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ABSTRACT 

In this study, Growing Cell Structure (GCS) is 
proposed for the segmentation of ultrasound images. 
Elements of the feature vectors are formed by the fast 
Fourier transform (FFT) of image intensities in 4×4 
square blocks. Two neural networks, Kohonen map 
and GCS are comparatively examined for 
segmentation of two ultrasound images. It is observed 
that GCS gives the best segmentation performance. 
 
 

I. INTRODUCTION 
Segmentation is often an important step in the analysis of 
medical images. A correct segmentation promises a more 
accurate extraction of clinical information from 
ultrasound (US) images for clinical applications. 
However, US image segmentation in practice is a very 
hard problem due to the complex nature of US images. To 
accomplish US image segmentation more efficiently and 
accurately, a computerized approach would be an ideal 
choice for clinical use. 
 
Kohonen’s Self-Organising Maps (SOM) [1] generate 
mappings from high-dimensional signal space to lower 
dimensional topological structures. Their main features 
are formation of topology-preserving feature maps and 
approximation of the input probability distribution.  
 
Incremental artificial neural networks grow as they learn, 
and shrink as they forget. It is observed that incremental 
artificial neural networks and competitive learning are 
widely used in the literature [2 - 4]. Fritzke [2] proposed a 
growing cell structure (GCS) for self-organizing 
clustering and topology preserving. To its simplicity, the 
competitive Hebbian rule has been used for topology 
learning in the growing neural gas (GNG) [3] and 
dynamic cell structure [4]. The GCS has three main 
advantages over SOM: First, the network structure is 
determined automatically by the input patterns; secondly, 
the network size needs not to be predefined; and thirdly, 
all parameters of the model are constant.  

In this study, Kohonen network and GCS are 
comparatively examined for the segmentation of 
ultrasound images. 
 

II. METHODS 
The feature extraction method used in a previous study  

[5] is also realized in this study. The ultrasound image is 
splitted into square blocks of 4×4 pixels, and 2D-FFT of 
each block is computed. 2D-FFT coefficients of a 4×4 
block are shown in Figure 1. In the proposed method, only 
four coefficients (F11, F12, F21 and F22) which are shown 
inside a bold-bordered square are used to form the 
codewords.  

The global scheme for the segmentation of the 
ultrasound images is described in Figure 2. After 
vectorization (transformation of image blocks into 
vectors), the 2D-FFT coefficients are computed in the 
second stage to form codewords. Codeword vectors are 
formed by using the absolute values of the complex Fij 
coefficients. In the third stage, the codewords are 
presented to an artificial neural network (ANN) for the 
learning process.  
 
 
 
 
 
 
 
 
Figure 1. Selected FFT coefficients for a block of 4×4 
pixels. 
 
 
 
 
 
 

Figure 2. Segmentation process. 
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III. GROWING CELL STRUCTURE (GCS) 
The goal of a GCS network is to create a mapping of 
vector space V with a n-dimensional probability 
distribution P(ξ) onto a discrete k-dimensional topological 
structure A. This mapping should have the following 
properties: First, similar input signals are mapped onto 
topologically close elements of A; secondly, topologically 
close elements in A should have similar signals being 
mapped onto them; thirdly, regions of V where the 
probability density of the input vector distribution is 
higher should be represented by correspondingly more 
elements in A. The initial topology of network is a k-
dimensional simplex. During self-organisation new cells 
are added to the network and superfluous cells are 
removed.  
 
In two dimensions, GCS performs the Delaunay 
triangulation of input vector space according to an 
unknown input vector density distribution P(ξ).  
 

LEARNING OF THE GCS NETWORK 
1. Start with k-dimensional simplex. The (k+1) 

vertices are initialized to random vectors in Rn .  
2. Choose an input signal ξ according to the input 

distribution P(ξ). 
3. Determine the best-matching unit s (the unit with 

the nearest reference vector): 
ξξ −≤− cs ww  Ac ∈∀(  

4. Add the squared distance between the input 
signal and the best-matching unit s to a local 
error variable Es : 

2ξ−=∆ ss wE  
5. Move s and its direct topological neighbours 

towards ξ by fractions εb and εn , respectively, of 
the total distance: 

)( sbs ww −=∆ ξε  

)( ini ww −=∆ ξε  
(With Nc we denote the set of topological 
neighbours of a unit c, i.e. those units which are 
connected to c by an edge.) 

6. If the number of input signals generated so far is 
an integer multiple of a parameter λ, insert a new 
unit as follows.  
• Determine the unit q with the maximum 

accumulated error: 

cq EE ≥  )( Ac ∈∀  

• Insert a new unit r by splitting the longest 
edge emanating from q, say an edge leading 
to a unit f. Insert the connections (q, r) and 
(r, f) and remove the original connection  
(q, f). To rebuild the structure such that it 
again consists only of k-dimensional 
simplices, the new unit r is also connected 

with all common neighbours of q and f, i.e. 
with all units in the set fq NN Ι . 

• Interpolate the reference vector of from the 
vectors of q and f: 

)(5.0 fqr www +=  

• Decrease the error variables of all 
neighbours of r: 

i
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• Set the error variable of the new unit r to the 
mean value of its neighbours: 
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7. Decrease the error variables of all units: 

cc EE β−=∆  )( Ac ∈∀  
8. If a stopping criterion (e.g. net size or some 

performance measure) is not yet fulfilled, 
continue with step 2. 

 
IV. COMPUTER SIMULATIONS 

In this study, two ultrasound images are segmented by 
using GCS and Kohonen networks. The ultrasound 
images of kidney cyst and bladder are shown in Figures 3 
(a) and (b), respectively. All simulations are performed on 
Pentium IV-2.4 GHz PC using MATLAB 6.0. 
 
The ultrasound images are splitted into square blocks of 
4×4 pixels. Codewords are formed by using 2D-FFT of 
the square blocks. Training set consists of codewords 
formed by all the square blocks in the image. 
 
The topology of the Kohonen network is estimated before 
the training. In the study, two different topologies of the 
Kohonen network are determined after 10 different trials 
with the same training set. Figures 4 (a) and (b) show 
segmented kidney cyst and bladder images by using the 
Kohonen network, respectively. The structure of the 
Kohonen network is determined as 5x5 and 6x6 for 
segmentation of the kidney cyst and bladder images in 
Figures 4 (a) and (b), respectively.  
 
Figures 4 (c) and (d) show segmented ultrasound images by 
using the GCS. In contrast to Kohonen network, there is 
no need to specify the network size of the GCS in 
advance. All parameters are constant. To specify the 
parameters, it runs with several variations of parameters. 
In the study, the parameters are selected for both kidney 
cyst and bladder images as follows; 
 0005.0,5.0,200,0006.0,05.0 ===== βαλεε bn  
Both ultrasound images, kidney cyst and bladder, in 
Figures 3 (a) and (b) are segmented into six tissues, 
respectively. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Ultrasound images of (a) kidney cyst, and (b) bladder. 
(a) (b) 

(a) (b) 

(d) 
(c) 

Figure 4. (a) and (b) Segmented ultrasound images by the Kohonen network. 

Figure 4. (c) and (d) Segmented ultrasound images by the GCS network. 



V. CONCLUSION 
In this study, two neural networks are compared for the 
segmentation of US images, kidney cyst and bladder. 
During the training of the GCS, the number of nodes of 
the network is determined automatically. However, the 
topology of the Kohonen network must be estimated 
before training. After 10 different trials with the same 
training set, the structure of the Kohonen network are 
determined as 5x5 and 6x6 for segmentation of the kidney 
cyst and bladder images, respectively. However, for 
segmentation of both US images with GCS, number of 
nodes is only six. It is observed that GCS give better 
segmentation performance than Kohonen network for 
both US images. 
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