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Abstract - Possible ElGomol llke digital signaturc popular and formed a basis for Digital Signarure
schemes are exanined and required numben ol Standard (DSS) which was proposed by U.S.
additions, multplications, exponenfiations and government for electronical verification of the
inverses are tabulaled. Complexilia ol inverse ond integrity aid sburce of the unclassified information.
exponenliation algorithms src evalaored ln temts ol After the proposal of ElGamal digital signature
muttiplication subblochs. Most elfecttve schemes are scheme, some modified versions have appeared. These
selected and compared vercus tlme darotlon schemes have implemented by interchanging the
crilerion. panrmeters of ElGamal digital signature scheme. In

this paper, ElGamal like digital signature schemes [2]
are worked.

I. INTRODUCTION

Today, most of the communications activities are
done over open computer networks, since they provide
opportunity of fast, effortless, and inexpensive
communications between different regions of the
world. However, maintaining secure communications
over an open channel is an important problem.

There are at least three requirements of
communications security: Privacy, authentication, and
integrity. Privacy can be provided by encyption and
decryption. In addition to encryption and decryption ,
"Digital Signature" concept is developed to provide
authenticity and integrity features.

Depending on these requirements, two types of
cryptographic systems have appeared. First one is the
"conventional cryptographic system" which relies on
the use of a single piece of private and necessarily
secret information known as the key. So, conventional
cryptography can also be called "single-key
cryptography" or "secret-key cryptography". Second
one is called "public-key cryptography", or "two-key
cryptography". It differs from the conventional
cryptography in that there is no longer a single secret
key shared by two users. There exist two keys per
entry. One key which is publicly revealed and called
"public-key", is used for encryption; the other key
which is kept in secret and called "private-key", is
used for decryption. The public-key cryptosystems are
more advantageous, since they do not require any key
distribution over the insecure channels. 'But, the
computation time required by single-key
cryptosystems is less. So, some hybrid systems which
combine both type of cryptosystems, are developed.

In 1984, Tahar ElGamal proposed a new signature
schemefi ], together with an implementation of the
Diffie-Hellman key distribution scheme that achieves
a public key cryptosystem. The security of system
relies on the difliculry of computing discrete logarithm
over the finite fields. This scheme has become very

y = c r * m o d p ( t )

2. ELGAMAL DTGITAL SIGNATURE SCHEME

The ElGamal digital signature algorithm Il ] can be
summarized as follows:

[,et p be a large primc, at least of lcngth 5l? bits,
and a be a primitive element of GF(p). Both ol'rhem
are publicly known.

Let m be a document (or the hash ofthe document)
to be signed and 0 < m < p-I.

x is the private key and y is the public key so that:

for each user.
Ifa user whose public key is y and private key is x,

wants to sign a document m, a sigrature pair (r, s) is
constructed such that:

cr'= y'r 'mod p (2)
where 0 < r,s S p-|, is satisfied.

The Signing Procedure:
l. Choose a random number k, 0 < k S p-1, so that

gcd(k,  p- l )  = l .
2. Compute the parameter r as follows:

r = cr* mod p.
3. Compute the parameter s as follows:

s = kr(m - xr) mod (p-l)
Equation (4) has a unique solution for s, since k is

chosen such that gcd (k , p-l) = l.

The Verificetion Procedure:
The message (or its hash) m and the digital

signature (r , s) are knov'rn. So check whether equation
(2) given as cr' = y' / mod p, is satisfied or not. If it is
satisfied then the digital signatureis verified.

If thc message m is altered during transmission, or
a public key y' different from the actual public key y
is used, equation (2) cannot be satisfied; tlerefore
message integrity and user authenticity is guaranteed.

(3)

(4)
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3. ELGAMAL LIKE DTGITAL SIGNATURE
SCHEMES

L. Harn and Y.Xu l?lhave made a complete list of
possible digital signature schemes modified from
ElGamal algorithm. They have presented a parametric
equation for all digital signature schemes of the type:
'  

zx = (bk + c) mod (p-l)  (5)
where the parameters (a, b, c) can be some simple
mathematical combinations of the values (m, r, s, l) as
given in Table l. So the verification for the above
parametric equation becomes similar to equation (2):

y'= rbo" mod p (6)
Harn and Xu omit other simple combinations of

values (m, r, s, l), since some restrictions are needed
for the sake ofsecurity [2].

TABLE I
PROPOSED COMBINATIONS OF PARAMETERS (a, b, c)

Als. No a b c
r s m

2 m s r
3 r m 5

4 m r s
f s r m
6 s m ?

r.m I s
8 r.m s
9 s I r.m
0 I s r.m
I r.m s
2 s r.m
J r+m I s
4 s I r+m
) I r+m s
6 I s r+m

r+m s I
8 s r+m

Signing and verification equations for ElGamal
tike digital signature schemes can be found by
substituting the proposed combinations of (a, b, c)
parameters into equations (5) and (6).

We first summarize the notation:
p:the prime number,
m:the sent message and 0 < m -< p- I ,
r,s:signature pair and 0 < (r,s) < p-1,

cr:primitive element of GF(p),
x:the private key,
y:the public key equals to o'mod p,

k:the random number with 0 < k < p-l satis$ing
g c d  ( k ,  p - l )  =  l .

tf the difference between +d and -d. and the
difference between d and d'r, where d € (x, k, m, r, s)
are neglected, all the signing and verifrca{ion
operations for these schemes can be listed below:

l) rx = (m + ks) mod (p-l) :  (EIGamal Scheme) []
Signing the message m:

r = crr mod p , s = k'r(rx - m) mod (p-l )
Verif, ing the signature:
Check whether r'c,- mod p = y' mod p

2) mx = fts + r) mod (o-l):
Signing the message m:
r = crr mod p, s = k-r(mx - r) mod (p-l)
Veriff ing the signature:
Check whether y'mod p = a't' mod p

3) xr' = (mk + s) mod (o- l ):
Signing the message m:
r = cr mod p, s = (rx - mk) mod (p-l)
Verifr ing the signature:
Check whether y'mod p = o'f mod p

4) mx = (rk + s) mod (p-l): (Harn Scheme l) [3]
Signing the message m:
r = cr mod p, s : (mx -k) mod (p-l)
Verifing the signature:
Check whether y'mod p: /c'mod p

5) sx = (rk + m) mod (o- l): (AMV Scheme) [4]
Signing the message m:
r = crk mod p, s = x-r1rk + m) mod (p_l)
Veriff ing the signature:
Check whether y'mod p = r'cr'mod p

6) sx = (mk + r) mod (p-l):
Signing the message m:
r = c,L mod p, s = x-r1mk + r) mod (p-l)
Verif, ing the signature:
Check whether y'mod p = cr'fl mod p

7) rmx = (k + s) mod (p-l): (Optimal Scheme) [5]
Signing the message m:
r: crr mod p, s = (rmx - k) mod (p-l)
Verifu ing the signature:
Check whether y" mod p = ra' mod P

E) x = (s + krm) mod (o-l): (Yen-Lain Scheme) [6]
Signing the message m:
r = crr mod p, s = (x + krm) mod p
Verif ing the signature:
Check whether /'cr'mod p = y mod p

9) sx = ft + mr) mod (p-l):
Signing the message m:
r = crr mod p, s = x't(k + mr) mod (p-l)
VeriSing the signature:
Check whether ys mod p : rc'' mod p

l0) x : (sk + rm) mod (p-l):
Signing the message m:
r= cr  mod p,  s  = k-r (x- rm) mod (p- l )
l&ri$ing the signature:
Check whether y mod p = ct''r' mod p

I  r ) mrr = (ks + |  I  mod (n- l ) :
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Signing the message m:
r = c,k mod p, s = k' ' (mrx - l)  mod (p-l)
Veri$ing the signature:
Check whether y'' mod p = ort mod p

12) sx = (rmk + 1) mod (p-l) :

Signing the message m:
r = ok mod p, s :  x 'r1rmk + l)  mod (p-l)
Veri$ing the signature:
Check whether y'mod p = or'' mod p

13) x(r+m) = ft + s) mod (p-l): (Harn Scheme 2) [7]
Signing the message m:
r = d* mod p, s = (x(m + r) - k) mod (p-l)
Verifl ing the signature:
Check whether y**'mod p : ro' mod p

TABLE II.
OPERATION NUMBERS OF DICITAL SICNATURE SCHEMES

14) sx = (k + (m + r)) mod (o-l) :
Signing the message m:
r: c,k mod p , s :  x 'r1k + (m + r)) mod (p-l)
Verif, ing the signature:
Check whether y'mod p: rq,'*'mod p

15) x = ft(m + r) + s) mod (p-l):
Signing the message m:
r: cr mod p, s: (x - k(m + r)) mod (p-l)
Verifring the signature:
Check whether y mod p: fl'a' mod p

16) x = (sk + (r + m)) mod (p-l) :
Signing the message m:
r: crr mod p, s = k'r(x - (m + r)) mod (p-l)
Veri$ing the signature:
Cbeck whether y mod p = ct'*'r' mod p

17) x(m + r) = (ks + l)  mod (p-l) :
Signing the message m:
r: ar mod p, s = k-r(x(m + r) - l )  mod (p-l)
Veriffing the signature:
Check whether y'*'mod p = ar'mod p

It) sx = ft(m + r) + l) mod (p-l):
Signing the message m:
r = or mod p , s: x- '1k1m + r) + l)  mod (p-l)
Veri$ing the signature:
Check whether y'mod p = crfl*'mod p

The numbers of fundamental arithmetic operations
for each scheme are calculated to make a comparison
in terms of time duration and shown in table Il.

If N is the length of binary strings that are
multiplied or divided, complexity of this operation is
given in big-O notation as ON'?) [8].

The time duration of addition or subtraction
operation is much smaller than that of multiplication
or division; hence, addition is negligible with respect
to multiplication. On the other hand, division takes
approximately the same time with multiplication,
whereas inverse and exponentiation operations are
more complex. Multiplication operation is a basic
block in inverse and exponentiation operations. In the
next section. time durations of inverse and
exponentiation operations are expressed in terms of
time durations of multiplication and division
operations.

4. COMPLEXITIES OF EXPONENTIATION
AND INVERSE ALGORITHMS

The worst case analysis will be employed. We
assume that all numbers which are going to be
operated, are of bit length N, where N is smaller than
or equal to the bit length of prime number p.

All the algorithms are taken from Knuth [9].
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The Exponcntiation Algorithmi It is also known as
the binary left to right exponentiation and computes
M'=C mod n, as follows:
EI. Let € = €x.1€p.2.......€s€e '
E2. Set the variable C to l.
E3. Repeat steps E3a and E3b for i = N-1, N-2,.....1,0:

E3a. Set C=C2 mod n
E3b. lf ei=1, then set C{C M) mod n

E4 Terminate the algorithm. C is the ee power of M
modulo n.

It can be seen that the number of times that the
program runs into the E3 loop equals to the number of
digits (N) of the number e. If e; is I then there arc 2
multiplications and 2 divisions; if ei is 0 then there are
I multiplication and I division. So any time in the
loop, there are at most 2 multiplication operations and
2 division operations. ln thc worst case in which all e1
are l, there are 2N multiplication and 2N division
operations totally. Let T*p, T,u, Ta" be the time
duration of exponcntiation, multiplication, division
openation respectively, then maximum value of T.* is:

T.*= 2N(T*' + T",; (7)
Also T6p e4uals approximately to T6sr, so

T.*r= 4NT" (t)
Since the complexity of multiplication operation is

given as O0!1, the complexity of exponentiation is
given as O(N') by (E).

The Inverse Algorithm: Given two nonnegative
integers u and v, this algorithm determines a vector
(ur, uz, ul) such that uus i e1r = u3 and u3 is the
gcd (u, v). The computation makes use of auxiliary
vectors (v1, v2, v3) and (tr, tz, tl). All vectors are
manipulated in such a way that the relations
utr + vt2 = t3, uul 1 w2 = u3 and uv1 + vvt = vl hold
throughout the calculations. Ifthis algorithm is used to
find the inverse of any number a € GF(p), the inputs
of the algorithm are u=p, v:a. Since a and p are
relatively prime, the qlgorithm finds gcd (a, p) = l;
and the output u2 = a'' is the desired inverse.
ll. Fnitialize.J ur=I, u2<), u3=u i v1=0, v2=1, v3=v.
12. [vj= 0 ?J If vr= g the algorithm terminates.
13. [Divide, subtract.J

Se t  q=Lu r / v r j
t 1 = u 1 - Q v 1

t 2 = U 2 - Q v 2

t 3 : u 3 - Q v 3

U1=V; ' ll2=V2 ' Ut=Vr l
V1:t; , V2=t2, V3=t3

14. Co to step 12.
Notice that if equation (9)

eqrlation (12), one obtains
'  

t 3 = u 3 m O d v 3

(e)
(10)
( t  l )
( t 2 )
(13 )
(14)

is substituted into

(  l 5 )
Since we are interested in worst case analysis, we

ry to finU the maximum number of times that
02, 13, 14) loop is repeated. We concentratc on Yalues
of v3, since termination condition is vr=0. From step
13 of the algorithm, a relation between prcvious and
current values of u3 and v! can be given using
equation (t3) as:

ur = vr-r (16)
and using equations (14) and (15) as:

vr = ur.r -Lur-r / vr-rl.vr-r - u1-1 tllod v1-1 (17)
From (17) one can see that v1{ whcnever v1-1=1.
Substituting (16) into (17) one obtains:

vr = vr-z mod v1-1 (lE)
All integers v1.2)2 satisfr (18) with vr=0 and

v1-1=1. To find the maximum value of iteration
numbers conesponding to worst case, we choose the
smallest v1-2=2. Substituting v1=l and v1-1=2 into (t tlr.
we evaluate the smallest value of v1-2 as 3. Continuing
this procedure, the set (vr, vr.r, vr-t corresponding to
worst case is found as (0, l, 2),(1,2,3), (2, 3, 5), and
(3, 5, E) successively. Hence the difference equation
for the worst case is found as:

v1.2 = v1 * v1.1 (19)

If this linear difference equation is solved with
vr,=l and v!-r=z, one can find a relation between the
maximum number of iterations corresponding to the
bit length of v1-2. lt is found that bit length of vs.2 is
increased by 2 pits for approximately 3 iteration steps.
Hence in order to find the inverse of an N bit number
a, the algorithm requires 3Nl2 iteration steps at most.

In the loop, there are I division operation and 3
multiplication operations. Since inverse algorithm
requires at most 3N2 steps for finding the inverse of
an N bit number l

Tin, = 3N/2 (3T^, + T61") = 6NT.6 (20)

Hence cornplexity of the inverse algorithm is also
given as O(N') by (20).

lrt us summarize the time complexities of the
multi-precision algorithms used in digital dignature
signing and verifi cation processes:
Addition & Subraction: O(N)
Multiplication & Division: O(N2)
Modular Inverse : O(N')
Modutar Exponentiation : O(N3)

5. CONCLUSION

The most time+onsuming operation is the
exponentiation algorithm. So efficient schemes must
have as small number of exponentiation operations as
possible. From table Il, all schemes have I
exponentiation operation in signing procedure.
However for verification procedure, some schemes
have 2, and others, which can be omined, have 3
exponentiation operations.

Among the algorithms which use two
exponentiations, the second time-consuming operation
is the inverse algorithm. Some schemes have one
inverse operation, others do not have any (as in
schemes 7, E,. 13, and l5). We could igrore the
schemes with one inverse operation; however, if the
algorithm finds the inverse of the private key ( as in
schemes 9, 12, 14, and l8), inverse op€ration is not
time-consuming since the inverse of the private key
can be precalculated and stored.
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From the above results, in addition to scheme 7
which is announced as optimal by Nyberg and
Rueppel [5], the other schemes t,9,12,13, 14, l5 and
| 8 also seem to be more efficient than the others.
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