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ABSTRACT 

A parallel multiplier for constant numbers is pre-
sented. The constant number is in Canonical Signed 
Digit (CSD) form and the other factor in two’s com-
plement form. The result is obtained in two’s com-
plement form. The design presented here is based on a 
special algorithm developed for the multiplication of 
two’s complement numbers with numbers in signed 
digit representation. The proposed multiplier com-
pared with the existing schemes is superior from the 
point of hardware complexity and operation speed. 
 

I. INTRODUCTION 
An important issue in the design of digital systems, such 
as digital filters, is the hardware saving that can be 
achieved, when the coefficients of the involved multipli-
cations are constant numbers. Apparently, the knowledge 
of the coefficient at the design phase allows a significant 
decrease in hardware by eliminating the multiplier cells 
corresponding to zero coefficient bits. Furthermore, 
hardware reduction can be achieved by using special rep-
resentations like the modified Booth’s coding [1], which 
reduces the number of the coefficient bits to the half. The 
Canonical Signed Digit (CSD) representation [2] gives 
better results in hardware reduction because it minimizes 
the non-zero bits of the coefficient [3]. 
 The CSD representation has been extensively used in the 
design of digital filters without multipliers [4]. The coef-
ficients represented in CSD form are approximated using 
two or three non-zero digits. However, a systematic ap-
proach for the implementation of a parallel multiplier 
with CSD numbers is useful. This approach can be used 
not only for implementing digital filters but also for FFT 
and cryptography applications. 
An algorithm for the multiplication of two’s complement 
numbers with numbers in CSD form has been presented 
in [5], [6]. in this paper, we adapt this algorithm and pre-
sent a new parallel multiplier of two’s complement num-
bers with a constant factor in CSD form. Specifically, in 
Section II the multiplication algorithm is comprehen-
sively presented. The detailed design of the parallel mul-
tiplier is given in Section III. Also, a comparison between 
this multiplier and the parallel multiplier with the con-

stant factor in two’s complement form and modified 
Booth’s form is given. 
 

II. DESCRIPTION OF THE MULTIPLICATION 
ALGORITHM 

Let us consider the multiplication of a two’s complement 
number X  
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with a constant coefficient a  in signed digit form, which 
is 
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The multiplication is the expression  
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According to the algorithm the final product is  
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In the above equations ia  and is  represent the absolute 
value and the sign of ia  digit respectively. Specifically, 
the value of is  is assumed to be 1 for 0<ia  and 0 oth-
erwise. The symbol ⊕ represents the XOR operator. The 
results of the inversion and of the XOR operator are used 
as arithmetic quantities in the arithmetic expressions. In 
(6) the quantity ij sx ⊕  implies the inversion of jx , if ia  
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Figure 1. A parallel multiplier with eliminated the rows corresponding to the zero bits of the coefficient 
10010110=a . 

is negative and the factor ia  expresses the partial product 
elimination, if ia  is zero. 
Equation (5) implies that for the implementation of the 
above two’s complement multiplication, the number 

0121 xxxx nn L−−  properly weighted must be added in-
verted or not if ia  is positive or negative respectively. In 
addition, the correction term  
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that depends only on a , must be included. 
 

II. IMPLEMENTATION OF THE PARALLEL 
MULTIPLIER 

In fig. 1 it is shown how the proposed multiplier for 
10010110=a  and 8== mn  is deduced from a gen-

eral array multiplier by eliminating the partial product 
rows that correspond to non-zero coefficient digits. In the 
rows, to which a negative coefficient bit corresponds, the 
bits of X are inverted except from the most significant bit, 
which is inverted in the rows, which correspond to a posi-
tive coefficient bit. Apparently, no Full-Adders is re-
quired for the two first partial product rows. The final 
circuit is shown in Fig. 2. It outputs the result in carry-
save form and consequently a final adder is required for 
the result to be obtained in two’s complement from. 
Also, the circuit of Fig. 2 adds the correction term C 
given by (12). For convenience, we consider this term as 
two parts, the upper part  
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and the lower part   
SCLo =   (14)  

For 10010110=a  we have 0101101=UpC and 

001000=LoC . The bits of UpC  and LoC  are shown in 
bold in Fig. 2. Considering the correspondence of bits of 

UpC  in this figure, we see that always the steps shaped by 
overlapped partial product rows in the left margin of the 
multiplier are always covered by ‘1’s except from the 
edge of each step where a zero bit corresponds. This fact 
allows the addition of ‘1’s by just inverting and extending 
leftwards one input of the adder in the right end of the 
step as shown in Fig. 1.  
The term 12 −+− mn  is implemented by inverting the carry 
output of the final adder.  
The first partial product row because of term 12 −n  is cov-
ered by zeros except the left end of this row where a ‘1’ 
corresponds.  
 As far as the addition of LoC  is concerned, we exploit 
the fact that a ‘1’ must be added to the right end of each 
partial product row if the coefficient bit for this row is 
negative. However, there is no need for extra adders be-
cause these bits can be incorporated in the lower part of 
the final adder of the multiplier. In all cases there is place 
for this addition except from the right end of the second 
row. In most applications, like digital filters the lower 
part of the result is truncated, so there is no need for these 
‘1’s to be added. Even in the case where the whole prod-
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Figure 2. A parallel multiplier for the coefficient 10010110=a  and 8-bit word length. 

product is required the above difficulty can be easily 
overcome by modifying properly the final adder. 
 The required hardware for the above scheme is 
directly proportional to the number of non-zero bits in the 
constant coefficient. Furthermore, it depends on the exact 
position of these bits inside the coefficient. Thus, if k is 
the number of non-zero bits the multiplier will consist of 
k partial product rows and only 2−k  of them will have 
to be added using Full-Adders. The number of Full-
Adders required by each of these 2−k  rows depends on 
the relative position of the non-zero bits inside the coeffi-
cient.   
Particularly, if ia  is the coefficient bit for a row then this 
line will include 1−− dm  adders where d is the number 
of zeros between ia  and the next lower order non-zero 
coefficient bit. The combinational delay is FADk *)2( −  
where DFA  is the delay of a Full-Adder. 
The hardware complexity of the proposed architecture is 
given in Table I. For the computations we have assumed 

the average case, where the constant number of length m 

consists of 
3
m  non-zero bits. We have also assumed that 

these bits are evenly distributed inside the coefficient, 
namely they are separated by two zero bits )2( =d . For 
comparison, the hardware complexity of a parallel multi-
plier, when the constant coefficient is represented in 
two’s complement form is also given in Table I.  For the 
computations, we assumed the average case, where the 
half bits of the constant coefficient are zeros and evenly 
distributed inside the coefficient. In both cases the hard-
ware of the final adder has been not taken into account. 
The comparison reveals that the hardware complexity and 
the combinational delay of the proposed scheme is about 
40% decreased compared with the complexity and the 
delay when the constant coefficient is represented in 
two’s complement form and 20% compared with  the 
multiplier where the constant coefficient is in modified 
Booth’s form. 

 

 
TABLE I 

HARDWARE COMPLEXITY AND COMBINATIONAL DELAY OF THE PROPOSED MULTIPLIERS AND 
THE PARALLEL MULTIPLIER FOR CONSTANT COEFFICIENT IN TWO’S COMPLEMENT FORM 

Type of multiplier Hardware Complexity  
(Average) 

Combinational Delay 

Parallel multiplier for constant coefficient in two’s 
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Parallel multiplier for constant coefficient in Modified 
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DFA: Full-Adder delay  



V. CONCLUSION 
We proposed the design of a parallel multiplier where the 
one factor is constant and represented in canonical signed 
digit form. The hardware and the combinational delay are 
reduced significantly compared with a parallel scheme 
where the constant factor is represented in two’s com-
plement form. Moreover, canonic structure of a parallel 
multiplier is preserved and thus, this scheme can be de-
scribed as a parameterized component in a VHDL library 
with the multiplier coefficient as parameter.  
 The presented design has been carried out in detail and 
verified by extensive simulations for various coefficients. 
The proposed multiplier’s design is part of an FFT com-
putation circuits.  
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