well-known

application, Yast, is programmed using the ncurses library. A screenshot of this application

can be seen on figure 3-5.

Figure 3-5: A Screenshot of Yast: An Ncurses Application

 30

3.4. SPE Programming

The architecture of Cell BE Processor allows the developer to program each SPE to do

its own job, which brings an advantage over RapidMind during development process. With

this technique, despite descending to a lower level, programming SPEs becomes easier, so

that the programmer can feel he has full control over the hardware. This method uses standart

C/C++ language, plus an SPE library which brings along the functions to program each SPE

seperately.

A serious matter which should be taken into consideration is that the SPEs does not

have access to main memory and they use their own memory blocks called ‘Local Stores’

each of which has only 256 KB of memory. Because of this, SPEs can not use buffers of

considerable sizes. This also reduces performance in file transmission, as well as file access

(read/write). There was nothing to do for the buffer size at the final stage of the project, but

for file access, the SPEs has to use the main memory. Thanks to the Cell architecture, there is

a way. This way is called Direct Memory Access (DMA). With DMA, SPEs can gain access

to main memory, without the obligation to communicate with the main processor, PPE.

Memory read and write operations can be done with a few C functions.

Another problem encountered was that, since the SPEs run seperate hardware threads,

they all try to access the same resource at the same time. This results in corruptions in data

transmission like, the receiver can not receive the file completely, buffer reads the wrong part

of the file, etc. To solve this serious problem, a global mutex (mutual exclusion) logic was

implemented. This logic locks the access to the resource when a SPE reaches and reads from /

writes to it. The other SPEs have to wait till the SPE in action finishes its job with the

resource. The other processes can be done completely parallelized, without the SPEs being

forced to wait each other. This mutex logic was used in several parts of the program, to ensure

that the working threads don’t cause a starvation or deadlock.

 31

4. PROGRESS OF THE PROJECT

4.1. Implementation Changes

During the development period, the content of the project went through some changes.

These changes are specified briefly below.

There has been some serious developments on visual interface. The project now uses

the ncurses library to make the interface more user-friendly. There are a few screenshots

showing the user interface in Appendix 1 to 5.

The plan to use an algorithm like RSA or AES on data encryption has changed due to

the performance issues. After some research, It is turned out to be more feasible to encrypt the

session and the hand-shaking packages only instead of encrypting all of the data packages to

be sent to the receiver side. Thus, the hand-shaking packages are encrypted with RSA

algorithm [5].

Single file transmission has been upgraded to multiple file transmission. In the current

version, user-specified number of files can be transmitted at the same time. Each created

thread handles single file transmission and once one file transmission is finished, the idle

thread passes on to the next file at the queue.

The authentication mechanism to start the program has been removed and the Linux

user authorization method is implemented. Thus, only root users have the authority to access

the application.

RapidMind Development Platform was abandoned due to data type incompatibilities.

Instead, a simple RSA application was developed to test the features of RapidMind, and a

near 8x speed improvement was achieved on a Cell BE processor.

 32

4.2. Performance Benchmarks (Without Parallelization)

In this chapter, a benchmark research of the program is made to compare transmission

results in terms of speed, by changing buffer size and port count. The comparison table is

below. As a notice, these results are taken before the application is parallelized with

RapidMind.

 Total File Size

Buffer Size 1GB (4 Ports) 1GB (2 Ports)

512 KB 88 s 87 s

1 MB 87 s 88 s

2 MB 88 s 88 s

4 MB 88 s 88 s

8 MB 89 s 88 s

SFTP (Secure File

Transfer Protocol)

1st try: 149 s

2nd try: 102 s

3rd try: 89 s

4th try: 103 s

5th try: 89 s

Average Time: 106.4 s
 Table 4-1 Performance Comparison On a x86 Processor

4.3. Performance Benchmarks (After Parallelization)

After the Cell BE migration, the stats had a slight change. As specified in the

Conclusion part, the reason for this is that the Cell BE processor architecture turned out to be

not as suitable as dual core high speed processors, since the SPEs are designed to do complex

mathematical calculations rather than doing I/O operations. But the power of the algorithm

makes this application still far in front of SFTP. The stats can be seen on Table 4-2. The

reason of the question mark at the bottom row is that a single 4 GB file could not be created

using Cell BE Processor.

 33

 Cell BE Transfer SFTP

1 GB

(1 Port)
96 secs 130 secs

1 GB

(4 Ports)
91 secs 130 secs

2 GB

(2 Ports)
184 secs 254 secs

4 GB

(4 Ports)
369 secs ?

 Table 4-2 Performance Comparison on Cell BE Processor

 Figure 4-1 Performance Comparison as Graphics

0
50

100
150
200
250
300
350
400

1
GB (1

 P
or

ts
)

1
GB (4

 P
or

ts
)

2
GB(2

 P
or

ts
)

4
GB(4

 P
or

ts
)

Cell BE
Transfer
SFTP

 34

CONCLUSION

The project made it clear that with the maximum use of the existing transmission

capabilities, the transmission speed could be increased. This also can help on maintaining

the transmission speed on a stable level. But a disadvantage of this is that the user will not

be able to use the network between peers efficiently while the transmission is resuming.

If he does, he will either have to sacrifice efficiency from the application, or the other

applications he uses.

It was also seen that Cell BE processor architecture is not a perfect match for file

transmission, since the results from PCs are far better, and local stores of the SPEs have

too little memory to construct a useful buffer. But with Cell programming, an application

based on mathematical calculations can be much faster on Cell BE processors.

 35

APPENDICES

Appendix – 1: Screenshot– Program Start

Appendix - 2: Screenshot – Listing buffer size and ports to be used

 36

Appendix–3: Screenshot–Entering the command to initialize transmission

Appendix – 4: Screenshot – Asking for password before transmission

 37

Appendix – 5: Screenshot – After the transmission finished

 38

REFERENCES

[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy, “
Introduction to the Cell multiprocessor” , IBM Journal of Research and Development,
September 2005.

[2] Monteyne, M., “Rapidmind Multi-Core Development Platform”, White Paper, Rapidmind
Inc., February 2008.

[3] Stokes, J. “Introduction to Multithreading, Superthreading and Hyperthreading”, Ars
Technica Journal, October 2002.

[4] Ncurses Library, http://www.gnu.org/software/ncurses.

[5] Mollin Richard A., RSA and Public-Key Cryptography, Chapman & Hall/CRC, 1st ed.,
November 2002.

[6] Postel, J. , Reynolds, J., “File Transfer Protocol (FTP)”,1985.

