1. INTRODUCTION
Time delay has been a common phenomenon to overcome whenever it is

closed to a feedback loop for the purpose of controlling any system. Recent increase
of control applications in variety gives more importance to systematic methods to
cope with time delay (YYamanaka, 2003).

Levine states that transportation and measurement lags, analysis times,
computation and communication lags all introduce time delays or dead times into
control loops. Dead times are also inherent in distributed parameter systems and
frequently are used to compensate for model reduction where high-order systems are
represented by low-order models with delays. The presence of dead times in the
control loops have two major consequences:

1. It greatly complicates the analysis and the design of feedback controllers
for such systems.

2. It makes satisfactory control more difficult to achieve.

There are numerous of systems, which have dead time, in the industrial
processes. It is really hard to control the systems which have dead time. There are
several introduced ways to control these systems such as Internal Model Control,
Smith Prediction, Predictive Control. Because of its simple structure, convenient
parameters tuning and its strong robustness, IMC is many experts’ favorite in recent
years. However, there are not only stable processes with dead time, but also there are
unstable processes with dead time. And this kind of unstable process with dead time
is very difficult to control (Jin, Sun, Liu, Zhang, 2004).

Proportional-integral-derivative (PID) controllers are still widely used in
industrial systems despite the significant developments of recent years in control
theory and technology. This is because they perform well for a wide class of
processes.Also, they give robust performance for a wide range of operating
conditions. Furthermore, they are easy to implement using analogue or digital
hardware and familiar to engineers (Kaya, 2004).

However, plants with long time-delays can often not be controlled effectively
using a simple PID controller. The main reason for this is that the additional phase
lagcontributed by the time-delay tends to destabilise the closed-loop system. The
stability problem can be solved by decreasing the controller gain. However, in this

case the response obtained is very sluggish (Kaya, 2004).



A control system design is expected to provide a fast and accurate set-point
tracking, that is, the output of the system should follow the input signal as close as
possible. Also, any external disturbances must be corrected by the control system as
efficiently as possible. The first requirement can be achieved by an open loop control
system. With an open loop control scheme, the stability of the system is guaranteed
provided that both the plant and controller transfer functions are stable. Also, the

design of the controller in an open loop control scheme may simply be chosen as
Ge(s) =G'(s), where G¢(s) and G(s) are respectively the controller and plant

transfer functions. The drawback of an open loop control system is the sensitivity to
modelling errors and inability to deal with external disturbances entering the system.
In this case, a closed-loop system can be used to deal with disturbances and
modelling errors (Kaya, 2004).

There are several solutions for overcoming with dead time like Smith
Predictor, Internal Model Control. When being emphasized to these subjects, the
main ideas of these rules are same. Moreover, the basic idea of Smith Predictor
depends on the Internal Model Control. In the internal model control, the model of
the process is an internal part of the controller. Thus, the application of internal
model control is easy than the other control schemes that can be designed for the
control of dead time dominant systems. In this homework, the internal model control
will be analyzed and then an application of the internal model control with PLC will
be introduced.

In the second chapter, the basic principles of internal model control will be
introduced. And then the IMC based PID controller will be emphasized. By this way,
finding of the PID constants from the internal model control principle will be
introduced.

In the third chapter, initially the Flapper Position Control system will be
introduced. And then the application of the IMC based PID control will be
introduced. Moreover, the fuzzy algorithm application on the system for finding the
filter constant in the internal model control will be analyzed. The application of the
both fuzzy algorithm application and IMC based PID control application was applied
to the system with PLC. Finally, the results of the applications will be discussed.

In the fourth chapter, the results of the applications to the real system will be

discussed.



2. INTERNAL MODEL CONTROL (IMC)

2.1 Time-Delay Systems
For all physical systems there will be a duration of time, possibly very short,

between the application of stimulus, and the detection of the corresponding response.
In some process plants the duration of the delay between stimulus and onset of
response may be minutes, or even longer (Gorecki and Korytowski, 1992).
Gorecki and Korytowski state that a pure time delay, an essential element in the
modeling and description of these systems, has the property that input and output are
identical in form, the only difference being that of translation along the time axis.
The stimulus x(t) results in a response y(t) equal to x(t-h) where h is the delay. In
many complex systems there will be more than one delay, and these delays may be,
for example, in measurement at an output, in control at an input or in a feedback
path.

According to Gorecki and Korytowski, the solution of the delay differential
equation can be given such as the following:

y(t) =-y(t-h)+H(t) (2.1.1)

It is assumed that this equation describes a system quiescent at t<0, the only

stimulus being the step H (t) applied at t = 0. h is the time delay. The following

figure shows a system to which equation (1.1) applies.
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Figure 2.1.1
* If t = h, the derivative term is unaffected by the output so that the following
equation is obtained:
yt) =H() (2.1.2)
If this differential equation is solved, it is obvious that the following solution
is obtained:
y(t) =tH (t) (2.1.3)



* When h <t < 2h, the following differential equation is obtained:
yt)=H(@t)-(t-h)H({t-h) (2.1.4)

If this differential equation is solved, the following solution is obtained:
y(t) =tH (t)—%(t—h)zH(t—h) (2.1.5)

Many differential equations can be found for the other intervals. If all these
differential equations are solved correctly, a general rule can be obtained such as the
following:

y(t) =tH (t)—%(t—h)2 H(t—h)+%(t—2h)3H(t—2h)+...+ﬂ(t— rh) ™ H(t —rh) +...

(r+1!
(2.1.6)

This method is described as ‘the method of steps’, extends in a natural way to
higher-order systems, the only additional difficulties arising from the initial
conditions on the differential coefficients at the start of each step (Gorecki and
Korytowski, 1992).

The solution of the differential equation can be obtained by using the Laplace
transform more quickly (Gorecki and Korytowski, 1992).
The transfer function of the delay time, h, is written as e". A general delay theorem

can be written in the Laplace transform such as the following:
L{x(t-h)H(t-h)}= X (s)e™"and X (s) = L{x(t)H ()} (2.1.7)
If the Laplace transform is applied to the equation (2.1.7), the following

solution is obtained:

sY(s)+e Y (s) :% (2.1.8)
Y (s) can be obtained from this equation such as the following equation:
Y(s)[s+e‘5“]=% (2.1.9)
Y(s) == : =i2—l (2.1.10)
ss+e™ sty 1
S

The expansion of this equation can be given as:

Y(s)= - 1e‘5“+sie-25h = {tH(t) ( zh) H(t—h)+ 32h)

H (t - 2h).. }

(2.1.11)



By taking the inverse Laplace transformation of Y(s), the following equation
is obtained:
(t _ I’h) r+l1

T S H(t-rh) (2.1.12)

y(®) = Z( D’

Time delay occurs in control systems when there is a delay between the
commanded response and the start of the output response. (Nise, 2004)

General structure of time delay systems

P(s)

R C(s) —— > Po(S) —» Time Delay %

Figure 2.1.2: General Structure of Time Delay systems

Time delay is demonstrated as e™"
Controlling the time delay systems is really hard and complex. Pole
assignment is not a good solution for the time delay systems. There are different ways

to control time delay systems.

2.2 Principles of Internal Model Control (IMC)
Internal Model Control is one of the ways of controlling the dead time

systems. Comparing with the other control structures that are used to control the dead
time systems, it is obvious that the structure of internal model control is simpler than
the other control structures.

The internal model principle is a general method for design of control

systems that can be applied to PID control (Astrém, Hagglund, 1995).



)
O—
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Figure 2.2.2: Internal Model Control Feedback Structure

In the model P indicates the model of the true process. And g symbolizes the
IMC controller.

Internal Model Control (IMC) is a control structure which consists of the
process model as an internal part of the controller (Rivera, 1999).

In the first graph, it is shown that a classical feedback structure. The IMC

Feedback structure can be derived by manipulating the classical feedback structure.
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i q
R(s) O C(s) - P(s) 5 Y(s)

Figure 2.2.3: Classical Feedback Structure



The true model of the process (5) can be added between the controller (q(s))
and the system (P(s)) as it is shown in the following figure. If it is added by this way,

there is no difference between the system above and the system below.
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Figure 2.2.4

This graph can be configured again. So, if the model of the process is added as a
negative feedback to the classical feFQt(egjcontrolleH-as it is seen at the followin
graph, there won’t be any differences between this graph and the previous ones S
Moreover, the other system model can be added as a nege;tive feedback to the system

model as it is seen at the following graph without changing any structure.
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Figure 2.2.5

A new controller, g(s), can be formed instead of C(s) with its negative

feedback P . So, the following model can be derived:
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Figure 2.2.6: InteRI Model Corltrol Feedback Structure q

According to Rivera, the IMC structure has some advantages with respect to
the classical feedback structure:
e For the classical feedback structure, we need to solve the characteristic
polynomial of the closed loop system to find the roots of the polynomial.
But, in the IMC structure we may only search the poles of g.

e It may be searched for the g instead of C(s) without any loss of generality.

2.3 IMC Structure
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Figure 2.3.1: Internal Model Control Feedback Structure
At the above model, P(s) demonstrates the process model, 5(5) demonstrates

the model of the true process and the g demonstrates the IMC controller. The
equation for the output function can be obtained as following equation:

1- I5(s)0|~
1+q(P(s)—P(s))

Y(s) = P(s)q

= ——R(s)+
1+q(P(s) - P(s))

(2.3.1)



For making similar this equation, the following equations can be written:

P(s)q s = PO

_ = L (2.3.2)
1+q(P(s)—P(s)) 1+q(P(s)—P(s))

n(s) =

can be written. By the way, it is obvious that there is a relation between the function

of 7 (s) and the function of £(s) such as:

£(s) =1-n(s) (2.3.4)
So, the output function can be rewritten such as
Y (S) =n(s)R(s) + (s)d(s) (2.3.5)
. If the process model is not equal to the true process model, the closed

loop transfer function cannot be simplified anymore. Than the IMC control
structure cannot be simpler than the classical control feedback structure.
(Levine,)

) If the process model is equal to the true process model (P(s) = I5(s)), the

closed loop transfer function can be simplified. (Levine, ) By this way Y(s)

simplifies to
Y (s) = PO gy t=PB) (2.3.6)
1+q(P(s) - P(s)) 1+q(P(s)—P(s))

If the output function is rewritten again, the equation
Y (s) = P(s)qR(s) + (1— P(s)q)d (s) (2.3.7)
is derived. Consequently, error function, control signal function can be calculated as
below:
e(s) = (L— P(s)Q)R(s) - (L— P(s)a)d (s) (2.3.8)
u(s) =gR(s) —qd(s) (2.3.9)

In order to result in physically realizable manipulated variable responses, the
IMC controller (g) must satisfy the following criteria (Rivera, 1999):
- Stability: In order to generate bounded responses to bounded inputs, all poles
of the IMC controller (g) must situate in the open Left — Half S Plane.



- Properness: In order to avoid pure differentiation signals, q(s) must be

proper. So,
Iim‘s‘% q(s) must be finite.

- Causality: q(s) must be causal. Q(s) mustn’t require any prediction for to be

causal.

2.4 Internal Model Control Design Procedure
There are two main steps for designing IMC. The first step will satisfy that

the internal model controller’s stability and causality, the second step will require the
internal model controller’s properness.
Step 1: Factor of the model of the true process (5(5)) can be written into two
parts such as
P(s) =P, (s)P_(5) (2.4.1)
In that equation, I5+ (s) contains all Right Half S Plane zeros and poles, which
are all “Nonminimum Phase Elements” in the model of the process. On the other

hand, 5_(3) is “Minimum Phase”. Therefore, the IMC Controller which is defined

as q(s) = 5_‘1(5) is stable and causal. q(s) doesn’t contain any time delays and right
half s plane zeros.
Step 2: In order to improve the IMC controller, a filter can be added to the
controller. Finally,
q(s) =q(s) f (s) (24.2)
is obtained for the IMC controller..
Now, q(s) is stable, causal and proper.

A common filter such as

f(s)= (low band pass filter) (2.4.3)

(As+1)"
is chosen (Rivera, 1999).

The filter order can be selected large enough to make q proper. A, which is
an flexible parameter, determines the speed of response. If A increases, the speed
response of the control system becomes slower. On the other hand, if A decreases,

the speed response of the control systems becomes faster. More over, A affects the
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robustness of the control system. The higher values of the 4, the higher robustness

1

A ()

are got for the system (Rivera, 1999).

O
C

Figure 2.4.1: Internal Model Control Feedback Structure
The equivalent standard feedback control system is obtained by using the
transformation of R + q
C(s) O (2.4.4)
1-P(s)a(s)
This equation also can be proved by block diagram manipulation. At the
block diagram, it is shown that the IMC structure. The equation of classical

controller can be obtained by manipulating the block diagrams step by step.

1

A\

I

O

Figure 2.4.2: Internal Model Control Feedback Structure

As it is seen from the block diagram above, the model of the true process

(5(5)) is connected to unit feedback by negatively. And its input is the control

signal. Hence, I5(s) can be reconnected as it is shown as the block diagram below.
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Figure 2.4.3

2.5 The IMC Based PID Controllers

The following steps are used for designing IMC based PID controllers.

1. First of all, the IMC controller transfer function must be defined. As it is
stated above, the IMC controller, q(s), must include a filter f(s) for making q(s) semi
proper or giving it derivative action (order of the numerator of q(s) is one order
greater that the denominator of q(s)) (Bequette, 1994). Thus, q(s) can be written as

“q(s) = §(s) f (s) “and it can be written “§(s) = P (s) ” for §(s).

2. The equivalent standard feedback controller transformation must be found
by using the transformation of
Cisy=—36) (2.5.1)
1-P(s)a(s)
3. The equation C(s) can be shown in a PID form. Thereby, the PID constants

K., Ti, Tp can be found. General equation for IMC based PID can be obtained by

2
C(s) =K, TTgs +Tis+1[ 1 } (25.2)
T;is As+1

In this equation [ } demonstrates the transfer function of low pass

As+1
filter.

4. After finishing all these steps, the closed loop simulations must be
performed to obtain an efficient controller. The filter constant A is chosen according

to performance (speed of the system result) and robustness.

12



Example 1:
For this example, the following first order delay free process is considered:

Kp
To,s+1

5(5) = is given as a model of a process.

For finding the PID equivalent to IMC, the steps, expressed below, should be
followed.
Step 1: The IMC controller transfer function, q(s), must be found. As it is

stated above, q(s) can be found by the formulation of

a(s) = a(s) f(s) =P (s) f (s) (25.2-1.1)
Therefore, q(s) is obtained such as:
ge)=Tett 1o 1 Testl (2.5.2-1.2)

K, As+1 K, As+1

Step 2: The equivalent standard feedback controller must be found by the
transformation of C(s).
C(s) = 9(—3) (2.5.2-1.3)
1-P(s)a(s)
Equivalency of this formula is stated as the transformation of classical
feedback controller with respect to IMC. C(s) can be obtained as

1 Tes+1
K, As+1
C(s) = K, 1 Tpsel (2.5.2-1.4)
Tes+1K, As+1
If it is made similar,
i(TPs+1) i(Tps+1)
K K
C(s) = —~ = P (2.5.2-1.5)

As+1-1 As

IS obtained.
Step 3: The general transfer function of Pl controller can be written as

K, (T,s+1)

25.2-1.6
T:s ( )

Cl (S) =

By rearranging the equation that is found at the Step 2, it is obtained that

13



—
el
7

C,8)=r——— (2.5.2-1.7)

and by configuring it, C, can be obtained like

Te J(Tps +1)

C,(s) = (KP’I (2.5.2-1.8)

1.5

By equation of C,(s) and C,(s), the constants of the PID controller are found as

K = Te andT, =T, (2.5.2-1.9)
Ko
Example 2:
For this example, the following first order dead time process is considered:
—6

~ er
P(s) =
Tps+1

For finding the PID equivalent to IMC, the steps, expressed below, should be

followed.

Step 1: There is a dead time in the system. A first-order Pade’ approximation

can be used for dead time. (Riviera, 1994)

-0
er_gs Kp(25+1j
= (2.5.2-2.1)

IE;(S):T s+1 0
d (Tps+l{zs+lj

Step 2: As it is stated above, I5(s) can be separated as I5+ (s) and P ().

~ K ~ -0
P (s) = P P.(s) = (73 +1j (2.5.2-2.2)

(r,s +1{95 +1j
2

Step 3: The transfer function of IMC controller must be defined. Before

defining the IMC controller, g(s), q(s)must be defined. g(s) can be defined as

follows:

(Ts +1{03 +1j
G(s) = P(s) = . 2 (25.2-2.3)

p
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Step 4: The IMC controller, g(s), should be proper. Thus, a filter must be

added to make the q(s) proper. Otherwise, a PID controller will not result (Riviera,

1994).
(T,s +1ng +1j
2 1

K As+1

p

a(s) =G(s) f(s) =P (s) f (s) = (2.5.2-2.4)

Now, the PID equivalent of the controller can be found. The classical

feedback controller has been found at the above such as:

cie=— 96 _ _406) (2.5.2-2.5)
1-P(s)a(s) 1-P(s)q(s)f(s)

cls) = dOF ) (2.5.2-2.6)
1-P_(s)P,(s)P*(s) f (s)

_ (Ts +1{93 +1j
cl= A1) H 2 ) @soan)
1-P.(9)f(s) | K, (szs

For obtaining a PID equivalent to this controller, the numerator of the

controller, C(s), should be expanded such as:

0 {i} (Ts +1X§s +1j {Kl }([TZQJSZ +(Tp +‘st +1J

O =15 i K o 0
1=P.(S)T () (/1 + js (/1 + js
2 2
(2.5.2-2.8)
The PID controller transfer function can be demonstrated as:
2
C(s) = K, {TDT' > T+ TS +1} (2.5.2-2.9)
S
|

15



The denominator and the numerator of the system should be multiplied

, because of finding a PID equivalent of the system. It is obvious that,

(T +9j HTPHJSZ +[Tp +0js +1J
1 P9 2 2
C(s)=— (2.5.2-2.10)

PID constants can be found easily from this equation such as the following

constants:

0
1 (Tp +2j 0 T,0
Kg=—ton 2] T =1 +¢ T - (2.5.2-2.11)

Kp [“Hj P2 2T, +6
2
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2.6 PID Tuning Parameters for Open-Loop Stable Processes

P(s) P(s)q(s) Ke T, To Te
A Kep 1 T, T
T,s+1 s +1 Ko g ) )
B K T,+T T
p 1 1t 1 T, +T, 12 )
(Tis+1)T,s+1) | As+1 Kpd T, +T,
C K 2 T
__Ke 1 T 21 | - )
T?s? +2{Ts+1 | As+1 Kpd 2¢
D | Ke(-f5+1) (- s +1) 25T 21 | L pA
T2s2+2(Ts+1 | (Bs+1)As+1) | Ko(28+2) 20 28+ A
F|K, 1 1
s Js+1 KA
G K, 1 1 T
siTps+1i As+1 K, A ) P )

Table 2.6.1: PID Tuning Parameters for Open-Loop Stable Processes

In D and E it is assumed that 8 > 0, that is, the process has inverse response

characteristics (right-half-plane zeros) (Riviera, 1994).

The controller for D is PID + lag, that is

T, T,s?+T,s+1
T,s

C(s)zKC[ }{ ! }(Riviera, 1994)  (2.6.1)

Tes+1
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2.7 PID Tuning Parameters for First-Order + Time Delay Processes

Controller | K. T, Tp T: Notes
& p T4
K. (0+1) 2 2T, +6 2(0+ 1)
PID 0
T, +§ 9 T O
- & @ p
0 Tp+§ 2T, +0 ) @)
KP(/1+) p
2
Pl T, -
Kpﬂ, p - - (3)
Improved T, +Q 9
Pl 2 Tp +E - - (4)
Ko4

Table 2.7.1: PID Tuning Parameters for First-Order + Time Delay Processes

(1)

()

(3)
A>176

(4)

A>1.760

With an “all-pass” factorization. Recommended A > 0.256

Without an “all-pass” factorization. Recommended A > 0.86

With zero-order Pade’ approximation(e™® =0). Recommended

. Recommended

. o Kee™® K
With the approximation ¢ _ £
T,s+1 0
P T,+[s+1
2
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3. APPLICATION OF INTERNAL MODEL CONTROL ON FLAPPER
POSITION CONTROL SYSTEM

3.1 The Flapper Position Control System
In the Flapper Position Control System, the aim is to control the angle of the

flapper with a fan which is run by an asynchronous motor.

The asynchronous motor is run by the asynchronous motor driver of Siemens
Sinamics G110. The frequency of the voltage, which is applied to the asynchronous
motor, is calibrated proportional by the driver according to the voltage, which is
applied to the analogous input of the driver. The analogous input calibrates the
frequency of the voltage, applied to the asynchronous motor, from 0 Hz to 50 Hz

with a 0 — 10 V voltage signal.

Potentiometer

Blower Flapper

Driver

Potentiometer
Flapper

Figure 3.1.1: General Structure of Flapper Position Control System

The angle of the flapper is measured by a potentiometer which is attached to

the rotation axis of the flapper. Consequently, the flapper control system is a single
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input-single output system (SISO), which has input with a 0 — 10 V voltage, and has
an output that is a voltage, measured by potentiometer.

The negative control signal cannot be applied to the system. The interval of
the control signal is between OV and 10V. Furthermore, if the angle between the
flapper and vertical axis is 0, the angle actually is not zero. Thus, there is a slipped
measurement at the potentiometer.

The flapper position control system is controlled by a Siemens S7 300 PLC.
Thereby, an input signal with the interval of OV — 10V can be applied to the system
by the analogue module of this PLC. Moreover, the output information can be
obtained as voltage information.

For generating the voltage between the intervals of OV — 10V from the PLC’s
analogue module, the integer values between 0 and 27648 must be written to the
memory of the PLC’s analogue module. If +27648 is written to the memory of the
analogue module, it generates +10V output voltage. There is a proportion like that
between the integer values and the output voltages.

The minimum value of the data that is read from the system output is 13500,
and the maximum value of the data that is read from the system output is 18500. The

value of 13500 indicates that the angle between the flapper and the vertical axis isO°.
Briefly, the output of the system can be controlled between the values 13500 and
18500. The error signal is equals to the subtraction of output signal and the reference
signal. So, if the reference signal is given to the system between the values of 13500

and 18500, the system can be controlled.

3.2 The Modeling of the Flapper Position Control System
There are different ways to model the dynamical systems. But first of all, the

step responses of the systems are obtained before the modeling. Then, the way of the
modeling can be decided.

For the modeling of the flapper control system, the step responses for the
different frequencies must be obtained. Because, having the response for only one
reference cannot be beneficial for modeling the systems.

The systems in the industrial processes are usually nonlinear dynamical
systems. For determining the linearity of the systems, the step responses in the

different frequencies can be applied to the systems. Therefore, before the modeling
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the flapper control system, the step responses according to the different frequencies
are obtained to determine the system’s linearity.

The step responses of the flapper control systems for the 10 Hz, 15 Hz, 20
Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, 45 Hz and 50 Hz was obtained by applying input
signals in these values. After applying inputs in these frequencies, the output signals

were collected and the responses of the system drew by Matlab such as below:

8000

6000 -

4000 -

2000 -

-2000 ¢

_4000 L 1 L 1 L 1 L
0

Figure 3.2.1: Responses of the Flapper Position Control system in Different

Frequencies

In this graph, the graphics indicate the step responses of the frequencies of 10
Hz, 15 Hz, 20 Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, 45 Hz and 50 Hz from up to down
respectfully.

It is obvious that, the flapper position control system is a non-linear system,
because the system behaves different for all the frequencies.

Non-linearity creates problems when modeling the systems. Moreover, it is
really hard to control non-linear systems, because they don’t have an exact model for
all frequencies. But, when the step responses of the flapper position control are
analyzed, the system is not strictly a nonlinear system. The step responses for the
frequencies of 35 Hz, 25 Hz and 15 Hz are identical. Thus, the system can be thought
as a linear system in these frequencies. Furthermore, the model of the system in these
frequencies can be accepted as the general model of the system.
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3.2.1 Modeling of the Flapper Control System in 50 Hz

For modeling the flapper control system in 50 Hz, the step response must be
obtained initially. 50 Hz equals to 32000 as integer value data. Thus, the 32000
integer value was applied as the input signal to the system. But the driver of the
system dont let to apply 32000 to the system. So, 27648 was applied when the 32000
was tried to applied to the system. For higher integer values than 27648, the system

model don’t change. As a result, the following step response was obtained:

X:0.96
8000 Y: 7418
||
6000 - Wl
4000 -
2000 -
X:0.5
J Y: 10
O—m
-2000 -
_4000 1 1 L 1 1 L 1
0 1 2 3 4 5 6 7 8

Figure 3.2.1.1: The Response of the System in 50 Hz

The system has a dead time that equals to 0.5 s.
For modeling a system from a step response, the steady state value (yss), the

peak value (yp), natural frequency (@,), damping ratio are all needed. All these

values can be found and calculated from the step response.
A general transfer function for a second order system can be written with a

dead time as the following:

2
Ko, ™ (3.2.1.1)

P(s) =
®) s? + 2w, s+ o]

In this equation, K demonstrates the ‘Gain’, @,demonstrates the ‘Natural
Frequency’ and{ demonstrates the damping ratio, h demonstrated the ‘Dead Time’

of the system.
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According to the step response of the system in 50 Hz frequency, the peak
value (yp) of the step response is 7418. Moreover the steady state value (yss) is 6088.
But all these value are not normalized values. Therefore, it is not true to model the
system with these data. So, all these values must be normalized.
For normalizing these values, all these values must be divided by 32000, because
these values were obtained by sending 32000 integer value data. Thus, the peak value
and the steady state value of the system are obtained such as the following:

y, = 7418/32000 = 0.2318125 (3.2.1.2)

Yy, =6088/32000 = 0.19025 (3.2.1.3)

The steady state value also equals to the gain of the system. So, the gain (K)
of the system in 50 Hz is 0.19025.

For finding @, and ¢ the overshoot must be calculated. The overshoot can

be calculated such as the following equations:

Overshoot% = 22 7% «100 (3.2.1.4)
ySS
Overshootop = 2:2518125-0.19025 o, (3.2.1.5)
0.19025
Overshoot% = 21.8462549% (3.2.1.6)

The damp ratio (¢) can be calculated from the overshoot such as the

following equations:

- In(Overshoot) (3.2.1.7)
J7% +In?(Overshoot)
- —1n(0.218462549) (3.2.1.8)
J(3.14)* +In?(0.218462549)
¢ =0.435796584 (3.2.1.9)

After finding the damp ratio, the natural frequency is needed to complete the
transfer function of the flapper position control system. Natural frequency can be
found from the settling time. The formula for the settling time can be given for the 2
% band such as the equation of (3.2.1.10).
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4
T (o,

The settling time of the system can be read from the step response of the

T (3.2.1.10)

system in 50 Hz frequency.

8000

6000 -

4000 -

2000 -

-2000 |-

_4000 1 1 1 1 1 1 1
0
Figure 3.2.1.2: Settling time of the System in 50 Hz

According to the step response of the system in 50 Hz, the settling time of the

system is 1.82 s. So, from the equation (3.2.1.10), @, can be calculated such as the

following:
0 =2 (3.2.1.11)
¢,
o, = 4 (3.2.1.12)
0.435796584 ¢ 1.82
o, = 5.043183929 (3.2.1.13)

All the values that are needed to model a system are found. So, the transfer

function of the system can be written according to the equation (3.2.1.14).

Koy s
P(s) = 2 2 "
S+ 2w, s+ o,

(3.2.1.14)
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By the way, the model of the flapper position control system for 50 Hz is
given below:

4.838762213 5 o5

P(s)=
s? +4.395604657s + 25.43370414

(3.2.1.15)

The simulation of the system in Simulink can be shown as below:

4 538762213 Tl
. o[
244 Z0RE04G5T 425 42370414 |

Step Transport Scope
Crelay

Transfer Fcn

Figure 3.2.1.3: The Simulation Model of the system in 50 Hz

The response of this model can be shown as below:

Figure 3.2.1.4: The Response of the Simulation Model in 50 Hz

3.2.2 Modeling of the Flapper Control System in 35 Hz

For modeling the flapper control system in 35 Hz, the step response must be
obtained initially. 35 Hz equals to 22400 as integer value data. Thus, the 22400
integer value was applied as the input signal to the system. As a result, the following
step response was obtained:
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Figure 3.2.2.1: The Response of the System in 35 Hz

The system has a dead time that equals to 0.5 s.
For modeling a system from a step response, the steady state value (yss), the

peak value (yp), natural frequency (@,), damping ratio are all needed. All these

values can be found and calculated from the step response.
A general transfer function for a second order system with a dead time can be

written as the following:

K 2
@n g™ (3.2.2.1)

P(s) =
®) $* +2lw, S+ @’

In this equation, K demonstrates the ‘Gain’, ®,demonstrates the ‘Natural
Frequency’ and demonstrates the damping ratio, h demonstrates the ‘Dead Time’

of the system.

According to the step response of the system in 35 Hz frequency, the peak
value (yp) of the step response is 5396. Moreover the steady state value (Yss) is3847.
But all these value are not normalized values. Therefore, it is not true to model the
system with these data. So, all these values must be normalized.

For normalizing these values, all these values must be divided by 22400,
because these values were obtained by sending 22400 integer value data. Thus, the
peak value and the steady state value of the system are obtained such as the

following:
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y, =5396/22400 = 0.240892857 (3.2.2.2)

Y. =3847/22400 = 0.171741071 (3.2.2.3)

The steady state value also equals to the gain of the system. So, the gain (K)
of the system in 35 Hz is 0.171741071.

For finding @, and ¢ the overshoot must be calculated. The overshoot can

be calculated such as the following equations:

Overshoot% = 227 100 (3.2.2.4)
ySS
Overshoottp - 0-240892857 —0.L71741071 )0 o5 5 o
0.171741071
Overshoot% = 40.2651416% (3.2.2.6)

The damp ratio (¢ ) can be calculated from the overshoot such as the

following equations:

o= In(Overshoot) (3.2.2.7)
\/712 +In?(Overshoot)
;o —In(0.402651416) (3228)
J(3.14) +1n?(0.402651416)
¢ =0.278135843 (3.2.2.9)

After finding the damp ratio, the natural frequency is needed to complete the
transfer function of the flapper position control system. Natural frequency can be
found from the settling time. The formula for the settling time can be given for the 2
% band such as the following equation:

4

s T -
co,

The settling time of the system can be read from the step response of the

T (3.2.2.10)

system in 35 Hz frequency.

27



6000

5000 -

4000 -

3000 -

2000 -

1000 -

-1000 -

-2000 -

-3000
0
Figure 3.2.2.2: The Settling Time of the System in 35 Hz

According to the step response of the system in 35 Hz, the settling time of the

system is 1.88 s. So, from the equation (3.2.2.10), @, can be calculated such as the

following:
0 =2 (3.2.2.11)
¢,
o, = 4 (3.2.2.12)
0.2781358431.88
w, = 7.649713721 (3.2.2.13)

All the values that are needed to model a system are found. So, the transfer
function of the system can be written according to the equation (3.2.2.14)

Koy s
P(s) = 2 2 "
S*+ 20w, + o,

(3.2.2.14)

By the way, the model of the flapper position control for system is given
below:

10.0499646 o o5

P(s) =—
s +4.255319149s +58.51812001

(3.2.2.15)
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The simulation of the system in Simulink can be shown as below:

100400646 Tamll
d o
2+4 255319148:+58 51512001 )

Step Transpart Scope
Crelay

Transfer Fcn

Figure 3.2.2.3: The Simulation Model of the System in 35 Hz

The response of this model can be shown as below:

Figure 3.2.2.4: The Response of the Simulation Model in 35 Hz

3.2.3 Modeling of the Flapper Control System in 25 Hz

For modeling the flapper control system in 25 Hz, the step response must be
obtained initially. 25 Hz equals to 16000 as integer value data. Thus, the 16000
integer value was applied as the input signal to the system. As a result, the following
step response was obtained:
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Figure 3.2.3.1: The Response of the System in 25 Hz

The system has a dead time that equals to 0.5s

For modeling a system from a step response, the steady state value (yss), the

peak value (yp), natural frequency (@,), damping ratio are all needed. All these

values can be found and calculated from the step response.

A general transfer function for a second order system with a dead time can be

written as the following:

P(s) =

K 2
@n g™ (3.2.3.1)

$* +2lw, S+’

In this equation, K demonstrates the ‘Gain’, ®,demonstrates the ‘Natural

Frequency’ and{ demonstrates the damping ratio, h demonstrates the ‘Dead

Time’ of the system.

According to the step response of the system in 25 Hz frequency, the peak

value (yp) of the step response is 2991. Moreover the steady state value (yss) is 1936.

But all these value are not normalized values. Therefore, it is not true to model the

system with these data. So, all these values must be normalized.

For normalizing these values, all these values must be divided by 16000,

because these values were obtained by sending 16000 integer value data. Thus, the

peak value and the steady state value of the system are obtained such as the

following:
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y, =2991/16000 = 0.1869375 (3.2.3.2)

y.. =1936/16000 = 0.121 (3.2.3.3)

The steady state value also equals to the gain of the system. So, the gain (K)
of the system in 25 Hz is 0.121.
For finding @, and ¢ the overshoot must be calculated. The overshoot can

be calculated such as the following equations:

Overshoot% = Yo 7 ¥s x

ySS

100 (3.2.3.4)

0.1869375-0.121 y
0.121

Overshoot% = 100 (3.2.3.5)

Overshoot% =54.49380165% (3.2.3.6)

The damp ratio (¢ ) can be calculated from the overshoot such as the

following equations:

o= In(Overshoot) (3.2.3.7)
\/712 +In?(Overshoot)
;o — In(0.5449380165) (3238)
(3.14) +1n?(0.5449380165)
¢ =0.189730605 (3.2.3.9)

After finding the damp ratio, the natural frequency is needed to complete the
transfer function of the flapper position control system. Natural frequency can be
found from the settling time. The formula for the settling time can be given for the 2
% band such as the following equation:

4

s = 2
co,

The settling time of the system can be read from the step response of the

T (3.2.3.10)

system in 25 Hz frequency.
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Figure 3.2.3.2: The Settling Time of the System in 25 Hz

According to the step response of the system in 25 Hz, the settling time of the

system is 2.21s. So, from the equation (3.2.3.10), @, can be calculated such as the

following:
0 =2 (3.2.3.11)
¢,
o, = 4 (3.2.3.12)
0.189730605 ¢ 2.21
o, = 9.539603512 (3.2.3.13)

All the values that are needed to model a system are found. So, the transfer
function of the system can be written according to the equation (3.2.3.14)

2
P(S) = (3.2.3.14)
S* + 20w, + o,

By the way, the model of the flapper position control for system is given
below:

11.01148825

P(s) =—
s° +3.619909492s + 91.00403517

(3.2.3.15)
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The simulation of the system in Simulink can be shown as below:

11.01148825 Tl
. o[
s243 F10000402=+01 00402517 )

Step

L=
Transzfer Fon Transport Swope
Crelay

Figure 3.2.3.3: The Simulation Model of the System in 25 Hz

The response of this model can be shown as below:

Figure 3.2.3.4: The response of the Simulation Model in 25 Hz

3.2.4 Modeling of the Flapper Control System in 15 Hz
For modeling the flapper control system in 15 Hz, the step response must be
obtained initially. 15 Hz equals to 9600 as integer value data. Thus, the 9600 integer

value was applied as the input signal to the system. As a result, the following step
response was obtained:
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Figure 3.2.4.1: The Response of the System in 15 Hz

The system has a dead time that equals to 0.5s
For modeling a system from a step response, the steady state value (yss), the

peak value (yp), natural frequency (@,), damping ratio are all needed. All these

values can be found and calculated from the step response.
A general transfer function for a second order system with a dead time can be

written as the following:

K 2
@n g™ (3.2.4.1)

P(s) =
®) $* +2lw, S+’

In this equation, K demonstrates the ‘Gain’, ®,demonstrates the ‘Natural

Frequency’ and demonstrates the damping ratio, h demonstrates the ‘Dead Time’

of the system.

According to the step response of the system in 15 Hz frequency, the peak
value (yp) of the step response is 1107. Moreover the steady state value (Yss) is 864.
But all these value are not normalized values. Therefore, it is not true to model the
system with these data. So, all these values must be normalized.

For normalizing these values, all these values must be divided by 9600,
because these values were obtained by sending 9600 integer value data. Thus, the
peak value and the steady state value of the system are obtained such as the

following:
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y, =1107/9600 = 0.1153125 (3.2.4.2)

Y =864/9600 = 0.09 (3.2.4.3)

The steady state value also equals to the gain of the system. So, the gain (K)
of the system in 15 Hz is 0.009.

For finding @, and ¢ the overshoot must be calculated. The overshoot can

be calculated such as the following equations:

Overshoot% = 227 100 (3.2.4.4)

ySS
Overshoottp = 21193129009 45, (3.2.4.5)
Overshoot% = 28.125% (3.2.4.6)

The damp ratio (¢ ) can be calculated from the overshoot such as the

following equations:

fo = In(Overshoot) (3.24.7)
\/712 +In?(Overshoot)
[ ~In(028125) G248
J(3.14) +1n?(0.28125)
¢ =0.374410065 (3.2.4.9)

After finding the damp ratio, the natural frequency is needed to complete the
transfer function of the flapper position control system. Natural frequency can be
found from the settling time. The formula for the settling time can be given for the 2
% band such as equation of (3.2.4.10):

The settling time of the system can be read from the step response of the

(3.2.4.10)

system in 15 Hz frequency.
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Figure 3.2.4.2: The Settling Time of the System in 15 Hz

According to the step response of the system in 15 Hz, the settling time of the

system is 1.59s. So, from the equation (3.2.4.10), @, can be calculated such as the

following:
0 =2 (3.2.4.11)
¢,
o, = 4 (3.2.4.12)
0.374410065 ¢ 1.59
o, =6.71916571 (3.2.4.13)

All the values that are needed to model a system are found. So, the transfer
function of the system can be written according to the equation (3.2.4.14).

Ko, s
P(s)=— ~e”
S*+ 20w, + o,

(3.2.4.14)

By the way, the model of the flapper position control for system is given
below:
4.063246906 05

P(s) =— e (3.2.4.15)
s“ +5.03144654s + 45.14718784
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The simulation of the system in Simulink can be shown as below:

4 063296906 Tl
a o[
s246 0314468d:+35 147 12784 |

Step

Transpart Scope
Dalay

Transfer Fcn

Figure 3.2.4.3: The Simulation Model of the System in 15 Hz

The response of this model can be shown as below:

Figure 3.2.4.4: The Response of the Simulation Model in 15 Hz

3.2.5 Modeling of the Flapper Control System in 10 Hz
For modeling the flapper control system in 10 Hz, the step response must be
obtained initially. 10 Hz equals to 6400 as integer value data. Thus, the 6400 integer

value was applied as the input signal to the system. As a result, the following step
response was obtained:
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Figure 3.2.5.1: The Response of the System in 10 Hz

It is obvious that, the system behaves as a first order system when the 15 Hz
input signal is applied. Therefore, the type of modeling is changed.

A general transfer function for a first order system with a dead time can be
written as the following:

K

P(s) = 5+1

(3.2.5.1)

In this equation, K demonstrates the ‘Gain’, zdemonstrates the ‘Time
Constant’ of the system.

According to the step response of the system in 10 Hz frequency, the gain (K)
of the system is 388. But this value is not normalized. Therefore, it is not true to
model the system with these data. So, this value must be normalized.

Moreover the time constant (7)) of the system is 244. The time constant
equals to the value of time when system is at 63% of the step response. For
normalizing these values, all these values must be divided by 6400, because these
values were obtained by sending 6400 integer value data. Thus, the gain of the
system is obtained such as the following:

K =388/6400 = 0.060625 (3.2.5.2)
7=0.630388 =244 (3.2.5.3)

According to the step response of the system in 10 Hz frequency, the system
reaches to 244 at 0.9 s.
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All the values that are needed to model a system are found. So, the transfer
function of the system can be written according to the equation (3.2.5.4)

K_gone (3.2.5.4)
5+1

P(s) =

By the way, the model of the flapper position control for system is given

below:
P(s) = 0.060625 ¢ -os: (3.2.5.5)
0.9s+1
The simulation of the system in Simulink can be shown as below:
I 0060525 5%[ |:|
0.8=z+1
Step Transter Fen Tranzpuort Scope

Lrelay

Figure 3.2.5.2: The Simulation Model of the System in 10 Hz

The response of this model can be shown as below:

Figure 3.2.5.3: The Response of the Simulation Model in 10 Hz

3.3 IMC Based PID Controller Design for the Flapper Position Control System
The flapper position control system can be controlled with a PID controller.

As it is told above, the constant of PID controller can be found by Internal Model
Control procedure.
Initially, the process model must be defined for designing the IMC based PID

controller. In the flapper control system, the transfer function of the system and
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model of the system are different. Because of not having the transfer function of the
system, the transfer function of the system and the model of the system are accepted
as equal. This creates the perfect matching situation. As it is written at the formula of
(2.3.6) , if the perfect matching occurs, the output simplifies to:

Vo= POI__ g, 1POA 4 33
1+q(P(s) - P(9)) 1+q(P(s) = P(9))
Y(s) = P(s)qR(s) + (1— P(s)q)d (s) (3.3.2)

In this equations, 5(5) demonstrates the model of the process, q demonstrates
the IMC controller, R(s) demonstrates the reference signal and the d(s) demonstrates
the disturbance signal.

Moreover, as it is written in the equation (2.4.4) general feedback structure
controller (C(s)) is calculated as:

C(s) = 9(—5) (3.3.3)
1-P(s)a(s)

As it is written in the equation....the IMC controller is calculated as in the

following equations:
d(s)=P*(s) (3.3.4)
q(s) =q(s) f(s) (3.3.5)

f(s)= L (low band pass filter) (3.3.6)

(As+1)"

3.3.1 Designing of IMC Based PID Controller in 50 Hz Frequency for the
Flapper Position Control System

For designing IMC based PID controller for the system, the system model
must be defined. The models have been already defined above. For the flapper
control system, the transfer function of the system and the model of the system can
be accepted equal. This situation makes easier to find constants of PID controller.

The model of the system in 50 Hz frequency has been already found as:

4.838762213 o058
s? +4.395604657s + 25.43370414

The dead time in the transfer function can be written in the Taylor series such

P(s) =

(3.3.1.1)

as the following equation:

e™ =(1-hs) (3.3.1.2)
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5(s) = 4838762213 g5 _ 4.838762213(1 - 0.55)
s? +4.395604657s + 25.43370414 s? + 4.395604657s + 25.43370414

(3.3.1.3)
By the way, e is eliminated.
The model of the system and the transfer function of the system are accepted

perfectly matched. So, the transfer function of the system can be written as:

5(5) = P(s) = 4.838762213 g5 _ 4.838762213(1 0.55)
s? +4.395604657s + 25.43370414 s? +4.395604657s + 25.43370414
(3.3.1.4)

The IMC controller (q(s)) must be calculated to find the general feedback
structure controller (C(s)). q(s) can be found as in the following equations:

G(s)=P(s) (3.3.15)

5 4.838762213

- (3.3.1.6)
52 +4.3956046575 + 25.43370414

5% +4.395604657s + 25.43370414
4.838762213

q(s) (3.3.1.7)

All the transfer functions for creating the general feedback structure
controller is obtained now. So, the general feedback structure controller can for
designing the IMC controller (g(s)), a low pass filter must be designed. For the
flapper control system, the filter can be designed as below:

1

f(s) = v, (3.3.1.8)
1

f&) =" (3.3.1.9)

The low pass filter can be chosen as a first order filter.

The IMC Controller, g(s), can be written as:
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s? +4.395604657s + 25.43370414 L1

s)=q(s)f(s) = 3.3.1.10
1) =a() () 4.838762213 As+1 ( )
be calculated as in the following equations:
cis)=—6) (3.3.1.11)
1-P(s)a(s)
s” +4.395604657s + 25.43370414 = 1
C(s) = 4.838762213 As+1
B 4.838762213(1—0.5s) . s? +4.395604657s + 25.43370414
s? +4.395604657s + 25.43370414 4.838762213(As +1)
(3.3.1.12)
This equation simplifies to:
2
C(s) = s° +4.395604657s + 25.4337044 (3.3.1.13)

4.838762213(1 + 0.5)s

This transfer function also equals a PID controller transfer function. To show
the equality of it, writing the general PID controller transfer function may be
beneficial. The general transfer function of a PID controller can be written such as in
the following:

1
K| 1+—+Tps 3.3.1.14
[ - J (331.14)

This equation can be formed as below:

2
K142 a7 s |= K | HSFIFTToS” (3.3.1.15)
T:s T:s

) 1

Ts+1+TT.s? Tos St

Kc(iT—iDj: K| ———& (3.3.1.16)
iS S
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TD52+S+_|:} 52+_|_13+_|_T
Kc I :KC D i'D

' 3.3.1.17
S TDS ( )

So, a general PID controller transfer function can be also written as:

, 1 1
S +?S+TT
K. D iD (3.3.1.18)
T,s

The general feedback structure controller transfer function of the system has

already been found as:

s? +4.395604657s + 25.4337044
4.838762213(1 +0.5)s

C(s) = (3.3.1.19)

Comparing with the transfer function of a PID controller, it is obvious that t

he

transfer function of the general feedback structure controller also leads to a PID

controller. By the way the PID controller constants can be found. So, The PID

controller constant can be written as the followings:
1

D

1

i'D
Ke 1
T, 4.838762213(1+0.5

T 4.395604657 = T, = 0.227499986 (3.3.1.20)
=25.4337044 = T, = 0.17282597 (3.3.1.21)

) = K. (2+0.5)=0.047016153 (3.3.1.22)

For the flapper control system, the filter constant 4 can be chosen the same

value as dead time. The following simulation was made when A is 0.5.
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Figure 3.3.1.1: The Simulation Model of IMC Based PID for the System in 50 Hz

The result of the simulation:

Figure 3.3.1.2: The Response of the Simulation Model of IMC Based PID for the
System in 50 Hz

3.3.2 Designing of IMC Based PID Controller in 35 Hz Frequency for the
Flapper Position Control System

For the flapper control system, the transfer function of the system and the
model of the system can be accepted equal. This situation makes easier to find
constants of PID controller.
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The model of the system in 35 Hz frequency has been already found as:

10.0499646 50
s? + 4.255319149s + 58.51812001

The dead time in the transfer function can be written in the Taylor series such

P(s) = (3.3.2.1)

as the following equation:

e™ =(1-hs) (3.3.2.2)
B(s) = 10.0499646 o055 _ 10.0499646(1— 0.5s)
s? +4.255319149s + 58.51812001 s? +4.255319149s + 58.51812001
(3.3.2.3)

By the way, e is eliminated.
The model of the system and the transfer function of the system are accepted

perfectly matched. So, the transfer function of the system can be written as:

5(5) = P(s) = 10.0499646 g5 _ 10.0499646(L— 0.5s)
s? +4.255319149s + 58.51812001 s? +4.255319149s + 58.51812001
(3.3.2.4)

The IMC controller (q(s)) must be calculated to find the general feedback
structure controller (C(s)). q(s) can be found as in the following equations:

G(s)=P(s) (3.3.2.5)

P _ 10.0499646
© s%+4.255319149s +58.51812001

(3.3.2.6)

s +4.255319149s + 58.51812001
10.0499646

All the transfer functions for creating the general feedback structure

qa(s) (3.3.2.7)

controller is obtained now. So, the general feedback structure controller can for
designing the IMC controller (q(s)), a low pass filter must be designed. For the
flapper control system, the filter can be designed as below:

1

o=ty

(3.3.2.8)

The low pass filter can be chosen as a first order filter.
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The IMC Controller, q(s), can be written as:

s +4.255319149s +58.51812001 . 1

s)=q(s)f(s) = 3.3.2.9
1) =a() 1) 10.0499646 As+1 ( )
be calculated as in the following equations:
Cis)=—36) (3.3.2.10)
1-P(s)a(s)
s? +4.255319149s +58.51812001 o 1
C(s) = 10.0499646 As+1
B 10.0499646(1— 0.5s) . s? +4.255319149s +58.51812001
s? +4.255319149s + 58.51812001 10.0499646(4s +1)
(3.3.2.11)
This equation simplifies to:
2
C(s) = s® +4.2553119149s + 58.51812001 (3.3.2.12)
10.0499646(1 + 0.5)s
The general transfer function of a PID controller can be written such as in the
following:
) 1
S°+ T S+ T
K D L D (3.3.2.13)
TpS

The general feedback structure controller transfer function of the system has

already been found as:

s? +4.2553119149s + 58.51812001
10.0499646(1 +0.5)s

C(s) = (3.3.2.14)

Comparing with the transfer function of a PID controller, it is obvious that the
transfer function of the general feedback structure controller also leads to a PID
controller. By the way the PID controller constants can be found. So, The PID

controller constant can be written as the followings:

Ti = 4255319149 = T, = 0.235 (3.3.2.15)
D
5851812001 = T, = 0.0772717974 (3.3.2.16)
i'D
K. 1

= = K¢ (4 +0.5)=0.023383166 (3.3.2.17)
T, 10.0499646(1 +0.5)
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For the flapper control system, the filter constant 4 can be chosen the same

value as dead time. The following simulation was made when A is 0.5.

N

Stepi

i

10,0006
— e+ ——m  FID > 5’%{

244 25653101 402+58 51612001

Step FID Contraller Transport Scope

Lelay

Transfer Fen

Figure 3.3.2.1: The Simulation Model of IMC Based PID for the System in 35 Hz

The result of simulation:

Figure 3.3.2.2: The Response of the Simulation Model of IMC Based PID for the
System in 35 Hz

3.3.3 Designing of IMC Based PID Controller in 25 Hz Frequency for the
Flapper Position Control System

For the flapper control system, the transfer function of the system and the
model of the system can be accepted equal. This situation makes easier to find

constants of PID controller.
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The model of the system in 25 Hz frequency has been already found as:

11.01148825 505
52 +3.619909492s + 91.00403517

The dead time in the transfer function can be written in the Taylor series such

P(s) = (3.3.3.1)

as the following equation:

e™ =(1-hs) (3.3.3.2)
B(s) = 11.01148825 o055 _ 11.01148825(1 - 0.5s)
s? +3.619909492s + 91.00403517 s? +3.619909492s + 91.00403517
(3.3.3.3)

By the way, e is eliminated.
The model of the system and the transfer function of the system are accepted

perfectly matched. So, the transfer function of the system can be written as:

5(s) = P(s) = 11.01148825 o 0% _ 11.01148825(1— 0.55)
52 +3.619909492s + 91.00403517 52 +3.619909492s + 91.00403517
(3.3.3.4)

The IMC controller (q(s)) must be calculated to find the general feedback

structure controller (C(s)). q(s) can be found as in the following equations:

G(s)=P(s) (3.3.3.5)
5 - : 11.01148825 (3.336)
$° +3.619909492s +91.00403517
2
a(S) _ $° +3.619909492s +91.0403517 (33.3.7)

11.01148825

All the transfer functions for creating the general feedback structure
controller is obtained now. So, the general feedback structure controller can for
designing the IMC controller (q(s)), a low pass filter must be designed. For the
flapper control system, the filter can be designed as below:

1
(As+1)"

The low pass filter can be chosen as a first order filter.

f(s) =

(3.3.3.8)

The IMC Controller, q(s), can be written as:
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s? +3.619909492s + 91.0403517 L1

s)=q(s)f(s) = 3.3.39
1) =a(E) 1) 11.01148825 As+1 ( )
be calculated as in the following equations:
cis)=— 6 (3.3.3.10)
1-P(s)a(s)
s’ +3.619909492s +91.0403517 | 1
C(s) = 11.01148825 As+1
B 11.01148825(1— 0.5s) . s? +3.619909492s + 91.0403517
s? +3.619909492s +91.0403517 11.01148825(4s +1)
(3.3.3.11)
This equation simplifies to:
2
C(s) = s° +3.619909492s + 91.0403517 (3.3.3.12)
11.01148825(4 +0.5)s
The general transfer function of a PID controller can be written such as in the
following:
, 1 1
S+ T S+ =
K D LD (3.3.3.13)
Tps

The general feedback structure controller transfer function of the system has

already been found as:

s? +3.619909492s + 91.0403517
11.01148825(4 +0.5)s

C(s) = (3.3.3.14)

Comparing with the transfer function of a PID controller, it is obvious that the
transfer function of the general feedback structure controller also leads to a PID
controller. By the way the PID controller constants can be found. So, The PID

controller constant can be written as the followings:

Ti =3.619909492 = T, =0.27625 (3.3.3.15)
D
. 9100403517 =T =0.039777461 (3.3.3.16)
i'D
K 1

= = K(1+0.5)=0.025087435 (3.3.3.17)
T, 11.01148825(1+0.5)
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For the flapper control system, the filter constant 4 can be chosen the same

value as dead time. The following simulation was made when A is 0.5.

i

Stepd

¥

11011498925
L @ P > D%{'
e 243 £199094925+91.00403517

Step FIC Contraller

Transpaort Scope
Celay

Transter Fon

Figure 3.3.3.1: The Simulation Model of IMC Based PID for the System in 25 Hz
The result of the simulation is

Figure 3.3.3.2: The Response of the Simulation Model of IMC Based PID for the
System in 25 Hz

3.3.4 Designing of IMC Based PID Controller in 15 Hz Frequency for the
Flapper Position Control System

For the flapper control system, the transfer function of the system and the
model of the system can be accepted equal. This situation makes easier to find

constants of PID controller.
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The model of the system in 15 Hz frequency has been already found as:

4063246906 5o
s2 +5.03144654s + 45.14718784

The dead time in the transfer function can be written in the Taylor series such

P(s) = (3.3.4.1)

as the following equation:

e™ = (1-hs) (3.3.4.2)

B(s) = 4063246906 §05% _ 4.063246906(1— 0.5s)
s? +5.03144654s + 45.14718784 s? +5.03144654s + 45.14718784
(3.3.4.3)

By the way, e is eliminated.
The model of the system and the transfer function of the system are accepted

perfectly matched. So, the transfer function of the system can be written as:

5(s) = P(s) - 4.063246906 g05s _ 4.063246906(1— 0.55)
s? +5.03144654s + 45.14718784 s? +5.03144654s + 45.14718784
(3.3.4.4)

The IMC controller (q(s)) must be calculated to find the general feedback

structure controller (C(s)). q(s) can be found as in the following equations:

g(s) =P 1(s) (3.3.4.5)
5 4.063246906 (33.4.6)
s? +5.03144654s + 45.14718784
2
q(s) = +5.03144654s + 45.14718784 (33.47)

4.063246906

All the transfer functions for creating the general feedback structure
controller is obtained now. So, the general feedback structure controller can for
designing the IMC controller (q(s)), a low pass filter must be designed. For the
flapper control system, the filter can be designed as below:

1
(As+1)"

The low pass filter can be chosen as a first order filter.

f(s) =

(3.3.4.8)

The IMC Controller, q(s), can be written as:
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s? +5.03144654s + 45.14718784 . 1

s)=q(s)f(s) = 3.34.9
1) =a() () 4.063246906 As+1 ( )
be calculated as in the following equations:
cis)=— 6 (3.3.4.10)
1-P(s)a(s)
s? +5.03144654s + 45.14718784 . 1
C(s) = 4.063246906 As+1
B 4.063246906(1— 0.55) . s? +5.03144654s + 45.14718784
s +5.03144654s + 45.14718784 4.063246906(1s +1)
(3.3.4.11)
This equation simplifies to:
2
C(s) = s° +5.03144654s + 45.14718784 (3.3.4.12)

4.063246906(1 +0.5)s

The general transfer function of a PID controller can be written such as in the

following:

(3.3.4.13)

The general feedback structure controller transfer function of the system has

already been found as:

s? +5.03144654s + 45.14718784
4.063246906(1 +0.5)s

C(s) = (3.3.4.14)

Comparing with the transfer function of a PID controller, it is obvious that the
transfer function of the general feedback structure controller also leads to a PID
controller. By the way the PID controller constants can be found. So, The PID

controller constant can be written as the followings:

Ti = 5.03144654 = T, = 0.19875 (3.3.4.15)
D
. 4514718784 =T, = 0111445402 (3.3.4.16)
i'D
K. 1

= = K¢ (4 +0.5)=0.048914083 (3.3.4.17)
T, 4.063246906(4 +0.5)
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For the flapper control system, the filter constant 4 can be chosen the same

value as dead time. The following simulation was made when A is 0.5.

[ |

Stepi

4053245006
—y@—p FID > -C%(
245 03 14465de+45. 14718784

Step FID Controller

¥

Transport Scope
Delay

Transfer Fon

Figure 3.3.4.1: The Simulation Model of IMC Based PID for the System in 15 Hz

The result of the simulation can be shown as below:

Figure 3.3.4.2: The Response of the Simulation Model of IMC Based PID for the
System in 15 Hz

3.3.5 Designing of IMC Based PID Controller in 10 Hz Frequency for the
Flapper Position Control System

For the flapper control system, the transfer function of the system and the
model of the system can be accepted equal. This situation makes easier to find

constants of PID controller.
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The model of the system in 10 Hz frequency has been already found as:

0.060625 o055
09s+1

The dead time in the transfer function can be written in the Taylor series such

P(s) = (3.3.5.1)

as the following equation:

e™ =(1-hs) (3.35.2)
5(s) = 0.060625 _os; _ 0.060625(1-0.55) (3353)
0.9s+1 0.9s+1

By the way, e % is eliminated.
The model of the system and the transfer function of the system are accepted
perfectly matched. So, the transfer function of the system can be written as:

0.060625 o5, _ 0.060625(1—0.55) (3.35.4)

09s+1 09s+1
The IMC controller (q(s)) must be calculated to find the general feedback

P(s)=P(s) =

structure controller (C(s)). q(s) can be found as in the following equations:

G(s)=P(s) (3.3.5.5)
I5 _ 0.060625 (3356)
0.9s+1
- 0.9s+1
S)=——— 3.35.7
q6) 0.060625 ( )

All the transfer functions for creating the general feedback structure
controller is obtained now. So, the general feedback structure controller can for
designing the IMC controller (q(s)), a low pass filter must be designed. For the
flapper control system, the filter can be designed as below:

1

f(s)= 3.35.8
(s) (s+1) ( )

The low pass filter can be chosen as a first order filter.

The IMC Controller, q(s), can be written as:
~ 09s+1 1
s)=q(s)f(s) = 3.3.5.9
) =) =5 060625 * s +1 (3.359)
be calculated as in the following equations:
cis)=— A6 (3.3.5.10)

C1-P(s)q(s)
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09s+1 1

[ ]
_ 0.060625 4s +1
()= . 00606251-05s) 0.9s+1 (3:35.11)
0.9s+1 0.060625(4s +1)
This equation simplifies to:
Cs) = 095+1 (3.3.5.12)
0.060625(4 +0.5)s

This controller can be written as a PI controller. The general transfer function
of a PI controller can be written such as in the following:

K [14- 2| <[ TS+ (3.3.5.13)
T:s Ts

The general feedback structure controller transfer function of the system has
already been found as:

09s+1

C(s) =
®) 0.060625(4 +0.5)s

(3.3.5.14)

Comparing with the transfer function of a PI controller, it is obvious that the
transfer function of the general feedback structure controller also leads to a Pl
controller. By the way the PI controller constants can be found. So, The PI controller
constant can be written as the followings:

T. =09 (3.3.5.15)

Ke 1
T,  0.060625(4 +0.5)

= K.(1+0.5)=14.84536082 (3.3.5.16)

For the flapper control system, the filter constant A can be chosen the same

value as dead time. The following simulation was made when A is 0.5.
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0.8+
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Transfer Fen

Figure 3.3.5.1: The Simulation Model of IMC Based PID for the System in 10 Hz

The result of simulation can be shown as below:

Figure 3.3.5.2: The Response of the Simulation Model of IMC Based PID for the
System in 10 Hz

3.4 A Tuning for Calculating the PID Constants on the Flapper Position Control
System

As it is seen from the PID constants that are found at the above calculations,
the system gain depends on the filter constant. Thus, if the filter constant changes,
the gain of the system will change.

The filter order can be selected large enough to make q proper. A, which is
an flexible parameter, determines the speed of response. If A increases, the speed

response of the control system becomes slower. On the other hand, if A decreases,
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the speed response of the control systems becomes faster. More over, A affects the
robustness of the control system. The higher values of the 4, the higher robustness
are got for the system. (Rivera, 1999)

A tuning can be applied to the gain of the system. When the error signal is
high, the filter constant will be low. So, the response of the system will be fast. But
then, for avoiding overshoot, the filter constant will be high enough may be higher
than 1 or 2, which depends the systems’ dynamic. Then, to for making the system
stable, when the error signal is zero, the filter constant will be not so low but not so
high.

This kind of a A tuning can be applied to the flapper position control system.
For applying it, the PID transfer function should be transformed to the discrete z
domain. The PID constant needn’t to be changed because of being designed in the
continuous time. Only the transfer function of the system will be changed. The
proportional is same in the discrete time changed. The derivative function of the PID

in the discrete time isz—_l. And the integral function of the PID of the PID in the
z

discrete time isZ—Jri. And the sampling time can be chosen as 50 ms.
Z —_

The transfer function of the system was chosen as the transfer function of the
system in 25 Hz, because the highest reference value that can be applied to the
system is 18000 as an integer value data. In this reference, the system behaves as in
the 25 Hz frequency. Thus, using the transfer function of the system in the 25 Hz
results best.

The simulation of the system can be done as it is shown below:
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PID_1

cikis
Embedded
MATLAB Function
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Stepl

11.01148825

s24+3 6189004925+91.00403517

Transfer Fen

Figure 3.4.1: The Simulation of the System for A Tuning

In the simulation, the filter constant will be 0.2 during the 20% of the

response of the system which means that the error signal will be high. Then, the filter

constant will be 2.5 for avoiding the high overshoot. Finally, the filter constant will

be 0.5 when the response of the system reaches to 1.

When these rules were applied to the system the results at the Figure 3.4.2,

3.4.3 and 3.4.4 were obtained respectively.

Figure 3.4.2: The Response of the System with Using A Tuning
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Figure 3.4.3: The Response of the System without Using A Tuning

Figure 3.4.4: The Responses of the System

The lighter line represents the response of the system when tuning is applied.
It is obvious that, the system response is better when the tuning algorithm is applied

to the system to find the gain of the system.
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3.5 A Tuning for Calculating the PID Constants on the Flapper Position Control
System by Using Fuzzy Algorithm
The A tuning can be applied by using the fuzzy algorithm to find the gain of

the system. By this way, the PID constants will be set by the fuzzy algorithm. Before
applying the fuzzy algorithm to the system, the membership functions must be
defined. The membership functions can be changed according to the response of the
system. But the logic for fixing the PID constants will not change. Only filter
constant will be fixed according to the error signal. When the error signal is high, the
filter constant will be low. So, the response of the system will be fast. But then, for
avoiding overshoot, the filter constant will be high enough may be higher than 1 or 2,
which depends the systems’ dynamic. Then, to for making the system stable, when
the error signal is zero, the filter constant will be not so low but not so high.

The membership function of the fuzzy algorithm can be defined as the

following for the flapper position control system:

FIS Variables Membership function plats It poirts: 181
el el el
T [w]
O |
hiata |
05 E

5 1 1 1 1

1 1 1
0 0.1 n2 0s: 0.4 0s 0E o7 ns (e} 1
input wariable "hata"

Figure 3.5.1: Membership Functions
The rules of the fuzzy algorithm were created as the following:

1. If (hata iz e1)then () is zera) (1) ;l
2. 1f (hata iz e2)then (| is mediom) (1)
5. 1f (hata is e3)then () is large) (1)

hata is

[ het [ nat
Figure 3.5.2: Fuzzy Algorithm Rules
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The output function was created as the following:

FIZ “ariahles Membership function plats POt points: 151
ﬁ I o large
it I medium

zero

output varisble "

Figure 3.5.3: Output Functions of the Fuzzy Algorithm

In the output function zero equals to 0.5, medium equals to 2.5 and large
equals to 0.5. So, when the absolute value of error signal is high, the filter constant
will be 0.2. For avoiding the overshoot, the filter constant will be 2.5. Finally, the
filter constant will be 0.5 when the response of the system reaches to 1.

The simulation of the system can be done as it is shown below:

M\
Fuzzy Logic ‘L
Controller
In1
Step T PID_1

v

In1 =@

Scopel

@
| Scope3
—>

Step2
) 4
11.01148825
¢ Ry o
$2+3.6199094925+91.00403517

IZero-Order Transter Fcn Transport Scope
Hold1 Delay

E—"
Stepl Subsystem

Figure 3.5.4: Simulation Model of Fuzzy Algorithm
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The responses of the system with and without using fuzzy algorithm are given

in Figure 3.5.5 and 3.5.6 respectively.

Figure 3.5.5: The Response of the Simulation Model of Fuzzy Algorithm

Figure 3.5.6: The Response of the Simulation Model without Fuzzy Algorithm
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The responses, which are drawn together, are given in Figure 3.5.7.

Figure 3.5.7: The Responses of the System

The lighter line represents the response of the system when fuzzy algorithm is
applied. It is obvious that, the system response is better when the fuzzy algorithm is

applied to the system to find the gain of the system.

3.6 Application of IMC Based PID Controller no the Flapper Position Control
System with Siemens S7 300 PLC

All the calculations, which are made to find the PID constants at the above,
were applied to the system by using the Siemens S7 300 PLC. All the responses,
which are obtained for the references from 15000 to 18000, are drawn at the below
figures. The PLC code of the controller will be given at the *Appendix A’. The
sampling time can be chosen 50 ms.

The system response for the reference signal of 15000, 16000, 17000 and
18000 are given in Figure 3.6.1, Figure 3.6.2, Figure 3.6.3 and 3.6.4 respectively.

15500

15000 +

14500

14000 ~

13500 +

13000

12500

12000 +rr T T T T T T T T T T T T T T T T T T T T T T T
1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figure 3.6.1: The system response for the reference signal of 15000
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Figure 3.6.2: The system response for the reference signal of 16000
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Figure 3.6.3: The system response for the reference signal of 17000

20000
18000
16000
14000
12000
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8000
6000
4000
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1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figure 3.6.4: The system response for the reference signal of 18000

According to the responses, IMC based PID results good in the flapper
position control system. Furthermore, the system responses are better for higher
frequencies, because the model of the system matches to the transfer function of the

system in the higher frequencies.
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3.7 Application of A Tuning for Calculating the PID Constants on the Flapper
Position Control System by Using Fuzzy Algorithm with Siemens S7 300 PLC

All the calculations of the previous section, which are made to find the PID
constants, were applied to the system by using the Siemens S7 300 PLC. All the
responses, which are obtained for the references from 15000 to 18000, are drawn at
the below figures. The PLC code of the controller will be given at the ‘Appendix B’.
The sampling time can be chosen 50 ms.

The aim, creating the fuzzy A tuning algorithm theoretically, is to accelerate
the output signal while the error signal is high. The rules, created for the
fuzzy A tuning algorithm, resulted well at the simulations. On the other hand, when
the rules applied to the system, it was observed that the robustness of the system
went bad. Besides, the system made oscillatory when a disturbance occurred.

In the output function zero equals to 1, medium equals to 0.2 and large equals
to3. So, when the absolute value of error signal is high, the filter constant will bel.
Then, the filter constant will be 0.2 when the system response is close to 1. And
finally, when it reaches the 1 the filter constant will be 3.

Because of the nonlinearities, that could not be inserted to the models used in
simulation, the results obtained in simulation studies could not be obtained in real
time application.

The system response for the reference signal of 15000, 16000, 17000 and
18000 are given in Figure 3.7.1, Figure 3.7.2, Figure 3.7.3 and 3.7.4 respectively.

15500

15000 +
14500 +
14000 ~

13500
13000

12500
12000 +

11500

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Figure 3.7.1: The system response for the reference signal of 15000
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Figure 3.7.2: The system response for the reference signal of 16000
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Figure 3.7.3: The system response for the reference signal of 17000
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Figure 3.7.4: The system response for the reference signal of 18000



4. CONCLUSION

There are some advantageous of IMC based PID controller such as the
followings:

e The IMC based PID controller depends on the system model. The PID
constants change according to the system model. By the way, calculating
only one parameter is enough for creating the IMC based PID controller.
But for the classical PID controllers, three controller parameters should be
found when creating the controller.

e The IMC based PID control is sensitive for the change of models by
tuning the filter constant (1) of the controller. For the higher values of
the 1, the system will be more robust. Besides, for the lower values of 1,
the system response will be faster.

Tuning of the filter constant with a fuzzy algorithm has also some benefits.
Tuning A with a fuzzy algorithm can make system response faster. Tuning A with a
fuzzy algorithm can also make system more robust. Moreover, the filter constant can
be changed anytime according to the system response. So the overshoot and
disturbance can be eliminated.

When comparing the results with the IMC based PID control, the tuning with
a fuzzy algorithm’ results are really good. By using the fuzzy algorithm, the settling
time and the overshoot of the system are shortened. Moreover, the system is more
robust when the fuzzy algorithm is applied.

The aim was applying the fuzzy algorithm to the real system was to make the
system faster and more robust. Thus, the filter constant was chosen small enough to
make the system faster. Then, the filter constant was chosen big enough to avoid the
overshoot. Finally, the filter constant was chosen the same as the system’s dead time,
which was also used as filter constant in the IMC based PID control, to make the
system stable. This algorithm was successful in the simulation.

Applying to the system the fuzzy algorithm that was used to the flapper
control system with PLC, didn’t result good. Then, another algorithm was applied to
the system. Firstly, the filter constant was 1, and then the filter constant was chosen
0.2. Finally, it is chosen 3. This algorithm was successful when it was applied to the

system. On the other hand, the results in the simulation were not good.
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The flapper position control is a nonlinear system. The non linearity of the
system makes hard apply fuzzy algorithm to the system. So, the fuzzy algorithm that

was created was unsuccessful even it resulted well in the simulations.
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APPENDIX A

FE1 : Title:

Comment:

Hetwork 1: Hatanin hesaplanmasi
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Hetwork 4 : Turev icin sinirlandirma
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Hetwork 7: Integral icin sinirlandirma

Imax
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Hetwork 8 : Integral icin sinirlandirma

Comment:
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L #lnin_ sinir
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#7d

#T1

#V¥top

Hetwvwork 10 : Kontrolor icin sinirlandirma

Comment:

L 1.000000e+000
T #x
L #Tcop
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Hetwork 11: Kontrolor icin sinirlandirma

Conment:

L #Trop
L #uin sinir
==
JHE _nos
L 0.000000e+000
T #x
L #Tuin sinir
T #¥rop

_0os: NOP 0

Hetwwork 12 : Title:

Conment:

L #e

T #e_1
L #T1
T #Yi_1
TRUNC

T #u 1
L #Tp
TRUNC

T #u_p
L #7d
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T #u_d
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T #1

Hetwork 13 : Title:
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APPENDIX B

FUNCTION BLOCK FE4[

?ER;IHPUT

REF,¥:INT;

Ti,Td, T=: REAL;

Umax, Umin, Umax =inir,Umin =inir:REAL;
END VAR B B

VAR OUTPUT

U,U I,U P, U D:INT;
HATA: INT;

END VAR

VAR TEMP
TEMF_D, TEMP I,K,1,EBLl,B2,B3, TEMP_ABS: REAL;
END VAR

VAR
e,e 1,vi,vi 1,¥d,¥Yp, ¥ _top,®:REAL;
END VAR

COHNST
11:=1.0;
12:=0.2;
13:=3.0;
EHD_QDNST

BEGIN
HATA: =REF-Y;
e:=INT_ TO_ REAL (HATA) ;

TEMP AES:=ABS (&) / (INT_TO REAL (REF-13000)) ;

//FUZZY
flel
IF TEMP_ABS<=D.D6524 THEHN
BEl:=1;
ELSE
IF TEMP_ABS<=D.1871 THEN
Bl:=-85.2061* (TEMP_ABS-0.1871);
ELSE
Bl:=0;
END IF;
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f ez
IF TEMP_AES{:D.D6445 THEHN
BZ:=0.0;
ELSE
IF TEMP_AES(ZD.lﬁ THEN
EZ:=08.6542* (TEMP AES-0.06445);

ELSE
IF TEMP_AES(ZD.EE THEHN
EZ2:=1.0;
ELSE
IF TEMP_AES(ZD.B? THEHN
BZ2:=-4.1666% (TEMP_ABS-0.87);
ELSE
BZ:=0.0;
END IF;
END IF;
END IF;
END IF;
/el
IF TEMP AES<=0.&3 THEN
B3:=0.0;
ELSE
IF TEMP_ABS{=D.B? THEHN
BE3:=4.1666% (TEMP ABS-0.683) ;
ELSE
E3:=1;
END IF;
END IF;

S/ LAMDA HESABRT
1:=({{(B1*13)+ (B2*121+ (B3*11))/ (B1+B2+EB3) ;

K:=0.025087435/ (1+0.5) ;

S/P NIN HESAPLANMAST
Yp:=(KE/ (Td*Td) ) *e;

J/TUREVIN HESAPLANMAST
Yd:=(E/ (Td*T=g))* (e-e_1);
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fiturev ginirlandirmasi
IF Yd>=Umaxz THEHN

Yo =Umax;
END IF;

IF Yd<=Umin THEN
Y =Umin;
END IF;

//INTEGRALIN HESAPLANMASI

Yi:=(((E*T=*H)/ (2. 0% (T1* (Td*Td))) ) * (e+e 1))+¥1 1;

//integralin sinirlandirilmasi

IF Yir=Umax sinir THEN
¥i:=Umax sinir;

END IF;

IF ¥i<=Umin =inir THEN
¥Yi:=Umin sinir;
END IF;

ffkontrolor icin sinirlandirma
¥:=1.0;
IF ¥ top>=Umax sinir THEN
¥:=0.0;
Y top:=Umax sinir;
END IF;

IF ¥ top<=Umin sinir THEN
¥:=0.0;
¥ top:=Umin sinir;

END IF;

e li=e;

¥Yi 1:=¥1i;

U I:=REAL TO INT(Y¥i 1);
U BP:=REAL TO INT( Pl

U D:=REAL TO INT (¥d);
U: =REAL_TO_INT (Y top);

END FUNCTIOH BLOCK
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