
CONSTANT NUMBER PARALLEL MULTIPLIERS

 J. Sifnaios Chr. Meletis P. Bougas P. Kalivas K. Pekmestzi

Department of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Zographou, Ath-
ens, Greece pekmes@microlab.ntua.gr.

Key words: Parallel multipliers, Constant number multipliers, Canonic signed digit representation

ABSTRACT

A parallel multiplier for constant numbers is pre-
sented. The constant number is in Canonical Signed
Digit (CSD) form and the other factor in two’s com-
plement form. The result is obtained in two’s com-
plement form. The design presented here is based on a
special algorithm developed for the multiplication of
two’s complement numbers with numbers in signed
digit representation. The proposed multiplier com-
pared with the existing schemes is superior from the
point of hardware complexity and operation speed.

I. INTRODUCTION
An important issue in the design of digital systems, such
as digital filters, is the hardware saving that can be
achieved, when the coefficients of the involved multipli-
cations are constant numbers. Apparently, the knowledge
of the coefficient at the design phase allows a significant
decrease in hardware by eliminating the multiplier cells
corresponding to zero coefficient bits. Furthermore,
hardware reduction can be achieved by using special rep-
resentations like the modified Booth’s coding [1], which
reduces the number of the coefficient bits to the half. The
Canonical Signed Digit (CSD) representation [2] gives
better results in hardware reduction because it minimizes
the non-zero bits of the coefficient [3].
 The CSD representation has been extensively used in the
design of digital filters without multipliers [4]. The coef-
ficients represented in CSD form are approximated using
two or three non-zero digits. However, a systematic ap-
proach for the implementation of a parallel multiplier
with CSD numbers is useful. This approach can be used
not only for implementing digital filters but also for FFT
and cryptography applications.
An algorithm for the multiplication of two’s complement
numbers with numbers in CSD form has been presented
in [5], [6]. in this paper, we adapt this algorithm and pre-
sent a new parallel multiplier of two’s complement num-
bers with a constant factor in CSD form. Specifically, in
Section II the multiplication algorithm is comprehen-
sively presented. The detailed design of the parallel mul-
tiplier is given in Section III. Also, a comparison between
this multiplier and the parallel multiplier with the con-

stant factor in two’s complement form and modified
Booth’s form is given.

II. DESCRIPTION OF THE MULTIPLICATION
ALGORITHM

Let us consider the multiplication of a two’s complement
number X

∑
−

=

−
− ⋅+⋅−=

2

0

1
1 22

n

j

j
j

n
n xxX (1)

with a constant coefficient a in signed digit form, which
is

1,0 ,2
1

0
±=⋅=∑

−

=
i

m

i

i
i aaa . (2)

The multiplication is the expression

∑
−

=

⋅=⋅=
1

0

2
m

i

i
iPaXP (3)

where ∑
−

=

−
− ⋅⋅+⋅⋅−=⋅=

2

0

1
1 22

n

j

j
ij

n
inii axaxaXP (4)

According to the algorithm the final product is

∑∑
−

=

−
−

=

−+−+ ⋅+++⋅+−=
1

0

*1
1

0

11 2222
m

i

i
i

n
m

i

in
i

mn PSP a (5)

where

j
i

n

j
ij

n
iini sxsxP 2)(2)(

2

0

1
1

* ⋅⋅⊕+⋅⋅⊕= ∑
−

=

−
− aa and

∑
−

=

=
1

0

2
m

i

i
isS (6)

In the above equations ia and is represent the absolute
value and the sign of ia digit respectively. Specifically,
the value of is is assumed to be 1 for 0<ia and 0 oth-
erwise. The symbol ⊕ represents the XOR operator. The
results of the inversion and of the XOR operator are used
as arithmetic quantities in the arithmetic expressions. In
(6) the quantity ij sx ⊕ implies the inversion of jx , if ia

e-mail:(john,chris,paul,paraskevas,pekmes)@microlab.ntua.gr

x7 x6 x5 x4 x3 x2 x1 x0

x4 x3 x2 x1 x0x5x7

x4FA x3FA x2FA x1FA FA
x5

x4FA x3FA x2FA x1FA x0FAFA x5

x7

x6

x6

x6

x0

P0P1P2P3P4P5P6P7P8P9P10P11P12P13P14

x7

a0= -1

a1= 0

a2= 1

a3= 0

a4= 0

a5= -1

a6= 0

a7= 1

Figure 1. A parallel multiplier with eliminated the rows corresponding to the zero bits of the coefficient
10010110=a .

is negative and the factor ia expresses the partial product
elimination, if ia is zero.
Equation (5) implies that for the implementation of the
above two’s complement multiplication, the number

0121 xxxx nn L−− properly weighted must be added in-
verted or not if ia is positive or negative respectively. In
addition, the correction term

SC
m

i

nin
i

mn ++⋅+−= ∑
−

=

−+−−+
1

0

111 222 a (12)

that depends only on a , must be included.

II. IMPLEMENTATION OF THE PARALLEL
MULTIPLIER

In fig. 1 it is shown how the proposed multiplier for
10010110=a and 8== mn is deduced from a gen-

eral array multiplier by eliminating the partial product
rows that correspond to non-zero coefficient digits. In the
rows, to which a negative coefficient bit corresponds, the
bits of X are inverted except from the most significant bit,
which is inverted in the rows, which correspond to a posi-
tive coefficient bit. Apparently, no Full-Adders is re-
quired for the two first partial product rows. The final
circuit is shown in Fig. 2. It outputs the result in carry-
save form and consequently a final adder is required for
the result to be obtained in two’s complement from.
Also, the circuit of Fig. 2 adds the correction term C
given by (12). For convenience, we consider this term as
two parts, the upper part

1
1

0

11 222 −
−

=

+−−+ +⋅+−= ∑ n
m

i

in
i

mn
UpC a (13)

and the lower part
SCLo = (14)

For 10010110=a we have 0101101=UpC and

001000=LoC . The bits of UpC and LoC are shown in
bold in Fig. 2. Considering the correspondence of bits of

UpC in this figure, we see that always the steps shaped by
overlapped partial product rows in the left margin of the
multiplier are always covered by ‘1’s except from the
edge of each step where a zero bit corresponds. This fact
allows the addition of ‘1’s by just inverting and extending
leftwards one input of the adder in the right end of the
step as shown in Fig. 1.
The term 12 −+− mn is implemented by inverting the carry
output of the final adder.
The first partial product row because of term 12 −n is cov-
ered by zeros except the left end of this row where a ‘1’
corresponds.
 As far as the addition of LoC is concerned, we exploit
the fact that a ‘1’ must be added to the right end of each
partial product row if the coefficient bit for this row is
negative. However, there is no need for extra adders be-
cause these bits can be incorporated in the lower part of
the final adder of the multiplier. In all cases there is place
for this addition except from the right end of the second
row. In most applications, like digital filters the lower
part of the result is truncated, so there is no need for these
‘1’s to be added. Even in the case where the whole prod-

x7 x6 x5 x4 x3 x2 x1

x5x6 x4 x3 x2 x1 x0x7

x5x6 x4FA x3FA x2FA x1FA x0FAx7

x5FAx6 x4FA x3FA x2FA x1FA x0FA

x0

P0P1P2P3P4
P5P6P7P8P9P10P11P12P13

1

10

110

10

P14

x7

-1

11

Figure 2. A parallel multiplier for the coefficient 10010110=a and 8-bit word length.

product is required the above difficulty can be easily
overcome by modifying properly the final adder.
 The required hardware for the above scheme is
directly proportional to the number of non-zero bits in the
constant coefficient. Furthermore, it depends on the exact
position of these bits inside the coefficient. Thus, if k is
the number of non-zero bits the multiplier will consist of
k partial product rows and only 2−k of them will have
to be added using Full-Adders. The number of Full-
Adders required by each of these 2−k rows depends on
the relative position of the non-zero bits inside the coeffi-
cient.
Particularly, if ia is the coefficient bit for a row then this
line will include 1−− dm adders where d is the number
of zeros between ia and the next lower order non-zero
coefficient bit. The combinational delay is FADk *)2(−
where DFA is the delay of a Full-Adder.
The hardware complexity of the proposed architecture is
given in Table I. For the computations we have assumed

the average case, where the constant number of length m

consists of
3
m non-zero bits. We have also assumed that

these bits are evenly distributed inside the coefficient,
namely they are separated by two zero bits)2(=d . For
comparison, the hardware complexity of a parallel multi-
plier, when the constant coefficient is represented in
two’s complement form is also given in Table I. For the
computations, we assumed the average case, where the
half bits of the constant coefficient are zeros and evenly
distributed inside the coefficient. In both cases the hard-
ware of the final adder has been not taken into account.
The comparison reveals that the hardware complexity and
the combinational delay of the proposed scheme is about
40% decreased compared with the complexity and the
delay when the constant coefficient is represented in
two’s complement form and 20% compared with the
multiplier where the constant coefficient is in modified
Booth’s form.

TABLE I

HARDWARE COMPLEXITY AND COMBINATIONAL DELAY OF THE PROPOSED MULTIPLIERS AND
THE PARALLEL MULTIPLIER FOR CONSTANT COEFFICIENT IN TWO’S COMPLEMENT FORM

Type of multiplier Hardware Complexity
(Average)

Combinational Delay

Parallel multiplier for constant coefficient in two’s
complement form)2()2

2
(FAm

m
⋅−⋅−)2

2
(

FA
D

m
⋅−

Parallel multiplier for constant coefficient in Modified
Booth’s form FAm

m
⋅−⋅−)2()2

8

3
(

FA
D

m
⋅−)2

8

3
(

Proposed parallel pipeline multiplier
FAm

m
⋅−⋅−)3()2

3
()2

3
(

FA
D

m
⋅−

DFA: Full-Adder delay

V. CONCLUSION
We proposed the design of a parallel multiplier where the
one factor is constant and represented in canonical signed
digit form. The hardware and the combinational delay are
reduced significantly compared with a parallel scheme
where the constant factor is represented in two’s com-
plement form. Moreover, canonic structure of a parallel
multiplier is preserved and thus, this scheme can be de-
scribed as a parameterized component in a VHDL library
with the multiplier coefficient as parameter.
 The presented design has been carried out in detail and
verified by extensive simulations for various coefficients.
The proposed multiplier’s design is part of an FFT com-
putation circuits.

REFERENCES
1. A. Booth, A signed binary multiplication technique,

Quart. J. Mech. Appl. Math., vol. 4, pp. 236-240, 1951.
2. G. Reitwiesner, Binary Arithmetic, Advances in Com-

puters, vol. 1, pp. 231-308, 1966.
3. A. Peled, On the hardware implementation of digital

signal processors, IEEE Trans. Acoust., Speech, Sig-
nal Proc., vol. 24, 1976, pp. 76-86.

4. T. Lin, H. Samueli A 200-MHz CMOS x/sin(x) digi-
tal filter for compensating D/A converter frequency
response distortion, IEEE J. of Solid-State Circuits,
vol. 26, no 9, pp. 1278-1285, 1991.

5. K. Z. Pekmestzi, P. Kalivas Constant number serial
pipeline multipliers, Kluwer Academic Publishers,
The Journal of VLSI Signal Processing, Volume 26,
Issue 3, November 2000, pp. 361-368.

6. K. Z. Pekmestzi, P. Kalivas, Constant Number Multi-
pliers, The 5th International Symposium on Bases of
Electronics (SBE'99), Romania 1999.

