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ABSTRACT

Sophisticated signal processing techniques have to be
developed for capacity enhancement of future wire-
less communication systems. In recent years, space-
time coding is proposed to provide significant capac-
ity gains over the traditional communication systems
in fading wireless channels. Space-time codes are
obtained by combining channel coding, modulation,
transmit diversity and optional receive diversity in
order to provide diversity at the receiver and coding
gain without sacrificing the bandwidth. In this pa-
per, we consider the problem of blind estimation of
space-time coded signals along with the channel pa-
rameters. Conditional maximum likelihood approach
is considered and iterative solution is proposed. The
proposed conditional maximum likelihood algorithm
is based on iterative least squares with projection
technique. The performance analysis issue of the pro-
posed method is also studied. Finally, some simula-
tion results are presented.

1. INTRODUCTION

The rapid growth in demand for a wide range of wire-
less services is a major driving force to provide high-
data rate and high quality wireless access over fad-
ing channels [1]. However, wireless transmission is
limited by available radio spectrum and impaired by
path loss, interference from other users and fading
caused by destructive addition of multipath. There-
fore several physical layer related techniques have to
be developed for future wireless systems to use the
frequency resources as efficiently as possible. One
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approach that shows real promise for substantial ca-
pacity enhancement is the use of diversity techniques
[2]. Diversity techniques basically reduce the impact
of fading due to multipath transmission and improve
interference tolerance which in turn can be traded
for increase capacity of the system. In recent years,
the use of antenna array at the base station for trans-
mit diversity has become increasingly popular since it
is difficult to deploy more than one or two antennas
at the portable unit. Transmit diversity techniques
make several replicas of the signal available to the re-
ceiver with the hope that at least some of them are
not severally attenuated. Moreover, the methods of
transmitter diversity combined with channel coding
have been employed at the transmitter, which is re-
ferred to as space-time coding, to introduce temporal
and spatial correlation into signals transmitted from
different antennas [2], [3]. The basic idea is to reuse
the same frequency band simultaneously for paral-
lel transmission channels to increase channel capacity
[2], [3].

Unfortunately, employing antenna diversity at the
transmitter is particularly challenging since the sig-
nals are combined in space prior to reception. More-
over, estimation of fading channels in space-time sys-
tems is further complicated, since the receiver esti-
mates the path gain from each transmit antenna to
each receive antenna. There has been considerable
work reported in the literature on the estimation of
channel information to improve performance of space-
time coded systems operating on fading channels [4],
[5], [6], [7]. In this paper we consider the problem
of blind estimation of space-time coded signals along
with the matrix of path gains. We propose condi-
tional maximum likelihood (ML) approach which re-
sults in joint estimation of the channel matrix and
the input sequences and is based on the iterative least



squares with projection (ILSP) [8].
The performance of the proposed ML approach

is explored based on the evaluation of Cramer-Rao
bound (CRB). The CRB is a well known statistical
tool that provides benchmarks for evaluating the per-
formance of actual estimators. For the conditional
estimator, the CRB derived in [9], is adapted to the
present scenario.

2. SYSTEM MODEL

In the sequel, we consider a mobile communication
system equipped with n transmit antennas and op-
tional m receive antennas m ≤ n. A general block
diagram for the systems of interest is depicted in Fig-
ure 1. In this system, the source generates bit se-
quence s(k), which are encoded by an error control
code to produce codewords. The encoded data are
parsed among n transmit antennas and then mapped
by the modulator into discrete complex valued con-
stellation points for transmission across channel. The
modulated streams for all antennas are transmitted
simultaneously. At the receiver, there are m receive
antennas to collect the transmissions. Spatial chan-
nel link between each transmit and receive antenna is
assumed to experience statistically independent fad-
ing.

The signals at each receive antenna is a noisy su-
perposition of the faded versions of the n transmitted
signals. The constellation points are scaled by a fac-
tor of Es so that the average energy of constellation
points is 1. Then we have the following complex base-
band equivalent received signal at receive antenna j:

rj(k) =
n∑

i=1

αi,j(k)ci(k) + nj(k) (1)

where αi,j(k) is the complex path gain from transmit
antenna i to receive antenna j, ci(k) is the coded
symbol transmitted from antenna i at time k, nj(k)
is the additive white Gaussian noise sample for receive
antenna j at time k. (1) can written in a matrix form
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Figure 1: Space-time coding and decoding system

as
r(k) = Ω(k) c(k) + n(k) (2)

where r(k) = [r1(k), ..., rm(k)]T ∈ Cm×1 is the re-
ceived signal vector, c(k) = [c1(k), ..., cn(k)]T ∈ Cn×1

is the code vector transmitted from the n transmit an-
tennas at time k, n(k) = [n1(k), ..., nm(k)]T ∈ Cm×1

is the noise vector at the receive antennas and Ω(k) ∈
Cm×n is the fading channel gain matrix given as

Ω(k) =




α1,1(k) · · · αn,1(k)
... · · · ...

α1,m(k) · · · αn,m(k)


 .

We impose following assumptions on model (2) for
the rest of the paper:
AS1: Information sequence s(k) is adopting finite
complex values.
AS2: The noise vector n(k) = [n1(k), ..., nm(k)]T is
Gaussian distributed with zero-mean and

E
[
n(k)nH(l)

]
= σ2Iδk,l (3)

E
[
n(k)nT (l)

]
= 0

where E denotes expectation operator and δk,l is the
Kronecker delta (δk,l = 1 if k = l and 0 otherwise).

Thus n(k) is assumed to be uncorrelated both
temporally and spatially.
AS3: The fading channel is assumed to be quasi-
static flat fading, so that during the transmission of
L codeword symbols across any one of the links, the
complex path gains do not change with time k, but
are independent from one codeword transmission to
the next, i.e.,

αi,j(k) = αi,j , k = 1, 2, · · · , L . (4)

The problem of estimating matrix of path gains along
with the space-time coded signals from noisy observa-
tions r(L) = [rT (1), · · · , rT (L)]T is the main concern
of the paper. The traditional solution to this prob-
lem is to first estimate θ = [Ω] from training sequence
embedded in the input signal and then use these es-
timates as if they were the true parameters to obtain
estimates of input sequence. As an alternative, we
propose blind ML approach based on ILSP.

3. CONDITIONAL ML

An ML approach is developed in this section under
AS1, AS2, AS3 and the conditional signal model
assumption (deterministic but unknown signal). The
log-likelihood function is then given by,

L = −const−mL log σ2 − 1
σ2

L∑

k=1

‖r(k)−Ω c(k)‖2 .

(5)
The conditional ML estimation can be obtained by
jointly maximizing L over the unknown parameters
Ω and c(L) = [cT (1), · · · , cT (L)]T . After neglecting
unnecessary terms, conditional ML yields the follow-
ing minimization problem

min
Ω,c(L)

‖r(L)−Ω c(L)‖2. (6)



Since the elements of c(L) are restricted to be finite
alphabet, (6) results in a nonlinear separable opti-
mization problem with mixed integer and continuous
variables. Typically, the minimization problem in (6)
is solved by alternatively minimizing with respect to
Ω and c(L) while keeping other parameters fixed.
First we minimize (6) with respect to Ω. Then sub-
stitute Ω̂ back into (6) and solve it for c(L). The ML
estimate of c(L) in the second step can be obtained
by enumeration. However, this search is computa-
tionally intensive since the number of possible c(L)
matrices that need to be checked grows exponentially
both with L and n. We now adopt a block conditional
ML algorithm that has a lower computational com-
plexity [8]. The proposed algorithm is based on ILSP
[8]. It takes advantage of the ML estimator being
separable in its continuous and integer variables.

Given an initial estimate Ω̂ of Ω, the minimization
of (6) with respect to c(L) is a least squares problem
that can be solved in closed from. Each element of
the solution is rounded-off to its closest discrete val-
ues (coded M-PSK signals). Then a better estimate
of Ω is obtained by minimizing (6) with respect to
Ω, keeping ĉ(L) fixed. This minimization also re-
sults in least squares. This process continues until Ω
converges.

The following steps summarize the conditional ML
algorithm:

Start with initial estimate Ω(0), i = 0

1. i=i+1

• ci(L) =
(
Ω∗

i−1Ωi−1

)−1
Ω∗

i−1r(L).
• Project each element of ci(L) to closest

discrete values.

• Ωi = rc∗i (L) (ci(L)c∗i (L))−1

2. Continue until (Ωi −Ωi−1) = 0.

The proposed conditional ML (ILSP) algorithm con-
verges to a local minimum of (6). However, suffi-
ciently good initialization provided from suboptimal
techniques improve the possibility of global conver-
gence and also reduce the number of iterations re-
quired.

4. CONDITIONAL CRB

The performance of the conditional ML method is
assessed here by deriving their CRBs for the unbiased
estimates of the nonrandom parameters. The CRB
depends on the information on vector parameter θ
quantified by the Fisher information matrix (FIM)
and provides a lower bound on the variance of the
unbiased estimate (i.e., E{θ̂} = θ). Then the CRB
for an unbiased estimator θ̂ is bounded by the inverse
of the FIM J(θ):

E
{

(θ − θ̂)(θ − θ̂)T
}
≥ J−1(θ) . (7)

The derivation of J(θ) in (7) follows along the lines
of [9]. We start constructing FIM by calculating the
derivative of (5) with respect to τ = [ cT

r (1) cT
c (1) · · ·

cT
r (L)cT

c (L) αT
r αT

c ]T where

cr(k) = Re{[c1(k), · · · , cn(k)]T } (8)
cc(k) = Im{[c1(k), · · · , cn(k)]T }

αi
r = Re{[α1,i, · · · , αm,i]T }

αr = Re{[αT
1 , · · · , αT

n ]T }
αi

c = Im{[α1,i, · · · , αm,i]T }
αc = Im{[αT

1 , · · · , αT
n ]T } .

Taking the partial derivatives of (5), we then have

∂L
∂cr(k)

=
2
σ2

Re
{
ΩHn(k)

}
k = 1, · · · , L

∂L
∂cc(k)

=
2
σ2

Im
{
ΩHn(k)

}
k = 1, · · · , L

∂L
∂αi

r

=
2
σ2

L∑

k=1

Re {c∗i (k)n(k)} i = 1, · · · , n

∂L
∂αr

=
2
σ2

L∑

k=1

Re {c∗(k)⊗ n(k)}

∂L
∂αi

c

=
2
σ2

L∑

k=1

Im {ci(k)n(k)} i = 1, · · · , n

∂L
∂αc

=
2
σ2

L∑

k=1

Im {c∗(k)⊗ n(k)} . (9)

We need the following assumption and results to ob-
tain FIM, (see [9]):

E[n(n)nH(m)] = σ2I (10)
E[n(n)nT (m)] = 0

E[nH(n)n(n)nT (m)] = 0 .

Using (9), (10) and taking expectations , we then
obtain the entries of the Fisher information matrix
for the conditional ML estimator, which are given by

E

{
∂L

∂cr(n)
· ∂L
∂cr(m)

T
}

=
2
σ2

Re
{
ΩHΩ

}
δn,m = A

E

{
∂L

∂cr(n)
· ∂L
∂cc(m)

T
}

= − 2
σ2

Im
{
ΩHΩ

}
δn,m = B

E

{
∂L

∂cc(n)
· ∂L
∂cc(m)

T
}

=
2
σ2

Re
{
ΩHΩ

}
δn,m

E

{
∂L

∂cr(k)
· ∂L
∂αr

T
}

=
2
σ2

Re
{
ΩH ⊗ cH(k)

}
= Ck

E

{
∂L

∂cc(k)
· ∂L
∂αr

T
}

=
2
σ2

Im
{
ΩH ⊗ cH(k)

}
= Dk



E

{
∂L

∂cr(k)
· ∂L
∂αc

T
}

= − 2
σ2

Im
{
ΩH ⊗ cH(k)

}

E

{
∂L

∂cc(k)
· ∂L
∂αc

T
}

=
2
σ2

Re
{
ΩH ⊗ cH(k)

}

E

{
∂L
∂αr

· ∂L
∂αr

T
}

=
2
σ2

L∑

k=1

Re[c∗(k)

⊗ Im ⊗ cH(k)] = E

E

{
∂L
∂αc

· ∂L
∂αc

T
}

=
2
σ2

L∑

k=1

Re[c∗(k)

⊗ Im ⊗ cH(k)]

E

{
∂L
∂αr

· ∂L
∂αc

T
}

= − 2
σ2

L∑

k=1

Im[c∗(k)

⊗ Im ⊗ cH(k)] = −F . (11)

Then the FIM can be written in partitioned form as

J =




H 0 C1

. . .
...

0 H CL

CT
1 · · · CT

L E




(12)

where

H =
[
A −B
B A

]
, Ck =

[
Ck −Dk

Dk Ck

]
,

E =
[
E −F
F E

]
. (13)

The FIM can now be directly constructed. We can
numerically compute the variance of individual pa-
rameter estimate by inverting the FIM CRB(τ ) =
diag

{
J−1(τ )

}
.

5. SIMULATIONS

In this section, we illustrate some simulation results
to evaluate the effectiveness and applicability of the
proposed ML approaches. We consider the genera-
tor matrix form representation of the space-time cod-
ing system [10]. In this representation the stream of
coded complex M -PSK symbols are obtained by ap-
plying mapping function M to the following matrix
multiplication

c(k) = M (u(k) ·G(modM)) (14)

where u(k) = [s(lk+t−1), ..., s(lk−t)]T and G is the
generator matrix with n columns and l + s rows and
M is a mapping function that maps integer values to
the M -PSK symbols, M(x) = exp(2πjx/M).

The performance of the proposed method was eval-
uated as a function of SNR (signal to noise ratio)

based on the Monte Carlo simulations. Conditional
ML method was tested for 200 Monte Carlo trials per
SNR point across range of SNR’s. The results were
compared with hidden Markov model based uncondi-
tional ML and CRBs. In each trial, the estimation er-
ror of each parameter estimate from conditional and
unconditional ML for the channel parameters were
recorded. We consider following test case:

4-PSK space-time code example shown in Fig. 2
is considered with n = 2, t = 2 and generator matrix,

G =




2 0
1 0
0 2
0 1




In this case, the coded 4-PSK symbols obtained from
two current information bits are transmitted over the
first antenna, whereas the coded 4-PSK symbols ob-
tained from two preceding bits are transmitted over
the second antenna simultaneously. The coded sym-
bols are then transmitted through quasi-static fading
channel matrix.

In Fig. 3, we have plotted the estimation error ob-
tained from conditional and unconditional ML for the
channel parameters as well as the conditional CRB.

6. CONCLUSIONS

In this paper, we presented the conditional ML ap-
proach to the problem of blind estimation of chan-
nel parameters along with the space-time coded se-
quence. We derived iterative ML algorithm based
on the conditional signal model. Furthermore, the
performance of the proposed algorithms is explored
based on the derivation of the associated CRB. We
also presented Monte Carlo simulations to verify the
theoretically predicted estimator’s performance. The
examples demonstrated that proposed ML approach
achieve the conditional CRB for high SNR values.
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Figure 2: 4-state space-time coding system model
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