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1. INTRODUCTION 
Time delay has been a common phenomenon to overcome whenever it is 

closed to a feedback loop for the purpose of controlling any system. Recent increase 

of control applications in variety gives more importance to systematic methods to 

cope with time delay (Yamanaka, 2003). 

Levine states that transportation and measurement lags, analysis times, 

computation and communication lags all introduce time delays or dead times into 

control loops. Dead times are also inherent in distributed parameter systems and 

frequently are used to compensate for model reduction where high-order systems are 

represented by low-order models with delays. The presence of dead times in the 

control loops have two major consequences:  

1. It greatly complicates the analysis and the design of feedback controllers 

for such systems.  

2. It makes satisfactory control more difficult to achieve.     

There are numerous of systems, which have dead time, in the industrial 

processes. It is really hard to control the systems which have dead time. There are 

several introduced ways to control these systems such as Internal Model Control, 

Smith Prediction, Predictive Control. Because of its simple structure, convenient 

parameters tuning and its strong robustness, IMC is many experts’ favorite in recent 

years. However, there are not only stable processes with dead time, but also there are 

unstable processes with dead time. And this kind of unstable process with dead time 

is very difficult to control (Jin, Sun, Liu, Zhang, 2004).  

Proportional-integral-derivative (PID) controllers are still widely used in 

industrial systems despite the significant developments of recent years in control 

theory and technology. This is because they perform well for a wide class of 

processes.Also, they give robust performance for a wide range of operating 

conditions. Furthermore, they are easy to implement using analogue or digital 

hardware and familiar to engineers (Kaya, 2004). 

However, plants with long time-delays can often not be controlled effectively 

using a simple PID controller. The main reason for this is that the additional phase 

lagcontributed by the time-delay tends to destabilise the closed-loop system. The 

stability problem can be solved by decreasing the controller gain. However, in this 

case the response obtained is very sluggish (Kaya, 2004). 
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A control system design is expected to provide a fast and accurate set-point 

tracking, that is, the output of the system should follow the input signal as close as 

possible. Also, any external disturbances must be corrected by the control system as 

efficiently as possible. The first requirement can be achieved by an open loop control 

system. With an open loop control scheme, the stability of the system is guaranteed 

provided that both the plant and controller transfer functions are stable. Also, the 

design of the controller in an open loop control scheme may simply be chosen as 

GC(s) = )(1 sG − , where Gc(s) and G(s) are respectively the controller and plant 

transfer functions. The drawback of an open loop control system is the sensitivity to 

modelling errors and inability to deal with external disturbances entering the system. 

In this case, a closed-loop system can be used to deal with disturbances and 

modelling errors (Kaya, 2004).  

There are several solutions for overcoming with dead time like Smith 

Predictor, Internal Model Control. When being emphasized to these subjects, the 

main ideas of these rules are same. Moreover, the basic idea of Smith Predictor 

depends on the Internal Model Control. In the internal model control, the model of 

the process is an internal part of the controller. Thus, the application of internal 

model control is easy than the other control schemes that can be designed for the 

control of dead time dominant systems. In this homework, the internal model control 

will be analyzed and then an application of the internal model control with PLC will 

be introduced.  

In the second chapter, the basic principles of internal model control will be 

introduced. And then the IMC based PID controller will be emphasized. By this way, 

finding of the PID constants from the internal model control principle will be 

introduced.  

In the third chapter, initially the Flapper Position Control system will be 

introduced. And then the application of the IMC based PID control will be 

introduced. Moreover, the fuzzy algorithm application on the system for finding the 

filter constant in the internal model control will be analyzed. The application of the 

both fuzzy algorithm application and IMC based PID control application was applied 

to the system with PLC. Finally, the results of the applications will be discussed.          

 In the fourth chapter, the results of the applications to the real system will be 

discussed.  
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2. INTERNAL MODEL CONTROL (IMC) 
 

2.1 Time-Delay Systems 
For all physical systems there will be a duration of time, possibly very short, 

between the application of stimulus, and the detection of the corresponding response. 

In some process plants the duration of the delay between stimulus and onset of 

response may be minutes, or even longer (Gorecki and Korytowski, 1992). 

Gorecki and Korytowski state that a pure time delay, an essential element in the 

modeling and description of these systems, has the property that input and output are 

identical in form, the only difference being that of translation along the time axis. 

The stimulus x(t) results in a response y(t) equal to x(t-h) where h is the delay. In 

many complex systems there will be more than one delay, and these delays may be, 

for example, in measurement at an output, in control at an input or in a feedback 

path.  

According to Gorecki and Korytowski, the solution of the delay differential 

equation can be given such as the following: 

   )()()( tHhtyty +−−=&    (2.1.1) 

It is assumed that this equation describes a system quiescent at t<0, the only 

stimulus being the step H (t) applied at t = 0. h is the time delay. The following 

figure shows a system to which equation (1.1) applies.  

 

( )∫
t

dt
0

.

 
Figure 2.1.1 

* If t = h, the derivative term is unaffected by the output so that the following 

equation is obtained: 

)()( tHty =&     (2.1.2) 

If this differential equation is solved, it is obvious that the following solution 

is obtained:   

)()( ttHty =     (2.1.3) 
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* When h < t < 2h, the following differential equation is obtained:  

)()()()( htHhttHty −−−=&    (2.1.4) 

If this differential equation is solved, the following solution is obtained:  

)()(
2
1)()( 2 htHhtttHty −−−=   (2.1.5) 

Many differential equations can be found for the other intervals. If all these 

differential equations are solved correctly, a general rule can be obtained such as the 

following:  

...)()(
)!1(

)1(...)2()2(
6
1)()(

2
1)()( 132 +−−

+
−

++−−+−−−= + rhtHrht
r

htHhthtHhtttHty r
r

          (2.1.6) 

This method is described as ‘the method of steps’, extends in a natural way to 

higher-order systems, the only additional difficulties arising from the initial 

conditions on the differential coefficients at the start of each step (Gorecki and 

Korytowski, 1992). 

The solution of the differential equation can be obtained by using the Laplace 

transform more quickly (Gorecki and Korytowski, 1992). 

The transfer function of the delay time, h, is written as e-sh. A general delay theorem 

can be written in the Laplace transform such as the following: 

{ } shesXL −= )(h)-h)H(t-x(t and { })()()( tHtxLsX =  (2.1.7) 

If the Laplace transform is applied to the equation (2.1.7), the following 

solution is obtained: 

s
sYessY sh 1)()( =+ −    (2.1.8) 

Y(s) can be obtained from this equation such as the following equation:  

[ ]
s

essY sh 1)( =+ −    (2.1.9) 
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The expansion of this equation can be given as: 
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By taking the inverse Laplace transformation of Y(s), the following equation 

is obtained: 
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   (2.1.12) 

 

Time delay occurs in control systems when there is a delay between the 

commanded response and the start of the output response. (Nise, 2004) 

General structure of time delay systems 

R +

-
Time DelayP0(s)C(s) Y

P(s)

 

 

 

2.2 Principles of Internal Model Control (IMC) 
Internal Model Control is one of the ways of controlling the dead time 

systems. Comparing with the other control structures that are used to control the dead 

time systems, it is obvious that the structure of internal model control is simpler than 

the other control structures.  

The internal model principle is a general method for design of control 

systems that can be applied to PID control (Äström, Hägglund, 1995). 

Figure 2.1.2: General Structure of Time Delay systems 

 

Time delay is demonstrated as e-sh. 

Controlling the time delay systems is really hard and complex. Pole 

assignment is not a good solution for the time delay systems. There are different ways 

to control time delay systems. 
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Figure 2.2.1: Classical Feedback Structure 

)(~ sP

 
Figure 2.2.2: Internal Model Control Feedback Structure 

In the model P~  indicates the model of the true process. And q symbolizes the 

IMC controller. 

Internal Model Control (IMC) is a control structure which consists of the 

process model as an internal part of the controller (Rivera, 1999). 

In the first graph, it is shown that a classical feedback structure. The IMC 

Feedback structure can be derived by manipulating the classical feedback structure.   

P(s)C(s)+
-

R(s) Y(s)

d

Figure 2.2.3: Classical Feedback Structure 
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The true model of the process ( P~ ) can be added between the controller (q(s)) 

and the system (P(s)) as it is shown in the following figure. If it is added by this way, 

there is no difference between the system above and the system below.  

)(~ sP )(~ sP

Figure 2.2.4 

 

This graph can be configured again. So, if the model of the process is added as a 

negative feedback to the classical feedback controller as it is seen at the following 

graph, there won’t be any differences between this graph and the previous one. 

Moreover, the other system model can be added as a negative feedback to the system 

model as it is seen at the following graph without changing any structure.  

P(s)C(s)+
-

R(s) Y(s)

)(~ sP )(~ sP

-

-

d

+

  

A new controller, q(s), can be formed instead of C(s) with its negative 

feedback P~ . So, the following model can be derived: 

Figure 2.2.5 
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)(~ sP

Figure 2.2.6: Internal Model Control Feedback Structure 

 

According to Rivera, the IMC structure has some advantages with respect to 

the classical feedback structure: 

• For the classical feedback structure, we need to solve the characteristic 

polynomial of the closed loop system to find the roots of the polynomial. 

But, in the IMC structure we may only search the poles of q.  

• It may be searched for the q instead of C(s) without any loss of generality. 

2.3 IMC Structure 
 

)(~ sP

 
Figure 2.3.1: Internal Model Control Feedback Structure 

At the above model, P(s) demonstrates the process model, )(~ sP demonstrates 

the model of the true process and the q demonstrates the IMC controller. The 

equation for the output function can be obtained as following equation: 

 

d
sPsPq

qsPsR
sPsPq

qsPsY
))(~)((1

)(~1)(
))(~)((1

)()(
−+

−
+

−+
=  (2.3.1) 



 9

For making similar this equation, the following equations can be written:  
 

η (s) = 
))(~)((1

)(
sPsPq

qsP
−+

           ε (s) = 
))(~)((1

)(~1
sPsPq

qsP
−+

−  (2.3.2)  

 
 
can be written. By the way, it is obvious that there is a relation between the function 

of η (s) and the function of )(sε such as: 

)(1)( ss ηε −=    (2.3.4) 

So, the output function can be rewritten such as  

)()()()()( sdssRssY εη +=    (2.3.5) 

• If the process model is not equal to the true process model, the closed 

loop transfer function cannot be simplified anymore. Than the IMC control 

structure cannot be simpler than the classical control feedback structure. 

(Levine, ) 

• If the process model is equal to the true process model (P(s) = )(~ sP ), the 

closed loop transfer function can be simplified. (Levine, ) By this way Y(s)  

simplifies to  
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=  (2.3.6)      

 
If the output function is rewritten again, the equation  

)())(~1()()(~)( sdqsPsqRsPsY −+=   (2.3.7) 

is derived. Consequently, error function, control signal function can be calculated as 

below:  

)())(~1()())(~1()( sdqsPsRqsPse −−−=   (2.3.8) 

)()()( sqdsqRsu −=    (2.3.9) 

 

In order to result in physically realizable manipulated variable responses, the 

IMC controller (q) must satisfy the following criteria (Rivera, 1999): 

- Stability: In order to generate bounded responses to bounded inputs, all poles 

of the IMC controller (q) must situate in the open Left – Half S Plane. 
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- Properness: In order to avoid pure differentiation signals, q(s) must be 

proper. So, 

                            )(lim sqs ∞→    must be finite.  

- Causality: q(s) must be causal. Q(s) mustn’t require any prediction for to be 

causal. 

 

2.4 Internal Model Control Design Procedure 
There are two main steps for designing IMC. The first step will satisfy that 

the internal model controller’s stability and causality, the second step will require the 

internal model controller’s properness. 

Step 1:  Factor of the model of the true process ))(~( sP can be written into two 

parts such as 

     )(~)(~)(~ sPsPsP −+=    (2.4.1) 

In that equation, )(~ sP+ contains all Right Half S Plane zeros and poles, which 

are all “Nonminimum Phase Elements” in the model of the process. On the other 

hand, )(~ sP−  is “Minimum Phase”.  Therefore, the IMC Controller which is defined 

as )(~)(~ 1 sPsq −
−= is stable and causal. )(~ sq  doesn’t contain any time delays and right 

half s plane zeros.  

Step 2: In order to improve the IMC controller, a filter can be added to the 

controller. Finally, 

)()(~)( sfsqsq =    (2.4.2) 

is obtained for the IMC controller..  

Now, q(s) is stable, causal and proper.  

 A common filter such as  

( )ns
sf

1
1)(
+

=
λ

(low band pass filter)  (2.4.3) 

 is chosen (Rivera, 1999). 

The filter order can be selected large enough to make q proper. λ , which is 

an flexible parameter, determines the speed of response. If λ increases, the speed 

response of the control system becomes slower. On the other hand, if λ decreases, 

the speed response of the control systems becomes faster. More over, λ affects the 
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robustness of the control system. The higher values of theλ , the higher robustness 

are got for the system (Rivera, 1999). 

)(~ sP

 
Figure 2.4.1: Internal Model Control Feedback Structure 

The equivalent standard feedback control system is obtained by using the 

transformation of  

)()(~1
)()(

sqsP
sqsC

−
=    (2.4.4) 

This equation also can be proved by block diagram manipulation. At the 

block diagram, it is shown that the IMC structure. The equation of classical 

controller can be obtained by manipulating the block diagrams step by step. 

)(~ sP

 
Figure 2.4.2: Internal Model Control Feedback Structure 

As it is seen from the block diagram above, the model of the true process 

( )(~ sP ) is connected to unit feedback by negatively. And its input is the control 

signal. Hence, )(~ sP can be reconnected as it is shown as the block diagram below.  



 12

P(s)q(s)+
-

R(s) Y(s)

)(~ sP

-

d

-
+

u(s)
+ +

2.5 The IMC Based PID Controllers 

The following steps are used for designing IMC based PID controllers. 

1. First of all, the IMC controller transfer function must be defined. As it is 

stated above, the IMC controller, q(s), must include a filter f(s) for making q(s) semi 

proper or giving it derivative action (order of the numerator of q(s) is one order 

greater that the denominator of q(s)) (Bequette, 1994). Thus, q(s) can be written as 

“ )()(~)( sfsqsq = ”and it can be written “ )(~)(~ 1 sPsq −
−= ” for )(~ sq . 

 

2. The equivalent standard feedback controller transformation must be found 

by using the transformation of  

     
)()(~1

)()(
sqsP

sqsC
−

=    (2.5.1) 

3. The equation C(s) can be shown in a PID form. Thereby, the PID constants 

Kc, Ti, TD can be found. General equation for IMC based PID can be obtained by  

 

⎥⎦
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⎡ ++
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1
11
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ssT
sTsTT
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i
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c λ

 (2.5.2) 

 In this equation ⎥⎦
⎤

⎢⎣
⎡

+1
1

sλ
 demonstrates the transfer function of low pass 

filter. 

4. After finishing all these steps, the closed loop simulations must be 

performed to obtain an efficient controller. The filter constant λ is chosen according 

to performance (speed of the system result) and robustness.   

 

Figure 2.4.3 
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Example 1:  

For this example, the following first order delay free process is considered:  

1
)(~

+
=

sT
KsP

P

P is given as a model of a process.  

For finding the PID equivalent to IMC, the steps, expressed below, should be 

followed.  

Step 1:  The IMC controller transfer function, q(s), must be found. As it is 

stated above, q(s) can be found by the formulation of  

)()(~)()(~)( 1 sfsPsfsqsq −
−==   (2.5.2-1.1) 

Therefore, q(s) is obtained such as:  

1
11)(
+

+
=

sK
sTsq

P

P

λ
   =   

1
11

+
+

s
sT

K
P

P λ
  (2.5.2-1.2) 

Step 2: The equivalent standard feedback controller must be found by the 

transformation of C(s). 

)()(~1
)()(

sqsP
sqsC

−
=    (2.5.2-1.3) 

Equivalency of this formula is stated as the transformation of classical 

feedback controller with respect to IMC. C(s) can be obtained as  

 

1
11

1
1

1
11

)(

+
+

+
−

+
+

=

s
sT

KsT
K

s
sT

K
sC

P

PP

P

P

P

λ

λ   (2.5.2-1.4) 

 If it is made similar, 

( )

11

11

)(
−+

+
=

s

sT
KsC

P
P

λ
   =   

( )

s

sT
K P

P

λ

11
+

 (2.5.2-1.5) 

 

is obtained. 

Step 3: The general transfer function of PI controller can be written as  

sT
sTK

sC
i

ic )1(
)(1

+
=    (2.5.2-1.6) 

By rearranging the equation that is found at the Step 2, it is obtained that  
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( )

s

sT
K

T
TsC

P
P

P

P

λ

11

)(2

+
=   (2.5.2-1.7) 

 and by configuring it, C2 can be obtained like  
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+⎟⎟
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  (2.5.2-1.8) 

By equation of C1(s) and C2(s), the constants of the PID controller are found as  

     
λP

P
C K

TK =  and Pi TT =   (2.5.2-1.9) 

Example 2: 

For this example, the following first order dead time process is considered:  

1
)(~

+
=

−

sT
eK

sP
p

s
p

θ

 

For finding the PID equivalent to IMC, the steps, expressed below, should be 

followed. 

 

Step 1: There is a dead time in the system. A first-order Pade’ approximation 

can be used for dead time. (Riviera, 1994) 

( ) ⎟
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  (2.5.2-2.1) 

 

Step 2: As it is stated above, )(~ sP can be separated as )(~ sP+  and )(~ sP− .  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++

=−
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2
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)(~

ssT

K
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⎠
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⎜
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)(~ ssP θ  (2.5.2-2.2) 

Step 3:  The transfer function of IMC controller must be defined. Before 

defining the IMC controller, q(s), )(~ sq must be defined. )(~ sq  can be defined as 

follows: 

( )

p

p

K

ssT
sPsq

⎟
⎠
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⎜
⎝
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2
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  (2.5.2-2.3) 
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Step 4: The IMC controller, q(s), should be proper. Thus, a filter must be 

added to make the q(s) proper. Otherwise, a PID controller will not result (Riviera, 

1994).  

( )
1

1
1

2
1

)()(~)()(~)( 1

+

⎟
⎠
⎞

⎜
⎝
⎛ ++

=== −
− sK

ssT
sfsPsfsqsq

p

p

λ

θ

 (2.5.2-2.4) 

Now, the PID equivalent of the controller can be found. The classical 

feedback controller has been found at the above such as:  
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)()(~)(~)(~1
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=   (2.5.2-2.6) 
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 (2.5.2-2.7) 

For obtaining a PID equivalent to this controller, the numerator of the 

controller, C(s), should be expanded such as:  
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          (2.5.2-2.8) 

 

The PID controller transfer function can be demonstrated as:  

⎥
⎦

⎤
⎢
⎣

⎡ ++
=

sT
sTsTT

KsC
I

IID
C

1
)(

2

  (2.5.2-2.9) 
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The denominator and the numerator of the system should be multiplied 

by
⎟
⎠
⎞

⎜
⎝
⎛ +
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T
, because of finding a PID equivalent of the system. It is obvious that, 

there won’t be any changes when the system multiplied by
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. So, the 

following equation is obtained:  
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  (2.5.2-2.10) 

 

PID constants can be found easily from this equation such as the following 

constants: 

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

=

2

21
θλ

θ
p

P
C

T

K
K              

2
θ

+= pI TT                
θ

θ
+

=
p

p
D T

T
T

2
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2.6 PID Tuning Parameters for Open-Loop Stable Processes  

 

 )(~ sP  )()(~ sqsP  CK  IT  DT  FT  

A 
1+sT

K

p

P  
1

1
+sλ

 
λP

p

K
T

 pT  - - 

B 
( )( )11 21 ++ sTsT

K P  
1

1
+sλ

 
λPK
TT 21 +  21 TT +  

21

21

TT
TT
+

 - 

C 
1222 ++ TssT

K P

ζ
 

1
1
+sλ

 
λ

ζ

PK
T2  Tζ2  

ζ2
T  - 

D ( )
12

1
22 ++

+−
TssT

sK P

ζ
β  ( )

( )( )11
1
++

+−
ss

s
λβ

β
( )λβ
ζ
+2

2

PK
T

Tζ2  
ζ2
T  

λβ
βλ
+2

E       

F 
s

K p  
1

1
+sλ

 
λPK

1  - - - 

G 
( )1+sTs

K

p

P  
1

1
+sλ

 
λPK

1  - pT  - 

 

Table 2.6.1: PID Tuning Parameters for Open-Loop Stable Processes 

 

In D and E it is assumed that 0>β , that is, the process has inverse response 

characteristics (right-half-plane zeros) (Riviera, 1994). 

The controller for D is PID + lag, that is  

 

⎥
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IDI
C  (Riviera, 1994) (2.6.1) 
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2.7 PID Tuning Parameters for First-Order + Time Delay Processes  

Controller CK  IT  DT  FT  Notes  

PID 

( )λθ

θ

+

+

P

p

K

T
2  2

θ
+pT  

θ
θ
+p

p

T
T

2
 ( )λθ

θλ
+2

 (1) 

PID 

⎟
⎠
⎞

⎜
⎝
⎛ +

+

2

2
θλ

θ

P

p

K

T
 

2
θ

+pT  
θ

θ
+p

p

T
T

2
 - (2) 

PI 
λP

p

K
T

 pT  - - (3) 

Improved 

PI 
λ

θ

P

p

K

T
2

+
 2

θ
+pT  - - (4) 

 

Table 2.7.1: PID Tuning Parameters for First-Order + Time Delay Processes 

 

(1) With an “all-pass” factorization. Recommended θλ 25.0>  

(2) Without an “all-pass” factorization. Recommended θλ 8.0>  

(3) With zero-order Pade’ approximation )0( =− se θ . Recommended 

θλ 7.1>  

(4) With the approximation 
1

2
1 +⎟

⎠
⎞

⎜
⎝
⎛ +

=
+

−

sT

K
sT
eK

p

P

p

s
P

θ

θ

 . Recommended 

θλ 7.1>   
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3. APPLICATION OF INTERNAL MODEL CONTROL ON FLAPPER 
POSITION CONTROL SYSTEM 
 

3.1 The Flapper Position Control System 
In the Flapper Position Control System, the aim is to control the angle of the 

flapper with a fan which is run by an asynchronous motor.  

The asynchronous motor is run by the asynchronous motor driver of Siemens 

Sinamics G110. The frequency of the voltage, which is applied to the asynchronous 

motor, is calibrated proportional by the driver according to the voltage, which is 

applied to the analogous input of the driver. The analogous input calibrates the 

frequency of the voltage, applied to the asynchronous motor, from 0 Hz to 50 Hz 

with a 0 – 10 V voltage signal.  

 

 
 

 
Figure 3.1.1: General Structure of Flapper Position Control System 

 

The angle of the flapper is measured by a potentiometer which is attached to 

the rotation axis of the flapper. Consequently, the flapper control system is a single 

Driver 

Blower 

Potentiometer  

Flapper 

Flapper 

Potentiometer  
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input–single output system (SISO), which has input with a 0 – 10 V voltage, and has 

an output that is a voltage, measured by potentiometer.  

The negative control signal cannot be applied to the system. The interval of 

the control signal is between 0V and 10V. Furthermore, if the angle between the 

flapper and vertical axis is 0, the angle actually is not zero. Thus, there is a slipped 

measurement at the potentiometer.  

The flapper position control system is controlled by a Siemens S7 300 PLC. 

Thereby, an input signal with the interval of 0V – 10V can be applied to the system 

by the analogue module of this PLC. Moreover, the output information can be 

obtained as voltage information.  

For generating the voltage between the intervals of 0V – 10V from the PLC’s 

analogue module, the integer values between 0 and 27648 must be written to the 

memory of the PLC’s analogue module. If +27648 is written to the memory of the 

analogue module, it generates +10V output voltage. There is a proportion like that 

between the integer values and the output voltages.  

The minimum value of the data that is read from the system output is 13500, 

and the maximum value of the data that is read from the system output is 18500. The 

value of 13500 indicates that the angle between the flapper and the vertical axis is o0 . 

Briefly, the output of the system can be controlled between the values 13500 and 

18500. The error signal is equals to the subtraction of output signal and the reference 

signal. So, if the reference signal is given to the system between the values of 13500 

and 18500, the system can be controlled.  

 

3.2 The Modeling of the Flapper Position Control System 
There are different ways to model the dynamical systems. But first of all, the 

step responses of the systems are obtained before the modeling. Then, the way of the 

modeling can be decided.  

For the modeling of the flapper control system, the step responses for the 

different frequencies must be obtained. Because, having the response for only one 

reference cannot be beneficial for modeling the systems.  

The systems in the industrial processes are usually nonlinear dynamical 

systems. For determining the linearity of the systems, the step responses in the 

different frequencies can be applied to the systems. Therefore, before the modeling 
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the flapper control system, the step responses according to the different frequencies 

are obtained to determine the system’s linearity.  

The step responses of the flapper control systems for the 10 Hz, 15 Hz, 20 

Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, 45 Hz and 50 Hz was obtained by applying input 

signals in these values. After applying inputs in these frequencies, the output signals 

were collected and the responses of the system drew by Matlab such as below:  
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Figure 3.2.1: Responses of the Flapper Position Control system in Different 

Frequencies  

 

In this  graph, the graphics indicate the step responses of the frequencies of 10 

Hz, 15 Hz, 20 Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, 45 Hz and 50 Hz from up to down 

respectfully.  

It is obvious that, the flapper position control system is a non-linear system, 

because the system behaves different for all the frequencies.  

Non-linearity creates problems when modeling the systems. Moreover, it is 

really hard to control non-linear systems, because they don’t have an exact model for 

all frequencies. But, when the step responses of the flapper position control are 

analyzed, the system is not strictly a nonlinear system. The step responses for the 

frequencies of 35 Hz, 25 Hz and 15 Hz are identical. Thus, the system can be thought 

as a linear system in these frequencies. Furthermore, the model of the system in these 

frequencies can be accepted as the general model of the system.  

50 Hz 
45 Hz 

40 Hz 
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3.2.1 Modeling of the Flapper Control System in 50 Hz  

For modeling the flapper control system in 50 Hz, the step response must be 

obtained initially. 50 Hz equals to 32000 as integer value data. Thus, the 32000 

integer value was applied as the input signal to the system. But the driver of the 

system dont let to apply 32000 to the system. So, 27648 was applied when the 32000 

was tried to applied to the system. For higher integer values than 27648, the system 

model don’t change.  As a result, the following step response was obtained:  
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Figure 3.2.1.1: The Response of the System in 50 Hz 

 

The system has a dead time that equals to 0.5 s. 

For modeling a system from a step response, the steady state value (yss), the 

peak value (yp), natural frequency ( nω ), damping ratio are all needed. All these 

values can be found and calculated from the step response.  

A general transfer function for a second order system can be written with a 

dead time as the following: 
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nn

n e
ss

K
sP −

++
= 22

2

2
)(

ωζω
ω

   (3.2.1.1) 

In this equation, K demonstrates the ‘Gain’, nω demonstrates the ‘Natural 

Frequency’ andζ  demonstrates the damping ratio, h demonstrated the ‘Dead Time’ 

of the system.  
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According to the step response of the system in 50 Hz frequency, the peak 

value (yp) of the step response is 7418. Moreover the steady state value (yss) is 6088. 

But all these value are not normalized values. Therefore, it is not true to model the 

system with these data. So, all these values must be normalized. 

For normalizing these values, all these values must be divided by 32000, because 

these values were obtained by sending 32000 integer value data. Thus, the peak value 

and the steady state value of the system are obtained such as the following: 

2318125.032000/7418 ==py   (3.2.1.2) 

19025.032000/6088 ==ssy   (3.2.1.3) 

The steady state value also equals to the gain of the system. So, the gain (K) 

of the system in 50 Hz is 0.19025.  

For finding nω  and ζ  the overshoot must be calculated. The overshoot can 

be calculated such as the following equations:  

100% ×
−

=
ss

ssp

y
yy

Overshoot   (3.2.1.4) 

100
19025.0

19025.02318125.0% ×
−

=Overshoot   (3.2.1.5) 

     %21.8462549   Overshoot% =    (3.2.1.6) 

 

The damp ratio (ζ ) can be calculated from the overshoot such as the 

following equations:  

)(ln
)ln(

22 Overshoot
Overshoot

+

−
=

π
ζ    (3.2.1.7) 

 

( ) )218462549.0(ln14.3

)218462549.0ln(
22 +

−
=ζ   (3.2.1.8)

  

435796584.0=ζ    (3.2.1.9) 

After finding the damp ratio, the natural frequency is needed to complete the 

transfer function of the flapper position control system. Natural frequency can be 

found from the settling time. The formula for the settling time can be given for the 2 

% band such as the equation of (3.2.1.10). 
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n
sT

ζω
4

=    (3.2.1.10) 

The settling time of the system can be read from the step response of the 

system in 50 Hz frequency.  
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Figure 3.2.1.2: Settling time of the System in 50 Hz 

 

According to the step response of the system in 50 Hz, the settling time of the 

system is 1.82 s. So, from the equation (3.2.1.10), nω  can be calculated such as the 

following:  

s
n Tζ

ω 4
=     (3.2.1.11) 

82.1435796584.0
4

•
=nω    (3.2.1.12) 

 

043183929.5=nω    (3.2.1.13) 

All the values that are needed to model a system are found. So, the transfer 

function of the system can be written according to the equation (3.2.1.14). 
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   (3.2.1.14) 
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By the way, the model of the flapper position control system for 50 Hz is 

given below: 

se
ss

sP 5.0
2 43370414.25395604657.4

838762213.4)( −

++
=  (3.2.1.15) 

 

The simulation of the system in Simulink can be shown as below: 

 
Figure 3.2.1.3: The Simulation Model of the system in 50 Hz 

 

The response of this model can be shown as below:  

 

 
Figure 3.2.1.4: The Response of the Simulation Model in 50 Hz 

 

3.2.2 Modeling of the Flapper Control System in 35 Hz  

For modeling the flapper control system in 35 Hz, the step response must be 

obtained initially. 35 Hz equals to 22400 as integer value data. Thus, the 22400 

integer value was applied as the input signal to the system. As a result, the following 

step response was obtained:  
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Figure 3.2.2.1: The Response of the System in 35 Hz 

 

The system has a dead time that equals to 0.5 s. 

For modeling a system from a step response, the steady state value (yss), the 

peak value (yp), natural frequency ( nω ), damping ratio are all needed. All these 

values can be found and calculated from the step response.  

A general transfer function for a second order system with a dead time can be 

written as the following: 
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ss
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= 22
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ωζω
ω

   (3.2.2.1) 

In this equation, K demonstrates the ‘Gain’, nω demonstrates the ‘Natural 

Frequency’ andζ  demonstrates the damping ratio, h demonstrates the ‘Dead Time’ 

of the system.  

According to the step response of the system in 35 Hz frequency, the peak 

value (yp) of the step response is 5396. Moreover the steady state value (yss) is3847. 

But all these value are not normalized values. Therefore, it is not true to model the 

system with these data. So, all these values must be normalized. 

For normalizing these values, all these values must be divided by 22400, 

because these values were obtained by sending 22400 integer value data. Thus, the 

peak value and the steady state value of the system are obtained such as the 

following: 
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240892857.022400/5396 ==py   (3.2.2.2) 

171741071.022400/3847 ==ssy   (3.2.2.3) 

The steady state value also equals to the gain of the system. So, the gain (K) 

of the system in 35 Hz is 0.171741071.  

For finding nω  and ζ  the overshoot must be calculated. The overshoot can 

be calculated such as the following equations:  

100% ×
−

=
ss

ssp

y
yy

Overshoot   (3.2.2.4) 

 

100
171741071.0

171741071.0240892857.0% ×
−

=Overshoot  (3.2.2.5) 

 

     %40.2651416  Overshoot% =    (3.2.2.6) 

 

The damp ratio (ζ ) can be calculated from the overshoot such as the 

following equations:  

)(ln
)ln(

22 Overshoot
Overshoot

+

−
=

π
ζ    (3.2.2.7) 

 

( ) )402651416.0(ln14.3

)402651416.0ln(
22 +

−
=ζ   (3.2.2.8) 

 

278135843.0=ζ    (3.2.2.9) 

 

After finding the damp ratio, the natural frequency is needed to complete the 

transfer function of the flapper position control system. Natural frequency can be 

found from the settling time. The formula for the settling time can be given for the 2 

% band such as the following equation:  

n
sT

ζω
4

=    (3.2.2.10) 

The settling time of the system can be read from the step response of the 

system in 35 Hz frequency.  
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Figure 3.2.2.2: The Settling Time of the System in 35 Hz 

 

According to the step response of the system in 35 Hz, the settling time of the 

system is 1.88 s. So, from the equation (3.2.2.10), nω  can be calculated such as the 

following:  

s
n Tζ

ω 4
=     (3.2.2.11) 

88.1278135843.0
4

•
=nω   (3.2.2.12) 

 

649713721.7=nω    (3.2.2.13)

  

All the values that are needed to model a system are found. So, the transfer 

function of the system can be written according to the equation (3.2.2.14) 
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   (3.2.2.14) 

By the way, the model of the flapper position control for system is given 

below: 

se
ss

sP 5.0
2 51812001.58255319149.4

0499646.10)( −

++
=  (3.2.2.15) 
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The simulation of the system in Simulink can be shown as below: 

 
Figure 3.2.2.3: The Simulation Model of the System in 35 Hz 

 

The response of this model can be shown as below: 

 

 
Figure 3.2.2.4: The Response of the Simulation Model in 35 Hz 

 

3.2.3 Modeling of the Flapper Control System in 25 Hz  

For modeling the flapper control system in 25 Hz, the step response must be 

obtained initially. 25 Hz equals to 16000 as integer value data. Thus, the 16000 

integer value was applied as the input signal to the system. As a result, the following 

step response was obtained:  
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Figure 3.2.3.1: The Response of the System in 25 Hz 

 

The system has a dead time that equals to 0.5s 

For modeling a system from a step response, the steady state value (yss), the 

peak value (yp), natural frequency ( nω ), damping ratio are all needed. All these 

values can be found and calculated from the step response.  

A general transfer function for a second order system with a dead time can be 

written as the following: 
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   (3.2.3.1) 

In this equation, K demonstrates the ‘Gain’, nω demonstrates the ‘Natural 

Frequency’ andζ  demonstrates the damping ratio, h demonstrates the ‘Dead 

Time’ of the system.  

According to the step response of the system in 25 Hz frequency, the peak 

value (yp) of the step response is 2991. Moreover the steady state value (yss) is 1936. 

But all these value are not normalized values. Therefore, it is not true to model the 

system with these data. So, all these values must be normalized. 

For normalizing these values, all these values must be divided by 16000, 

because these values were obtained by sending 16000 integer value data. Thus, the 

peak value and the steady state value of the system are obtained such as the 

following: 
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1869375.016000/2991 ==py   (3.2.3.2) 

121.016000/1936 ==ssy    (3.2.3.3) 

The steady state value also equals to the gain of the system. So, the gain (K) 

of the system in 25 Hz is 0.121.  

For finding nω  and ζ  the overshoot must be calculated. The overshoot can 

be calculated such as the following equations:  

100% ×
−

=
ss

ssp

y
yy

Overshoot   (3.2.3.4) 

 

100
121.0

121.01869375.0% ×
−

=Overshoot   (3.2.3.5) 

 

     5%54.4938016  Overshoot% =    (3.2.3.6) 

 

The damp ratio (ζ ) can be calculated from the overshoot such as the 

following equations:  

)(ln
)ln(

22 Overshoot
Overshoot

+

−
=

π
ζ    (3.2.3.7) 

 

( ) )5449380165.0(ln14.3

)5449380165.0ln(
22 +

−
=ζ   (3.2.3.8) 

 

189730605.0=ζ    (3.2.3.9) 

After finding the damp ratio, the natural frequency is needed to complete the 

transfer function of the flapper position control system. Natural frequency can be 

found from the settling time. The formula for the settling time can be given for the 2 

% band such as the following equation:  

n
sT

ζω
4

=    (3.2.3.10) 

The settling time of the system can be read from the step response of the 

system in 25 Hz frequency.  
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Figure 3.2.3.2: The Settling Time of the System in 25 Hz 

 

According to the step response of the system in 25 Hz, the settling time of the 

system is 2.21s. So, from the equation (3.2.3.10), nω  can be calculated such as the 

following:  

s
n Tζ

ω 4
=     (3.2.3.11) 

 

21.2189730605.0
4

•
=nω    (3.2.3.12) 

 

539603512.9=nω    (3.2.3.13) 

All the values that are needed to model a system are found. So, the transfer 

function of the system can be written according to the equation (3.2.3.14) 
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ω
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=    (3.2.3.14) 

By the way, the model of the flapper position control for system is given 

below: 

00403517.91619909492.3
01148825.11)( 2 ++

=
ss

sP   (3.2.3.15) 
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The simulation of the system in Simulink can be shown as below: 

 

 
Figure 3.2.3.3: The Simulation Model of the System in 25 Hz 

 

The response of this model can be shown as below: 

 
Figure 3.2.3.4: The response of the Simulation Model in 25 Hz 

 

3.2.4 Modeling of the Flapper Control System in 15 Hz  

For modeling the flapper control system in 15 Hz, the step response must be 

obtained initially. 15 Hz equals to 9600 as integer value data. Thus, the 9600 integer 

value was applied as the input signal to the system. As a result, the following step 

response was obtained:  
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Figure 3.2.4.1: The Response of the System in 15 Hz 

 

The system has a dead time that equals to 0.5s 

For modeling a system from a step response, the steady state value (yss), the 

peak value (yp), natural frequency ( nω ), damping ratio are all needed. All these 

values can be found and calculated from the step response.  

A general transfer function for a second order system with a dead time can be 

written as the following: 
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   (3.2.4.1) 

In this equation, K demonstrates the ‘Gain’, nω demonstrates the ‘Natural 

Frequency’ andζ  demonstrates the damping ratio, h demonstrates the ‘Dead Time’ 

of the system.  

According to the step response of the system in 15 Hz frequency, the peak 

value (yp) of the step response is 1107. Moreover the steady state value (yss) is 864. 

But all these value are not normalized values. Therefore, it is not true to model the 

system with these data. So, all these values must be normalized. 

For normalizing these values, all these values must be divided by 9600, 

because these values were obtained by sending 9600 integer value data. Thus, the 

peak value and the steady state value of the system are obtained such as the 

following: 
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1153125.09600/1107 ==py   (3.2.4.2) 

09.09600/864 ==ssy    (3.2.4.3) 

The steady state value also equals to the gain of the system. So, the gain (K) 

of the system in 15 Hz is 0.09.  

For finding nω  and ζ  the overshoot must be calculated. The overshoot can 

be calculated such as the following equations:  

100% ×
−

=
ss

ssp

y
yy

Overshoot   (3.2.4.4) 

 

100
09.0

09.01153125.0% ×
−

=Overshoot   (3.2.4.5) 

 

     28.125%  Overshoot% =     (3.2.4.6) 

 

The damp ratio (ζ ) can be calculated from the overshoot such as the 

following equations:  

)(ln
)ln(

22 Overshoot
Overshoot

+

−
=

π
ζ    (3.2.4.7) 

 

( ) )28125.0(ln14.3

)28125.0ln(
22 +

−
=ζ   (3.2.4.8) 

 

374410065.0=ζ    (3.2.4.9) 

After finding the damp ratio, the natural frequency is needed to complete the 

transfer function of the flapper position control system. Natural frequency can be 

found from the settling time. The formula for the settling time can be given for the 2 

% band such as equation of (3.2.4.10): 

n
sT

ζω
4

=    (3.2.4.10) 

The settling time of the system can be read from the step response of the 

system in 15 Hz frequency.  
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Figure 3.2.4.2: The Settling Time of the System in 15 Hz 

 

According to the step response of the system in 15 Hz, the settling time of the 

system is 1.59s. So, from the equation (3.2.4.10), nω  can be calculated such as the 

following:  

s
n Tζ

ω 4
=     (3.2.4.11) 

 

59.1374410065.0
4

•
=nω    (3.2.4.12) 

 

71916571.6=nω    (3.2.4.13) 

All the values that are needed to model a system are found. So, the transfer 

function of the system can be written according to the equation (3.2.4.14). 
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By the way, the model of the flapper position control for system is given 

below: 

se
ss

sP 5.0
2 14718784.4503144654.5

063246906.4)( −

++
=  (3.2.4.15) 
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The simulation of the system in Simulink can be shown as below: 

 
Figure 3.2.4.3: The Simulation Model of the System in 15 Hz 

 

The response of this model can be shown as below: 

 

 
Figure 3.2.4.4: The Response of the Simulation Model in 15 Hz 

 

3.2.5 Modeling of the Flapper Control System in 10 Hz  

For modeling the flapper control system in 10 Hz, the step response must be 

obtained initially. 10 Hz equals to 6400 as integer value data. Thus, the 6400 integer 

value was applied as the input signal to the system. As a result, the following step 

response was obtained:  
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Figure 3.2.5.1: The Response of the System in 10 Hz 

 

It is obvious that, the system behaves as a first order system when the 15 Hz 

input signal is applied. Therefore, the type of modeling is changed.  

A general transfer function for a first order system with a dead time can be 

written as the following: 

1
)(

+
=

s
KsP

τ
   (3.2.5.1) 

In this equation, K demonstrates the ‘Gain’, τ demonstrates the ‘Time 

Constant’ of the system. 

According to the step response of the system in 10 Hz frequency, the gain (K) 

of the system is 388. But this value is not normalized. Therefore, it is not true to 

model the system with these data. So, this value must be normalized. 

 Moreover the time constant (τ ) of the system is 244. The time constant 

equals to the value of time when system is at 63% of the step response.  For 

normalizing these values, all these values must be divided by 6400, because these 

values were obtained by sending 6400 integer value data. Thus, the gain of the 

system is obtained such as the following: 

060625.06400/388 ==K    (3.2.5.2) 

24438863.0 =•=τ     (3.2.5.3) 

According to the step response of the system in 10 Hz frequency, the system 

reaches to 244 at 0.9 s.  
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All the values that are needed to model a system are found. So, the transfer 

function of the system can be written according to the equation (3.2.5.4) 

hse
s
KsP −

+
=

1
)(

τ
   (3.2.5.4) 

By the way, the model of the flapper position control for system is given 

below: 

se
s

sP 5.0

19.0
060625.0)( −

+
=   (3.2.5.5) 

The simulation of the system in Simulink can be shown as below: 

 
Figure 3.2.5.2: The Simulation Model of the System in 10 Hz 

 

The response of this model can be shown as below: 

 

 
Figure 3.2.5.3: The Response of the Simulation Model in 10 Hz 

3.3 IMC Based PID Controller Design for the Flapper Position Control System 
The flapper position control system can be controlled with a PID controller. 

As it is told above, the constant of PID controller can be found by Internal Model 

Control procedure.  

Initially, the process model must be defined for designing the IMC based PID 

controller. In the flapper control system, the transfer function of the system and 
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model of the system are different. Because of not having the transfer function of the 

system, the transfer function of the system and the model of the system are accepted 

as equal. This creates the perfect matching situation. As it is written at the formula of 

(2.3.6) , if the perfect matching occurs, the output simplifies to: 

d
sPsPq

qsPsR
sPsPq

qsPsY
44344214434421

00

))(~)((1
)(~1)(

))(~)((1
)()(

−+
−

+
−+

=  (3.3.1) 

)())(~1()()(~)( sdqsPsqRsPsY −+=   (3.3.2) 

In this equations, )(~ sP demonstrates the model of the process, q demonstrates 

the IMC controller, R(s) demonstrates the reference signal and the d(s) demonstrates 

the disturbance signal.  

Moreover, as it is written in the equation (2.4.4) general feedback structure 

controller (C(s)) is calculated as: 

)()(~1
)()(

sqsP
sqsC

−
=    (3.3.3) 

As it is written in the equation….the IMC controller is calculated as in the 

following equations: 

)(~)(~ 1 sPsq −
−=     (3.3.4) 

)()(~)( sfsqsq =    (3.3.5) 

( )ns
sf

1
1)(
+

=
λ

(low band pass filter) (3.3.6) 

3.3.1 Designing of IMC Based PID Controller in 50 Hz Frequency for the 

Flapper Position Control System 

For designing IMC based PID controller for the system, the system model 

must be defined. The models have been already defined above. For the flapper 

control system, the transfer function of the system and the model of the system can 

be accepted equal. This situation makes easier to find constants of PID controller. 

The model of the system in 50 Hz frequency has been already found as: 

se
ss

sP 5.0
2 43370414.25395604657.4

838762213.4)(~ −

++
=   (3.3.1.1) 

The dead time in the transfer function can be written in the Taylor series such 

as the following equation: 

)1( hse hs −=−     (3.3.1.2) 
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          (3.3.1.3) 

By the way, e-0.5s is eliminated.  

The model of the system and the transfer function of the system are accepted 

perfectly matched. So, the transfer function of the system can be written as: 
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          (3.3.1.4) 

The IMC controller (q(s)) must be calculated to find the general feedback 

structure controller (C(s)). q(s) can be found as in the following equations: 

 

)(~)(~ 1 sPsq −
−=     (3.3.1.5) 
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2 ++
=− ss

P   (3.3.1.6) 

 

838762213.4
43370414.25395604657.4)(~

2 ++
=

sssq   (3.3.1.7) 

 

All the transfer functions for creating the general feedback structure 

controller is obtained now. So, the general feedback structure controller can for 

designing the IMC controller (q(s)), a low pass filter must be designed. For the 

flapper control system, the filter can be designed as below:  

( )ns
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   (3.3.1.8) 
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λ

    (3.3.1.9) 

The low pass filter can be chosen as a first order filter.  

The IMC Controller, q(s), can be written as: 
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be calculated as in the following equations:  
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This equation simplifies to:  
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This transfer function also equals a PID controller transfer function. To show 

the equality of it, writing the general PID controller transfer function may be 

beneficial. The general transfer function of a PID controller can be written such as in 

the following: 
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This equation can be formed as below: 
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So, a general PID controller transfer function can be also written as: 
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  (3.3.1.18) 

The general feedback structure controller transfer function of the system has 

already been found as: 
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Comparing with the transfer function of a PID controller, it is obvious that the 

transfer function of the general feedback structure controller also leads to a PID 

controller. By the way the PID controller constants can be found. So, The PID 

controller constant can be written as the followings:  
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 (3.3.1.22) 

 

For the flapper control system, the filter constant λ  can be chosen the same 

value as dead time. The following simulation was made when λ is 0.5. 
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Figure 3.3.1.1: The Simulation Model of IMC Based PID for the System in 50 Hz 

 

The result of the simulation: 

 

 
Figure 3.3.1.2: The Response of the Simulation Model of IMC Based PID for the 

System in 50 Hz 

 

3.3.2 Designing of IMC Based PID Controller in 35 Hz Frequency for the 

Flapper Position Control System 

For the flapper control system, the transfer function of the system and the 

model of the system can be accepted equal. This situation makes easier to find 

constants of PID controller. 
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The model of the system in 35 Hz frequency has been already found as: 

se
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2 51812001.58255319149.4
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++
=  (3.3.2.1) 

The dead time in the transfer function can be written in the Taylor series such 

as the following equation: 
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          (3.3.2.3) 

 

By the way, e-0.5s is eliminated.  

The model of the system and the transfer function of the system are accepted 

perfectly matched. So, the transfer function of the system can be written as: 
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          (3.3.2.4) 

The IMC controller (q(s)) must be calculated to find the general feedback 

structure controller (C(s)). q(s) can be found as in the following equations: 
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All the transfer functions for creating the general feedback structure 

controller is obtained now. So, the general feedback structure controller can for 

designing the IMC controller (q(s)), a low pass filter must be designed. For the 

flapper control system, the filter can be designed as below:  
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   (3.3.2.8) 

The low pass filter can be chosen as a first order filter.  
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The IMC Controller, q(s), can be written as: 
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be calculated as in the following equations:  
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This equation simplifies to:  
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The general transfer function of a PID controller can be written such as in the 

following: 
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The general feedback structure controller transfer function of the system has 

already been found as: 
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Comparing with the transfer function of a PID controller, it is obvious that the 

transfer function of the general feedback structure controller also leads to a PID 

controller. By the way the PID controller constants can be found. So, The PID 

controller constant can be written as the followings:  
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For the flapper control system, the filter constant λ  can be chosen the same 

value as dead time. The following simulation was made when λ is 0.5. 

 
Figure 3.3.2.1: The Simulation Model of IMC Based PID for the System in 35 Hz 

 

The result of simulation: 

 
Figure 3.3.2.2: The Response of the Simulation Model of IMC Based PID for the 

System in 35 Hz 

 

3.3.3 Designing of IMC Based PID Controller in 25 Hz Frequency for the 

Flapper Position Control System 

For the flapper control system, the transfer function of the system and the 

model of the system can be accepted equal. This situation makes easier to find 

constants of PID controller. 
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The model of the system in 25 Hz frequency has been already found as: 
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=  (3.3.3.1) 

The dead time in the transfer function can be written in the Taylor series such 

as the following equation: 
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          (3.3.3.3) 

By the way, e-0.5s is eliminated.  

The model of the system and the transfer function of the system are accepted 

perfectly matched. So, the transfer function of the system can be written as: 
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          (3.3.3.4) 

The IMC controller (q(s)) must be calculated to find the general feedback 

structure controller (C(s)). q(s) can be found as in the following equations: 
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00403517.91619909492.3
01148825.11~

2 ++
=− ss

P   (3.3.3.6) 

 

01148825.11
0403517.91619909492.3)(~

2 ++
=

sssq   (3.3.3.7) 

 

All the transfer functions for creating the general feedback structure 

controller is obtained now. So, the general feedback structure controller can for 

designing the IMC controller (q(s)), a low pass filter must be designed. For the 

flapper control system, the filter can be designed as below:  
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   (3.3.3.8) 

The low pass filter can be chosen as a first order filter.  

The IMC Controller, q(s), can be written as: 
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be calculated as in the following equations:   
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This equation simplifies to:  
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The general transfer function of a PID controller can be written such as in the 

following: 
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The general feedback structure controller transfer function of the system has 

already been found as: 
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Comparing with the transfer function of a PID controller, it is obvious that the 

transfer function of the general feedback structure controller also leads to a PID 

controller. By the way the PID controller constants can be found. So, The PID 

controller constant can be written as the followings:  
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For the flapper control system, the filter constant λ  can be chosen the same 

value as dead time. The following simulation was made when λ is 0.5. 

 
Figure 3.3.3.1: The Simulation Model of IMC Based PID for the System in 25 Hz 

The result of the simulation is 

 
Figure 3.3.3.2: The Response of the Simulation Model of IMC Based PID for the 

System in 25 Hz 

 

3.3.4 Designing of IMC Based PID Controller in 15 Hz Frequency for the 

Flapper Position Control System 

For the flapper control system, the transfer function of the system and the 

model of the system can be accepted equal. This situation makes easier to find 

constants of PID controller. 
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The model of the system in 15 Hz frequency has been already found as: 
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The dead time in the transfer function can be written in the Taylor series such 

as the following equation: 
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By the way, e-0.5s is eliminated.  

The model of the system and the transfer function of the system are accepted 

perfectly matched. So, the transfer function of the system can be written as: 
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The IMC controller (q(s)) must be calculated to find the general feedback 

structure controller (C(s)). q(s) can be found as in the following equations: 
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All the transfer functions for creating the general feedback structure 

controller is obtained now. So, the general feedback structure controller can for 

designing the IMC controller (q(s)), a low pass filter must be designed. For the 

flapper control system, the filter can be designed as below:  
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The low pass filter can be chosen as a first order filter.  

The IMC Controller, q(s), can be written as: 
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be calculated as in the following equations:  
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This equation simplifies to:  
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The general transfer function of a PID controller can be written such as in the 

following: 
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The general feedback structure controller transfer function of the system has 

already been found as: 
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Comparing with the transfer function of a PID controller, it is obvious that the 

transfer function of the general feedback structure controller also leads to a PID 

controller. By the way the PID controller constants can be found. So, The PID 

controller constant can be written as the followings:  
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For the flapper control system, the filter constant λ  can be chosen the same 

value as dead time. The following simulation was made when λ is 0.5. 

 
Figure 3.3.4.1: The Simulation Model of IMC Based PID for the System in 15 Hz 

 

The result of the simulation can be shown as below: 

 
Figure 3.3.4.2: The Response of the Simulation Model of IMC Based PID for the 

System in 15 Hz 

 

3.3.5 Designing of IMC Based PID Controller in 10 Hz Frequency for the 

Flapper Position Control System 

For the flapper control system, the transfer function of the system and the 

model of the system can be accepted equal. This situation makes easier to find 

constants of PID controller. 
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The model of the system in 10 Hz frequency has been already found as: 
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s
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+
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The dead time in the transfer function can be written in the Taylor series such 

as the following equation: 
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By the way, e-0.5s is eliminated.  

The model of the system and the transfer function of the system are accepted 

perfectly matched. So, the transfer function of the system can be written as: 
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The IMC controller (q(s)) must be calculated to find the general feedback 

structure controller (C(s)). q(s) can be found as in the following equations: 

)(~)(~ 1 sPsq −
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All the transfer functions for creating the general feedback structure 

controller is obtained now. So, the general feedback structure controller can for 

designing the IMC controller (q(s)), a low pass filter must be designed. For the 

flapper control system, the filter can be designed as below:  
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The low pass filter can be chosen as a first order filter.  

The IMC Controller, q(s), can be written as: 
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be calculated as in the following equations:  
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This equation simplifies to:  
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This controller can be written as a PI controller. The general transfer function 

of a PI controller can be written such as in the following: 
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The general feedback structure controller transfer function of the system has 

already been found as: 
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Comparing with the transfer function of a PI controller, it is obvious that the 

transfer function of the general feedback structure controller also leads to a PI 

controller. By the way the PI controller constants can be found. So, The PI controller 

constant can be written as the followings:  
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For the flapper control system, the filter constant λ  can be chosen the same 

value as dead time. The following simulation was made when λ is 0.5. 
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Figure 3.3.5.1: The Simulation Model of IMC Based PID for the System in 10 Hz 

 

The result of simulation can be shown as below: 

 
Figure 3.3.5.2: The Response of the Simulation Model of IMC Based PID for the 

System in 10 Hz 

 

3.4 λ Tuning for Calculating the PID Constants on the Flapper Position Control 
System  

As it is seen from the PID constants that are found at the above calculations, 

the system gain depends on the filter constant. Thus, if the filter constant changes, 

the gain of the system will change. 

The filter order can be selected large enough to make q proper. λ , which is 

an flexible parameter, determines the speed of response. If λ increases, the speed 

response of the control system becomes slower. On the other hand, if λ decreases, 
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the speed response of the control systems becomes faster. More over, λ affects the 

robustness of the control system. The higher values of theλ , the higher robustness 

are got for the system. (Rivera, 1999) 

λ  tuning can be applied to the gain of the system. When the error signal is 

high, the filter constant will be low. So, the response of the system will be fast. But 

then, for avoiding overshoot, the filter constant will be high enough may be higher 

than 1 or 2, which depends the systems’ dynamic. Then, to for making the system 

stable, when the error signal is zero, the filter constant will be not so low but not so 

high.  

This kind of a λ tuning can be applied to the flapper position control system. 

For applying it, the PID transfer function should be transformed to the discrete z 

domain. The PID constant needn’t to be changed because of being designed in the 

continuous time. Only the transfer function of the system will be changed. The 

proportional is same in the discrete time changed. The derivative function of the PID 

in the discrete time is
z

z 1− . And the integral function of the PID of the PID in the 

discrete time is
1
1

−
+

z
z .  And the sampling time can be chosen as 50 ms.  

The transfer function of the system was chosen as the transfer function of the 

system in 25 Hz, because the highest reference value that can be applied to the 

system is 18000 as an integer value data. In this reference, the system behaves as in 

the 25 Hz frequency. Thus, using the transfer function of the system in the 25 Hz 

results best. 

The simulation of the system can be done as it is shown below:  
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Figure 3.4.1: The Simulation of the System for λ Tuning 

 

In the simulation, the filter constant will be 0.2 during the 20% of the 

response of the system which means that the error signal will be high. Then, the filter 

constant will be 2.5 for avoiding the high overshoot. Finally, the filter constant will 

be 0.5 when the response of the system reaches to 1. 

When these rules were applied to the system the results at the Figure 3.4.2, 

3.4.3 and 3.4.4 were obtained respectively. 

 
Figure 3.4.2: The Response of the System with Using λ Tuning 
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Figure 3.4.3: The Response of the System without Using λ Tuning 

 

 
Figure 3.4.4: The Responses of the System 

 

The lighter line represents the response of the system when tuning is applied. 

It is obvious that, the system response is better when the tuning algorithm is applied 

to the system to find the gain of the system.   
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3.5 λ Tuning for Calculating the PID Constants on the Flapper Position Control 
System by Using Fuzzy Algorithm 

The λ  tuning can be applied by using the fuzzy algorithm to find the gain of 

the system. By this way, the PID constants will be set by the fuzzy algorithm. Before 

applying the fuzzy algorithm to the system, the membership functions must be 

defined. The membership functions can be changed according to the response of the 

system. But the logic for fixing the PID constants will not change. Only filter 

constant will be fixed according to the error signal. When the error signal is high, the 

filter constant will be low. So, the response of the system will be fast. But then, for 

avoiding overshoot, the filter constant will be high enough may be higher than 1 or 2, 

which depends the systems’ dynamic. Then, to for making the system stable, when 

the error signal is zero, the filter constant will be not so low but not so high. 

The membership function of the fuzzy algorithm can be defined as the 

following for the flapper position control system:  

 
Figure 3.5.1: Membership Functions 

The rules of the fuzzy algorithm were created as the following:  

 
Figure 3.5.2: Fuzzy Algorithm Rules 
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The output function was created as the following:  

 
Figure 3.5.3: Output Functions of the Fuzzy Algorithm 

 

In the output function zero equals to 0.5, medium equals to 2.5 and large 

equals to 0.5. So, when the absolute value of error signal is high, the filter constant 

will be 0.2. For avoiding the overshoot, the filter constant will be 2.5. Finally, the 

filter constant will be 0.5 when the response of the system reaches to 1. 

The simulation of the system can be done as it is shown below:  
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Figure 3.5.4: Simulation Model of Fuzzy Algorithm 
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The responses of the system with and without using fuzzy algorithm are given 

in Figure 3.5.5 and 3.5.6 respectively. 

 
Figure 3.5.5: The Response of the Simulation Model of Fuzzy Algorithm 

 

 
Figure 3.5.6: The Response of the Simulation Model without Fuzzy Algorithm 
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The responses, which are drawn together, are given in Figure 3.5.7. 

 
Figure 3.5.7:  The Responses of the System 

The lighter line represents the response of the system when fuzzy algorithm is 

applied. It is obvious that, the system response is better when the fuzzy algorithm is 

applied to the system to find the gain of the system.   

3.6 Application of IMC Based PID Controller no the Flapper Position Control 
System with Siemens S7 300 PLC 

All the calculations, which are made to find the PID constants at the above, 

were applied to the system by using the Siemens S7 300 PLC. All the responses, 

which are obtained for the references from 15000 to 18000, are drawn at the below 

figures. The PLC code of the controller will be given at the ‘Appendix A’. The 

sampling time can be chosen 50 ms.  

The system response for the reference signal of 15000, 16000, 17000 and 

18000 are given in Figure 3.6.1, Figure 3.6.2, Figure 3.6.3 and 3.6.4 respectively. 

12000

12500

13000

13500

14000

14500

15000

15500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

 
Figure 3.6.1: The system response for the reference signal of 15000 
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Figure 3.6.2: The system response for the reference signal of 16000 
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Figure 3.6.3: The system response for the reference signal of 17000 
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Figure 3.6.4: The system response for the reference signal of 18000 

 

According to the responses, IMC based PID results good in the flapper 

position control system. Furthermore, the system responses are better for higher 

frequencies, because the model of the system matches to the transfer function of the 

system in the higher frequencies.  
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3.7 Application of λ Tuning for Calculating the PID Constants on the Flapper 
Position Control System by Using Fuzzy Algorithm with Siemens S7 300 PLC 

All the calculations of the previous section, which are made to find the PID 

constants, were applied to the system by using the Siemens S7 300 PLC. All the 

responses, which are obtained for the references from 15000 to 18000, are drawn at 

the below figures. The PLC code of the controller will be given at the ‘Appendix B’. 

The sampling time can be chosen 50 ms.  

The aim, creating the fuzzy λ  tuning algorithm theoretically, is to accelerate 

the output signal while the error signal is high. The rules, created for the 

fuzzyλ tuning algorithm, resulted well at the simulations. On the other hand, when 

the rules applied to the system, it was observed that the robustness of the system 

went bad. Besides, the system made oscillatory when a disturbance occurred. 

In the output function zero equals to 1, medium equals to 0.2 and large equals 

to3. So, when the absolute value of error signal is high, the filter constant will be1. 

Then, the filter constant will be 0.2 when the system response is close to 1. And 

finally, when it reaches the 1 the filter constant will be 3.     

Because of the nonlinearities, that could not be inserted to the models used in 

simulation, the results obtained in simulation studies could not be obtained in real 

time application. 

The system response for the reference signal of 15000, 16000, 17000 and 

18000 are given in Figure 3.7.1, Figure 3.7.2, Figure 3.7.3 and 3.7.4 respectively. 
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Figure 3.7.1: The system response for the reference signal of 15000 
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Figure 3.7.2: The system response for the reference signal of 16000 
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Figure 3.7.3: The system response for the reference signal of 17000 
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Figure 3.7.4: The system response for the reference signal of 18000 
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4. CONCLUSION  
 
 There are some advantageous of IMC based PID controller such as the 

followings: 

• The IMC based PID controller depends on the system model. The PID 

constants change according to the system model. By the way, calculating 

only one parameter is enough for creating the IMC based PID controller. 

But for the classical PID controllers, three controller parameters should be 

found when creating the controller.  

• The IMC based PID control is sensitive for the change of models by 

tuning the filter constant (λ ) of the controller. For the higher values of 

theλ , the system will be more robust. Besides, for the lower values ofλ , 

the system response will be faster. 

Tuning of the filter constant with a fuzzy algorithm has also some benefits. 

Tuning λ with a fuzzy algorithm can make system response faster. Tuning λ with a 

fuzzy algorithm can also make system more robust. Moreover, the filter constant can 

be changed anytime according to the system response. So the overshoot and 

disturbance can be eliminated. 

When comparing the results with the IMC based PID control, the tuning with 

a fuzzy algorithm’ results are really good. By using the fuzzy algorithm, the settling 

time and the overshoot of the system are shortened. Moreover, the system is more 

robust when the fuzzy algorithm is applied.  

The aim was applying the fuzzy algorithm to the real system was to make the 

system faster and more robust. Thus, the filter constant was chosen small enough to 

make the system faster. Then, the filter constant was chosen big enough to avoid the 

overshoot. Finally, the filter constant was chosen the same as the system’s dead time, 

which was also used as filter constant in the IMC based PID control, to make the 

system stable. This algorithm was successful in the simulation. 

Applying to the system the fuzzy algorithm that was used to the flapper 

control system with PLC, didn’t result good. Then, another algorithm was applied to 

the system. Firstly, the filter constant was 1, and then the filter constant was chosen 

0.2. Finally, it is chosen 3. This algorithm was successful when it was applied to the 

system. On the other hand, the results in the simulation were not good. 
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The flapper position control is a nonlinear system. The non linearity of the 

system makes hard apply fuzzy algorithm to the system. So, the fuzzy algorithm that 

was created was unsuccessful even it resulted well in the simulations.  
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