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Abstract — Possible ElGamal like digital signature
schemes are examined and required numbers of
additions, multiplications,  exponentiations and
inverses are tabulated. Complexities of inverse and
exponentiation algorithms are evaluated in terms of
multiplication subblocks. Most effective schemes are
selected and compared versus time duration
criterion.

1. INTRODUCTION

Today, most of the communications activities are
done over open computer networks, since they provide
opportunity of fast, effortless, and inexpensive
communications between different regions of the
world. However, maintaining secure communications
over an open channel is an important problem.

There are at least three requirements of
communications security: Privacy, authentication, and
integrity. Privacy can be provided by encyption and
decryption. In addition to encryption and decryption ,
“Digital Signature” concept is developed to provide
authenticity and integrity features.

Depending on these requirements, two types of
cryptographic systems have appeared. First one is the
“conventional cryptographic system” which relies on
the use of a single piece of private and necessarily
secret information known as the key. So, conventional
cryptography can also be called “single-key
cryptography” or “secret-key cryptography”. Second
one is called “public-key cryptography”, or “two-key
cryptography”. It differs from the conventional
cryptography in that there is no longer a single secret
key shared by two users. There exist two keys per
entry. One key which is publicly revealed and called
“public-key”, is used for encryption; the other key
which is kept in secret and called “private-key”, is
used for decryption. The public-key cryptosystems are
more advantageous, since they do not require any key
distribution over the insecure channels. -But, the
computation  time required by  single-key
cryptosystems is less. So, some hybrid systems which
combine both type of cryptosystems, are developed.

In 1984, Tahar ElGamal proposed a new signature
scheme[1], together with an implementation of the
Diffie-Hellman key distribution scheme that achieves
a public key cryptosystem. The security of system
relies on the difficulty of computing discrete logarithm
over the finite fields. This scheme has become very

popular and formed a basis for Digital Signature
Standard (DSS) which was proposed by U.S.
government for electronical verification of the
integrity and source of the unclassified information.

After the proposal of ElGamal digital signature
scheme, some modified versions have appeared. These
schemes have implemented by interchanging the
parameters of ElGamal digital signature scheme. In
this paper, ElGamal like digital signature schemes [2]
are worked.

2. ELGAMAL DIGITAL SIGNATURE SCHEME

The ElGamal digital signature algorithm [1] can be
summarized as follows:

Let p be a large prime, at least of length 512 bits,
and o be a primitive element of GF(p). Both of them
are publicly known.

Let m be a document (or the hash of the document)
to be signedand 0 < m < p-1.

X is the private key and y is the public key so that:

y=a"mod p @)
for each user.

If a user whose public key is y and private key is x,
wants to sign a document m, a signature pair (r, s) is
constructed such that:

o" =y rmodp )
where 0 <r,5 <p-l, is satisfied.

The Signing Procedure:
1. Choose a random number k, 0 < k < p-1, so that
gedk, p-1)=1.
2. Compute the parameter r as follows:
r=a*mod p. 3)
3. Compute the parameter s as follows:
s=k™(m - xr) mod (p-1) “)

Equation (4) has a unique solution for s, since k is
chosen such that ged (k , p-1)=1.

The Verification Procedure:

The message (or its hash) m and the digital
signature (r , s) are known. So check whether equation
(2) given as a™ = y'r* mod p, is satisfied or not. If it is
satisfied then the digital signatureis verified.

If the message m is altered during transmission, or
a public key y- different from the actual public key y
is used, equation (2) cannot be satisfied; therefore
message integrity and user authenticity is guaranteed.
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3. ELGAMAL LIKE DIGITAL SIGNATURE
SCHEMES

L. Ham and Y.Xu [2] have made a complete list of
possible digital signature schemes modified from
ElGamal algorithm. They have presented a parametric
equation for all digital signature schemes of the type:

i ax = (bk + ¢) mod (p-1) (5)
where the parameters (a, b, ¢) can be some simple
mathematical combinations of the values (m, r, s, 1) as
given in Table 1. So the verification for the above
parametric equation becomes similar to equation (2):
y* =r°a° mod p )

Harn and Xu omit other simple combinations of
values (m, r, s, 1), since some restrictions are needed
for the sake of security [2].

TABLE 1
PROPOSED COMBINATIONS OF PARAMETERS (a, b, c)
Alg. No a b c
1 r s m
2 m S r
3 r m S
4 m r s
5 S r m
6 S m r
7 r.m I S
8 1 r.m s
9 S 1 r.m
10 1 s r.m
11 r.m S i
12 s rm 1
13 r+m 1 s
14 s 1 r+m
15 1 r+m 5
16 1 s r+m
17 r+m S 1
18 S r+m I

Signing and verification equations for ElGamal
like digital signature schemes can be found by
substituting the proposed combinations of (a, b, c)
parameters into equations (5) and (6).

We first summarize the notation:

p:the prime number ,

m:the sent message and 0 <m < p-1,

r,8:signature pair and 0 < (r,s) < p-1,

ou:primitive element of GF(p),

x:the private key,

y:the public key equals to o* mod p,

k:the random number with 0 < k < p-1 satisfying
ged (k,p-1)=1.

If the difference between +d and -d, and the
difference between d and d”', where d € (x, k, m, 1, §)
are neglected, all the signing and verificajion
operations for these schemes can be listed below:

1) rx = (m + ks) mod (p-1): (ElGamal Scheme) [1]

Signing the message m:

r=o*modp,s=k"(rx —m) mod (p-1)
Verifying the signature:
Check whether r'a™ mod p =y mod p

2) mx = (ks + r) mod (p-1):

Signing the message m:
r=a*modp,s=k'(mx - r) mod (p-1)
Verifying the signature:

Check whether y™ mod p = ot mod p

3) xr=(mk + s) mod (p-1):

Signing the message m:

r=o mod p, s = (rx — mk) mod (p-1)
Verifying the signature:

Check whether y" mod p = o’r" mod p

4) mx = (rk + s) mod (p-1): (Harn Scheme 1) {3]
Signing the message m:

r=o*modp,s = (mx - kr) mod (p-1)

Verifying the signature:

Check whether y™ mod p = Fa* mod p

5) sx = (rk + m) mod (p-1): (AMV Scheme) [4]
Signing the message m:

r=o*modp,s=x"(rk + m) mod (p-1)
Verifying the signature:

Check whether y* mod p =r'a™ mod p

6) sx=(mk +r1) mod (p-1):

Signing the message m:
r=a*modp,s=x"(mk +r) mod (p-1)
Verifying the signature:

Check whether y* mod p = o't™ mod p

7) mmx = (k + s) mod (p-1): (Optimal Scheme) [5]
Signing the message m:

r=oa'modp, s = (rmx - k) mod (p-1)

Verifying the signature:

Check whether y™' mod p = ra® mod p

8) x = (s + krm) mod (p-1): (Yen-Lain Scheme) [6]
Signing the message m:
r=o*modp,s=(x+krm) mod p

Verifying the signature:

Check whether "o mod p =y mod p

9) sx =(k + mr)mod (p-1):

Signing the message m:
r=o*modp,s=x"(k + mr) mod (p-1)
Verifying the signature:

Check whether y* mod p = ra™" mod p

10) x = (sk + rm) mod (p-1):

Signing the message m:
r=a*modp,s=k(x-rm)mod (p-1)
Aerifying the signature:

Check whether y mod p = o"™r* mod p

11) mrx = (ks + 1) mod (p-1}:
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Signing the message m: 14) sx = (k + (m + r)) mod (p-1):
r=o*modp,s =k"(mrx - 1) mod (p-1) Signing the message m:
Verifying the signature: r = a* mod p,s=x"'(k +(m +r)) mod (p-1)
Check whether y™* mod p = ar®* mod p Verifying the signature:

Check whether y* mod p = ra™" mod p
12) sx = (rmk + 1) mod (p-1):
Signing the message m: 15) x=(k(m +r1) + s) mod (p-1):
r=a*modp,s=x"'(rmk + 1) mod (p-1) Signing the message m:
Verifying the signature: r=a*mod p,s={x—k(m +r)) mod (p-1)
Check whether y* mod p = ar"™ mod p Verifying the signature:

Check whether y mod p = r"™o mod p
13) x(r+m) = (k + s) mod (p-1): (Harn Scheme 2) (7]
Signing the message m: 16) x = (sk + (r + m)) mod (p-1):
r=a“modp,s=(x(m+r)-k) mod (p-1) Signing the message m:
Verifying the signature: r=o* mod p,s=k'(x-(m+r)) mod (p-1)
Check whether y™" mod p = ra® mod p Verifying the signature:

r+m_s

Check whether y mod p = " ™r mod p

17) x(m+r)=(ks + 1) mod (p-1):

TABLE IL Signing the message m:
OPERATION NUMBERS OF DIGITAL SIGNATURE SCHEMES | " & 1 o p,s=k'(x(m +r)- 1) mod (p-1)

Verifying the signature:

5 ] ; _§ P : 5_ Check whether y™™ mod p = ar’ mod p
$ g|$ S et n
g gé ® S S S S 1?) §x-—(k(m+r)+ 1) mod (p-1):
§ &S| § $ g £ 3 g Signing the message m:
3 g2 | 28 2 2 2 Z r=o*modp,s=x"(k(m +r) + 1) mod (p-1)
Scheme 1 | Sig. | ! 2 2 1 1 Verifying the signature:
“iCauah 1 ¥or ! ! i Check whether y* mod p = ar™" mod p
Scheme 2 Sig. ! 2 2 1 1
Scherme3 ::gr | ; ; ? The numbers of fundamental arithmetic operations
Ver. 1 1 3 for each scheme are calculated to make a comparison
Scheme 4 | Sig. | | 2 2 1 in terms of time duration and shown in table II.
- Harnl Ver. ] 1 3 If N is the length of binary strings that are
Scheme 5 | Sig. | | 2 2 l ! multiplied or divided, complexity of this operation is
=AMY e l l 3 given in big-O notation as O(N?) [8).
Scheme 6 Sig. 1 2 2 1 1 - N 5y o 1
Ver. 1 1 3 The time duration of addition or subtraction
Scheme 7 | Sig. | | 2 2 1 operation is much smaller than that of multiplication
- Optimal [ Ver. 2 1 2 or division; hence, addition is negligible with respect
Scheme 8 | Sig. | | 2 2 ! to multiplication. On the other hand, division takes
e (LM T 1 ! 2 approximately the same time with multiplication,
Scheme 9 ?,'fr l ; f I ; whereas inverse and exponentiation operations are
Scheme 10 1 Sie. 1 2 3 1 1 more complex. Multiplication operation is a basic
Ver. 2 1 2 block in inverse and exponentiation operations. In the
Scheme 11 | Sig. | | 3 3 1 ] next section, time durations of inverse and
Ver. 2 ! < exponentiation operations are expressed in terms of
Bthegne k2 3'; : : ? . ; time durations of multiplication and division
Scheme 13 | Sie. 2 1 1 1 operations.
- Harn 2 Ver. | 1 1 1 2
Scheme 14 | Sig. [ 2 ] 1 1 i 4. COMPLEXITIES OF EXPONENTIATION
Vers ] : : AND INVERSE ALGORITHMS
Scheme 15 | Sig. 2 1 | 1
ver. 11 ! l z The worst case analysis will be employed. W
Scheme 16 | Sig. [ 2 ] 1 1 I y 4 ROYEC. e
sl G| 1 1 2 assume that all numbers which are going to be
Scheme 17 | Sig. |2 ) 7] 1 1 operated, are of bit length N, where N is smaller than
Ver. | |1 ! 1 2 or equal to the bit length of prime number p.
Scheme 18 %ﬁ_ f f f : ; All the algorithms are taken from Knuth [9].
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The Exponentiation Algorithm; It is also known as
the binary left to right exponentiation and computes
M*=C mod n, as follows:

El. Lete =en.i€n.2.e oo €€ -

E2. Set the variable C to 1.

E3. Repeat steps E3a and E3b for i = N-1, N-2,.....1, 0:

E3a. Set C=C* mod n

E3b. If e;=1, then set C=(C M) mod n
E4. Terminate the algorithm. C is the ¢" power of M
modulo n.

It can be seen that the number of times that the
program runs into the E3 loop equals to the number of
digits (N) of the number e. If e; is 1 then there are 2
multiplications and 2 divisions; if ¢; is 0 then there are
| multiplication and 1 division. So any time in the
loop, there are at most 2 multiplication operations and
2 division operations. In the worst case in which all ¢;
are 1, there are 2N multiplication and 2N division
operations totally. Let Ty, Twa, Tav be the time
duration of exponentiation, muitiplication, division
operation respectively, then maximum value of T.,, is:

Texp = 2N(Tmul 2 Tdiv) (7)
Also Tgy equals approximately to Tpy, SO
Texp=4NTpu ®)

Since the complexnty of multiplication operation is

given as O(N ), the complexity of exponentlatlon is

given as oMY by (8).

The Inverse Algorithm: Given two nonnegative
integers u and v, this algorithm determines a vector
(u;, Uz, u3) such that uu,+vu,=u; and u; isthe
ged (u, v). The computation makes use of auxiliary
vectors (v, Vo, v3) and (t;, t, t3). All vectors are
manipulated in such a way that the relations
uty + vt; = t3, uu, + vu, = Uy and uv, + vv, = v; hold
throughout the calculations. If this algorithm is used to
find the inverse of any number a € GF(p), the inputs
of the algorithm are u=p, v=a. Since a and p arc
relatively prime, the algorithm finds ged (a, p) = I;
and the output u, =a”' is the desired inverse.

11. fInitialize.] u;=1, w,=0, us=u; v,=0, v,=1, v;=v.

12. f[v;=07?] Ifv,=0 the algorithm terminates.
13. [Divide, subtract.]
Set q=Lu;/vsJ )
L =u-qvg (]0)
t=u;-qv; (n
ts=u3-qvy (12)
W=V, WVs, U=V (13)
VT, VrTh, viTh (14)

14. Go to step I2.

Notice that if equation (9) is substituted into
equation (12), one obtains

| 3= mod V3 (15)

Since we are interested in worst case analysis, we
try to find the maximum number of times that
(12, I3, 14) loop is repeated. We concentrate on values
of v;, since termination condition is v;=0. From step
13 of the algorithm, a relation between previous and
current values of u; and v; can be given using
equation (13) as:

Uy = Vi (]6)
and using equations (14) and (15) as:
Vi = U = LUy /Vk-IJ-Vk-I =y modv,; (17)

From (17) one can see that v,=0 whenever v;_,=1.

Substituting (16) into (17) one obtains:

Vx = Vi2 mod Vi-1 (]8)

All integers v,,22 satisfy (18) with v,=0 and
Vi1=1. To find the maximum value of iteration
numbers corresponding to worst case, we choose the
smallest vy ,=2. Substituting v,=1 and v;.,=2 into {18),
we evaluate the smallest value of vy, as 3. Continuing
this procedure, the set (vy, Vi, Vi.2) corresponding to
worst case is found as (0, 1, 2), (1, 2, 3), (2, 3, 5), and
(3, 5, 8) successively. Hence the difference equation
for the worst case is found as:

Vi2 = Vit Vg (19)

If this linear difference equation is solved with
vi=1 and v;,=2, one can find a relation between the
maximum number of iterations corresponding to the
bit length of v,.,. It is found that bit length of vy is
increased by 2 bits for approximately 3 iteration steps.
Hence in order to find the inverse of an N bit number
a, the algorithm requires 3N/2 iteration steps at most.

In the loop, there are 1 division operation and 3
multiplication operations. Since inverse algorithm
requires at most 3N/2 steps for finding the inverse of
an N bit number ;

Tinv =3N2 (3Tmll| + Tdiv) == 6NTmul (20)

Hence complexity of the inverse algorithm is also
given as O(N®) by (20).

Let us summarize the time complexities of the
multi-precision algorithms used in digital dignature
signing and verification processes:

Addition & Subtraction : O(N)
Multiplication & Division: O(N?)
Modular Inverse : O(N°)
Modular Exponentiation : O(N?)

S. CONCLUSION

The most time-consuming operation is the
exponentiation algorithm. So efficient schemes must
have as small number of exponentiation operations as
possible. From table 1I, all schemes have |1
exponentiation operation in signing procedure.
However for verification procedure, some schemes
have 2, and others, which can be omitted, have 3
exponentiation operations.

Among the algorithms which use two
exponentiations, the second time-consuming operation
is the inverse algorithm. Some schemes have one
inverse operation, others do not have any (as in
schemes 7, 8, 13, and 15). We could ignore the
schemes with one inverse operation; however, if the
algorithm finds the inverse of the private key ( as in
schemes 9, 12, 14, and 18), inverse operation is not
time-consuming since the inverse of the private key
can be precalculated and stored.
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From the above results, in addition to scheme 7
which is announced as optimal by Nyberg and
Rueppel [5], the other schemes 8, 9, 12, 13, 14, 15 and
18 also seem to be more efficient than the others.
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