Cascaded Binomial Filter Algorithms for Noisy FTIR Spectra

Yessi Jusman1 and Nor Ashidi Mat Isa1, Member, IEEE

1,1 Imaging and Intelligent System Research Team (ISRT)
School of Electrical &Electronic Engineering
Universiti Sains Malaysia (USM), Engineering Campus
14300 Nibong Tehal, Penang, Malaysia
anisah_rabbani02@yahoo.co.id; ashidi@eng.usm.my

Abstract

In this paper, a new algorithm has been developed for denoising a spectrum using cascade form filter. The algorithm is based on cascading binomial filter with other direct form filters to increase signal to noise ratio (S/N) of the spectrum. The proposed algorithm consists of three types namely, Cascaded Binomial-Savitzky Golay (CBSG), Cascaded Binomial-Triangular (CBT), and Cascaded Binomial-Rectangular (CBR) filters. Different levels of additive white gaussian noises (AWGN) are added to cervical cell FTIR spectra (i.e. as case study) and processed it using the proposed algorithms. The algorithms are proven to minimize the effects of the AWGN and increased S/N as compared to other compared smoothing filters.

1. Introduction

Fourier transform infrared (FTIR) spectroscopy has been applied in numerous fields. Recently, this technique has been used to study the structural changes of cells at the molecular level in various human cancers [1], [2]. The advancement in science and technology has led to the development of the automated computer-assisted human cancers [3]. The systems are specifically designed to assist pathologists during the crucial screening procedures.

However, a measured spectrum of the FTIR often consists of spectral line, which has a certain line shape, and white noise. According to Quintero et al [4], during acquisition process using the FTIR spectrometer, noise may affect the spectrum more than once. The noise could disturb spectral analysis for classification of the cancers. Thus, smoothing process is an important part to suppress the noise to improve the poor appearance of spectrum before analyzing and interpreting the spectrum.

Savitzky-Golay (SG) filter is generally used for smoothing and differentiation of the spectroscopy spectra [5], [6], [7]. Almost every spectroscopic software package contains a standard smoothing named ‘Savitzky-Golay smoothing’. The filter used least-squares polynomial (LSP) method to calculate filter coefficients [8]. The calculated coefficients of the SG filter could be used directly by applying a convolution between spectrum with the calculated coefficients [5]. However, Čupek et al [6] found that the SG smoothing algorithm caused additionally false negative signals at shoulders of each vibrational band. In addition, the SG smoothing algorithm can lead to the loss of weak signals and the reduction of spectral resolution [9].

The binomial smoothing filter [9], [10] is another type of filters for smoothing spectra, so called because the \((2Np + I)\) coefficient is defined by binomial coefficient formulæ. The coefficient filter fulfills the conditions of a smoothing technique [10]. In addition, this filter is easy to implement in hardware and is as fast as the LSP method [9]. Meanwhile, according to Battistoni et al [9], this filter is proven of having better performance than the SG filter when the filter width does not exceed 17 points. Therefore, denoising based cascaded binomial with other direct form filters are proposed to increase S/N of the SG and the binomial filters.

2. Theory

Smoothing of a spectrum \(H(f)\) is an operation where the spectrum is convoluted with a smoothing function \(W(f)\), known as window function, in order to reduce the rapidly oscillating random noise of the data. A spectrum with noise can be written as \(H(f) = H_o(f) + N(f)\), where \(H_o(f)\) is the original spectrum and \(N(f)\) is the white noise spectrum [11]. The smoothing operation in the frequency domain can be expressed as:

\[
H'(f) = W(f) \ast H(f)
\]

where \(H'(f)\) is the smoothed spectrum.

According to Kauppinen et al [11], the aim of smoothing process is to enhance the S/N by reducing the noise as much as possible, but distorting the true spectral line shape as small as possible.

The smoothing process is assumed to be convolution of the experimental data sequence by filter coefficients. The smoothed output data \(Y\) is given by:

\[
Y_j = \sum_{k=-N_p}^{N_p} b_k X_{j+k}
\]

where \(X_j\) is a given equally spaced data sequence to be smoothed and \(b_k\) is the filter coefficients. The total number of filter coefficients \(2N_p + 1\) is known as the filter width.

One of the simplest ways to smooth fluctuating data is by a moving average, known as rectangular filter, where the coefficient is equal to \(b_k = 1/(2N_p+1)\) [9]. However, according to [8], for many types of data, the set of all 1’s, which yields the average, is not particularly useful. For example, during implementation on a sharp peak, the average would tend to degrade the end of the peak [8].

According to [9], the triangular window is the simplest method to be implemented as illustrated by Equation 3:
3.2. Smoothing Algorithms

Cascade form filter is proven to produce better results than the direct form filter [13]. In this paper, three smoothing algorithms based on cascaded concept between the binomial filter and other direct form filters (i.e., SG, triangular, and rectangular filter) are proposed namely Cascaded Binomial-Savizky Golay (CBSG), Cascaded Binomial-Triangular (CBT), and Cascaded Binomial-Rectangular (CBR) filters. These algorithms are proposed to enhance the SG and the binomial filter performances.

The implemented of the proposed smoothing algorithms are as follow:

(i) Apply the 5 point coefficients of binomial filter as tabulated in Table 1 to be the first filter function.
(ii) Convolute the filter function to noisy spectrum and denote the output spectrum as \(F_1(s) \).
(iii) As the second filter function, apply the 5 point coefficients of one of the other filters as tabulated in Table 1. For the combination of the binomial filter with the SG filter, binomial filter with triangular filter, and binomial filter with rectangular filter, the proposed algorithms are called CBSG, CBT, and CBR respectively.
(iv) Convolute each of the filter function (i.e. refer to the proposed smoothing algorithms in step (iii)) to \(F_1(s) \) and denote the output spectrum as \(F_2(s) \).
(v) Calculate the S/N of the \(F_2(s) \).

4. Results and Discussions

In this Section, analyses of smoothing methods are presented on several cervical cell FTIR spectra both qualitatively and quantitatively. For qualitative analysis, the reference, noisy and smoothing spectra are plotted to show the smoothing effect on the spectra while the S/N values are compared for all methods for quantitative analysis [11].

4.1. Qualitative Analysis

In this evaluation, we use noisy spectra with different level of white noise to test the effectiveness and efficiency of the algorithms. The reference spectra are shown in Fig. 1(a) and 2(a) which the spectra are called as Spectrum 1 and Spectrum 2, respectively. Fig. 1(b) and 2(b) are the noisy spectra corrupted with 20 and 45 dB of S/N, respectively. Fig. 1(c) to 1(g) and 2(c) to 2(g) present the smoothed spectra with different smoothing algorithms.

The results depict that the smoothed spectra produced by the SG and binomial filters are still affected by noise, which indicate that the algorithms are less robust to the noise effect, as shown in Fig. 1(c), 1(d) and 2(c), 2(d). The proposed algorithms can significantly remove the effect of noise as compared to the SG and binomial filters. The smoothed spectra are less jagged. The curve of the output spectra are smoother than those produced by the SG and binomial spectra. Visually, the CBR algorithm produces the smoothest spectra, thus prove its ability on smoothing of the cervical cell FTIR spectra.

Table 1. Filter coefficients for different smoothing filters using five data points

<table>
<thead>
<tr>
<th>Filters</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP degree 2 (SG filter)</td>
<td>[-3, 12, 17, 12, -3]/35</td>
</tr>
<tr>
<td>LSP degree 1 (Rectangular filter)</td>
<td>[1, 1, 1, 1, 1]/5</td>
</tr>
<tr>
<td>Binomial filter</td>
<td>[1, 4, 6, 4, 1]/16</td>
</tr>
<tr>
<td>Triangular filter</td>
<td>[1, 2, 3, 2, 1]/9</td>
</tr>
</tbody>
</table>

3.1. Fourier Transform Infrared (FTIR) spectrum

In this study, FTIR spectra of cervical cells are used to test the proposed smoothing algorithms. These spectra are obtained by scanning the cervical cells from ThinPrep® solution with FTIR spectrometer. These ThinPrep® solutions are obtained from Gribbles Pathology Laboratory, Petaling Jaya, Selangor, Malaysia as in our previous work [12].

Noise are unwanted component of measured signal. They may originate from electronic circuits, environment and physicochemical process. In this study, the capability of the proposed smoothing technique is tested using different noise levels added to the cervical cell FTIR spectra, which include 20, 25, 30, 35, 40, and 45 dB (S/N).
Fig. 1. Resultant FTIR Spectrum 1 after applying: (a) original spectrum 1, (b) noisy spectrum, (c) SG filter, (d) binomial filter, (e) CBSG, (f) CBT, (g) CBR

4.2. Quantitative Analysis
In this Section, we tabulate a quantitative evaluation of the smoothing results for Fig. 1(c) to 1(g), and 2(c) to 2(g). In this paper, we use S/N value as quantitative analysis. Higher value of S/N indicates better smoothing result. The S/N values obtained are tabulated in Table 2. The best results are bold.
From Table 2, the proposed CBR algorithm consistently outperforms the other algorithms by producing the highest results for both tested spectra. These results strongly support the qualitative findings in Section 4.1. In addition, the processing time for each algorithm is also recorded. As tabulated in Table 2, it can be observed that the processing time of the cascade form filters is almost twice as compared to that of the direct form filters. This is due to the spectra need to be processed by two filters (as in the cascade form filters) instead of one filter (as in the direct form filters).
This study further analyzes the capability of the proposed algorithms using 857 cervical cell FTIR spectra. These spectra are corrupted with white noise ranging from 20 to 45 dB of S/N. Using the aforementioned quantitative analysis, the average performance of all algorithms on the tested spectra is shown in Fig. 3. From the figure, it can be seen that the proposed algorithms provide a relatively higher value of S/N value which demonstrate their capability in reducing the noise effect of the cervical cell FTIR spectra. Overall, the CBR produces the best result as compared to others.

Table 2. Quantitative evaluations on smoothing selected spectra

<table>
<thead>
<tr>
<th>Spectrum Types</th>
<th>Smoothing Algorithms</th>
<th>S/N Values</th>
<th>Processing Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum 1</td>
<td>SG</td>
<td>20.93</td>
<td>4.765</td>
</tr>
<tr>
<td></td>
<td>Binomial</td>
<td>24.95</td>
<td>4.687</td>
</tr>
<tr>
<td></td>
<td>CBSG</td>
<td>26.10</td>
<td>9.026</td>
</tr>
<tr>
<td></td>
<td>CBT</td>
<td>29.45</td>
<td>8.846</td>
</tr>
<tr>
<td></td>
<td>CBR</td>
<td>32.03</td>
<td>8.900</td>
</tr>
<tr>
<td>Spectrum 2</td>
<td>SG</td>
<td>51.02</td>
<td>4.428</td>
</tr>
<tr>
<td></td>
<td>Binomial</td>
<td>53.53</td>
<td>4.352</td>
</tr>
<tr>
<td></td>
<td>CBSG</td>
<td>53.53</td>
<td>8.926</td>
</tr>
<tr>
<td></td>
<td>CBT</td>
<td>58.74</td>
<td>8.708</td>
</tr>
<tr>
<td></td>
<td>CBR</td>
<td>63.34</td>
<td>8.939</td>
</tr>
</tbody>
</table>

This study is supported by Universiti Sains Malaysia Research University (RU) grant entitled “Study on capability of Fourier Transform Infrared (FTIR) spectral characteristics for development of intelligent cervical precancerous diagnostic systems”.

7. Acknowledgement

This study is supported by Universiti Sains Malaysia Research University (RU) grant entitled “Study on capability of Fourier Transform Infrared (FTIR) spectral characteristics for development of intelligent cervical precancerous diagnostic systems”.

8. References