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Abstract – This study presents a coherency measure for 
use in multi-machine power systems. This measure was 
based on the electrical distance and inertia concepts. To 
develop such a measure, after redefining the electrical 
distance between two generators as coherency distance 
depending on their inertias we investigated the correlation 
between two generators considering their coherency 
distances to all the generators in the system. To do this 
rank correlation function was used. Tests on a test system 
verified the validity of this coherency measure. 
 
 

I. INTRODUCTION  
 
    Modern interconnected power systems cover very 
large geographic areas. To study stability of such 
systems, it is neither practical nor necessary to model in 
detail the entire interconnected system. It is a common 
practice to represent parts of the system by some form of 
reduced order equivalent model. 
    There exist basically three approaches for power 
network reduction: Modal analysis [1, 2], which reduces 
the system preserving the most dominant modes, 
coherency approach [3, 4], which produces a physical 
equivalent, and estimation [5], which needs no system 
parameter. 
    The first step of a coherency based power network 
reduction algorithm is the identification of coherent 
generators. This is done either by running transient 
stability analysis program for full system, or by 
predicting those generators by some kind of a coherency 
measure.  
    Coherency means that some generators swing together 
upon remote disturbance and can be represented by an 
equivalent generator. 
    Although electrical distance is dominant for coherency 
behaviour, to develop a coherency measure independent 
of the location of the fault the effects of generator 
inertias must be taken into account also. Further, such a 
coherency measure should be simple enough in order to 
avoid computation complexity. 
    In literature, there are several studies improving such 
a measure [6, 7, 8]. 
    Although the techniques reported in literature predict 
coherent generators with sufficient accuracy, they are 
generally lack of computational simplicity. In addition, 
they need a predefined tolerance to identify whether two 

generators coherent or not, which has to be determined 
for every system separately. 
    In this study we developed a coherency measure based 
on both electrical distances between generators and 
generator inertias. 
    The electrical distance between two generators was 
redefined using a weighting factor depending on their 
inertias. Since it is expected that two generators 
electrically very close to each other and with nearly the 
same inertias swing together whatever the fault position 
is, we identified those generators mostly satisfying these 
criteria as coherent. To obtain such generator groups, we 
investigated the correlation between every two 
generators in the system using redefined electrical 
distances between them. The correlation function we 
used was the rank correlation function, which was more 
reliable statistically than the simple correlation function. 
Generators were grouped from mostly coupled to least 
coupled according to rank correlation coefficients 
between them. 
    We tested our coherency measure on a sample system 
called New England test system, which is used by many 
investigators. We compared transient stability curves of 
predicted generator groups. Results were satisfactory. 
    We found that the rank correlation based coherency 
measure was simple enough and proper for identification 
of coherent generators. 
    
 

II. METHOD 
 
    One of the reasons why two generators swing together 
upon a disturbance is the strict geometric coherency 
condition between them [9]. This condition can be 
expressed for two generators, G3 and G4, on a sample 
system shown in Figure – 2.1 as 
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Where tij is the synchronizing power coefficient between 
generators and mi is inertial time constant of the 
generator Gi. Assuming E3 ≈ E4 ≈ 1, synchronizing 
power coefficient is mostly determined by the electrical 
distances. 
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Figure – 2.1 Sample  system 

 
    Thus, for nearly perfect coherency behaviour this 
condition can be interpreted as the following two 
separate conditions: 

• There should be a very large admittance 
between generators. 

• Inertias should be nearly the same. 
    To unify these two separate conditions in a compact 
coherency measure, we first define the ‘coherency 
distance’ between two generators. 
 
    Coherency Distance 
    We define the ‘coherency distance’ between two 
generators as 
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Where Bij is the corresponding term to the generator i 
and generator j in the reduced admittance matrix of the 
system and Hi is the inertia of the generator i. The matrix 
B’, which is comprised of all Bij’s was named as 
‘coherency distance matrix’. 
    Depending on this definition we determine the 
tendency of two generators to swing together by simply 
measuring the correlation between those two 
corresponding columns, or rows, in this matrix. 
 
    Rank Correlation Function and Coherency 
Measure 
    The most widely used measure of association between 
variables is the linear correlation coefficient: 
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where 
_
x  is the mean of ix ’s,  

_
y  is the mean of iy ’s for 

at least 20 measurements, where ix ’s and iy ’s represent 
generator distances between each other in this study.    
    However, r is a poor statistic for deciding whether an 
observed correlation is statistically significant, or 

whether one observed correlation is significantly 
stronger than another [10]. 
    The uncertainity in interpreting the significance of the 
linear correlation can be overcome by nonparametric or 
rank correlation, where value of each ix  is replaced by 
the value of its rank among all the other ix ’s in the 
sample that, is, 1, 2, 3, ...N. 
    Let iR be the rank of  ix  among the other ix ’s, iS  be 
the rank of iy  among the other iy ’s, then the rank-order 
correlation coefficient is defined to be the linear 
correlation coefficient of the ranks,  
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is the measure of the degree of the ‘coupling’ or 
‘coherency’ of two generators, or any two buses, where 

iR  and iS correspond to the ranks of magnitutes of their 
coherency distances  to other buses.  
    Using the relation (2-4) the degree of coupling 
between generator i and generator j can be defined as 

[ ])j(:,B),i(:,Br)j,i(C s ′′=
∆

                                           (2-5) 
And corresponding matrix can be named as ‘coherency 
matrix’ whose dimensions were determined by the 
number of the generators in the system. 
 

III. RESULTS 
 

    To test the validity of our cohererency measure we 
used the New England test system shown in Figure – 3.1. 
This system include 10 machines, 39 buses and 46 lines. 
    Table – 3.1 presents the correlation matrix of the 
system and Table  - 3.2 gives generator groups according 
to the correlation level. 
    Figures – 3.2 - 6 present generator swing curves 
obtained upon a 0.12 second three-phase short circuit at 
bus 29. 
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Figure – 3.1 New England test system 



Table – 3.1 Correlation matrix of the New England 
system 
 
 1 2 3 4 5 6 7 8 9 10 

1 1.0          
2 0.4 1.0         
3 0.4 0.9 1.0        
4 0.4 0.3 0.3 1.0       
5 0.3 0.2 0.2 0.9 1.0      
6 0.4 0.3 0.4 0.8 0.7 1.0     
7 0.4 0.3 0.4 0.8 0.7 0.9 1.0    
8 0.8 0.3 0.3 0.4 0.3 0.4 0.4 1.0   
9 0.7 0.1 0.2 0.4 0.3 0.4 0.4 0.7 1.0  
10 0.5 0.6 0.6 0.0 0.0   0.0 0.0 0.4 0.1 1.0 
 
 
Table – 3.2 Generator groupings of the New England 
system according to correlation levels 
 
Correlation level Generator groups 

1 2 3 4 6 8 9 10 r = 0.9 
   5 7    
2 4 6 1 9 10 r = 0.8 3 5 7 8   

2 4 1 10 
3 5 8  
 6 9  r = 0.6 

 7   
r = 0.7 with r = 0.8 and r = 0.5 with r = 0.6 produces the same 
groupings. 
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Figure – 3.2 Swing curves, units: 1, 8 
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Figure – 3.3 Swing curves, units: 2, 3 
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Figure – 3.4 Swing curves, units: 4, 5 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
5

10

15

20

25

30

35

40

Time (seconds)

R
ot

or
 a

ng
le

 (d
eg

re
es

)

6 

7 

 
Figure – 3.5 Swing curves, units: 6, 7 
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Figure – 3.6 Swing curve, unit: 9 

 
 

IV. CONCLUSIONS 
    Swing curves verifies the coherent generator groups 
predicted by the coherency measure we developed. 
Coherency behaviour expected by high correlation 
levels, r > 0.6, is clear. On the other hand, correlation 
level r = 0.6 produces still coherent generator groups 
even if they are not strictly coherent. Multi-frequency 
behaviour of the generating unit 8 descends from the fact 
that its inertia is very small than that of unit 1 and they 
are both electrically close to the disturbance. Despite the 
high frequency components included by the unit 8’s 
stability curve it still swings together with the unit 1. In 
order to express the role of the generator inertias on the 
coherency behaviour Table – 4.1 presents the inertial 
time constants in the New England system. 
 
Table – 4.1 Generator inertias in the New England 
system 

Generators 
1 2 3 4 5 6 7 8 9 10 

42. 30.3 35.8 28.6 26. 34.8 26.4 24.3 34.5 500. 
Inertial time constants (seconds) 

 
    Coherency behaviour of the unit 9 is a little bit vague 
with the units 1 and 8. However, in a network reduction 
process aggregation of these generators would have little 
effect on the behaviours of preserved generators under 
study. 
    Another point is that grouped generators are generally 
electrically close to each other. This verifies the 
dominant nature of the electrical distance on coherency 
behaviour of generators. And our coherency measure 
takes this account. 
    Results show that the coherency measure we 
developed on the electrical distance and inertia concepts 
is valid and proper for identification of coherent 
generators in power systems. 
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