
.,ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

801.04/D-os

THE SO85 TRAINING KIT WITII DISASSEMBLER CAPABILITY

CcmPolat
Department of Electrical Enginccring

Osmongazi UnivcrsitY
Batr Megclili 26480, Eskigehit, TURKEY

the microprocessor. In the DUMP mode, lhe user
programs or the subProgram is loaded into the mem-
ory of tlrc system by the system program. The user
programs are run in the RUN mode.

In decoding of the tnernory chips, "memory ex'
pansion technique" is used so that all of the memory
area (61 Kb) can be allocated for the user Programs.
In order to accornplish thisjob, an additional address
bit is created (A16) by using a D-type flip-flop. The
memory maps in DLJMP and RUN modes are shotvn
in Table I and Table 2 resPectivelY

A l5 A 1 6 Address Range Selected Unit
0 ,\ OOOOH.TFFFH EPROM
I 0 SOOOH-FFFFH RAM I
I I 8OOOH-FFFFH RAM 2

Talllc l: Mcrnory map in DUMP mode.

A l 5 A16 Address Ranee Selected Unit
0 N OOOOH.TFFFH RAM I

0 sOOOH.FFFFH EPROM
sOOOH.FFFFH RAM2

Tablc 2: Mcrnory rnap in RUN modc.

The training kit corrtnrunicatcs with a personal
coulputer by using thc scrial cotnlnunication and
tirner board rvith RS232 serial cotnmunication proto-
col. Tlre parallcl cotnntunication board is used for
parallcl cornurunication rvitlt c.xtcrnal pcripherals
like the experiment board. Thc esperiment board is
an cNternal board containing a DC nrotor, displays,
relays and scnsors. It is dcsigncd for making experi-
ments by using thcse periplterals. The ADC/DAC
board allorvs to process analog data. It is possible to
rccord and play sound by rrsing ADC/DAC board
l'ith its audio arnplifien [21.

2. SYSTEM SOFTWARE
Thc s]stem prograrn stored in EPROM $'ith the
compuler progriun in tlte pcrsonal conrputer forms
thc opcraling syslcnt o[tltc training kit.

2.1 Thc Systcnt Prngram
Thc slstern prograrn is storcd in tlre EPROM. The
main purpose of the s)'stetn program is to load user
assembll' programs into thc RAM rnemory of the kit.
The sysletn protrall locates any proSram rvhich is
transrnitted frorn the computer in IntelJre.t formal, to
the specified RAM metnory region. The computer

294

SalihFttdtl
Dcpartment of Electrical Engineering

Osmangozi UnivcrsitY
Barr Megelik 26480, Eskigchir' TURKEY

T el: (222) 239 I 074, E-nrail : sfodil@ogu.edu'tr

ABSTRACT
The 8085 training kit and its disassentblers are ex-
plained in this paper. The disassernbler prograrns

rwitten for the training kit hare ability to disassemble
a given input file or a specified memory region of the
kit. Disassembler prograrns are used lo translate ma-
chine codes to source codes so that users can under-
stand arrd analyze these codes easily. Disassently
process is also irnportant rvhen changing the program
codes in the mcmory. When the program codes are
changed, users can observe the changes in the source
codes by using the rwitten disassembler programs. Tlte
hardrvare and softrvare of the training kit rvith nel
fcatures arc also explained.

INTRODUCTION
In ttre classical rnicroprocessor training kits, machine
hex codes of the user Prograln are found froln the
instruction sct of the microprocessor at first. Then,
obtained ltex codes are entered to lhe tlretnory lnanu-
ally by using a hex keyboard. Horvever, this procedure
is not a practical method for loading user Programs
into the nrenlory because it takes long tinte. Many
errors may atso occur in this process. Intel's SDK-85
is one ofthese training kits. It is a single board rnicro-
conrputer dcsigned $'ith 8085 nricroprocessor for
training purposes. SDK-85 systern has extra abilities
like single step execution and settirtg breakpoints to
thc progran. The 8085 training kit ltas nlore abilities
than these classical training kits. Since ttracltine codcs
of the user programs are produccd by the cornpilcr of
the conrputer progmtll, there is no tteed to assemble
the machine codcs tnanually in the 8085 training kit.
The abilities of the training kit are not linlited \rith
compiling, loading and running. The training kit also
allorvs users to follorv the e.xeculion of their Prograllrs.
The users can vierv and cltange any menory conlent,
rcgisters and flags after pausing the esccution of tlteir
prograrns $.

1. SYSTEM HARDWARE
The 8085 training kit is cornposcd of scrcral boards
that communicale each other lhrough llte s1'stettt bus.
Tlrcse are nricroprocessor board. lllelllory and s)steln
communication board, ADC/DAC board. parallel
communication board. serial communication and titner
board. Tlre ltardrvare of the systent is espandable so
that nerv boards can be added to the systeln' The s1'stcm
has trvo 32 Kb RAMs and one 32 Kb EPROM. The
systcnr operatcs in ttro ntodes rvltich are DUMP and
RUN rnodcs. These modcs are sclected by using a
switch. There is also a rcset button available that resets

.'ELECO'99INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

and the kit communicates \vith eaclr other by using
rnany coutrol characters in their conrmurtication proto-
col. They do not transmit or receive dala unless the
other side is ready for operation. The system prograln
also prcpares the user prograrus that arc loaded in the
RAM memory to run. All these operations are per-
formed in the DUMP mode.

Thc user assernbly progranls can be run eitlter step
by step under tlre control of lhe computer or independ-
ently from the computer. If the user assembly pro-
grams are run under the control of the computer, the
microprocessor does not perfonn real tirne operation
because its operation is paused or delayed in each step.
Although runuing the prograrns iu slcps tnakes the
programs casy to understand for the uscr, tlte opera-
tion speed is dramatically reduced in this mode. When
the uscr progralns are rull under tltis operating tnode,
the comrnunication bet$'een the slstelu and the conr-
puter is perforrncd by the subprograrn in the RUN
nrode. The subprogranr is loaded to thc last 4 Kb of the
RAM mcmory so lhat the user prograrns can not be
loaded to this region. The subprograrn can be loaded
into the RAM ruemory fronr the subprogranr file in the
computer in Intel-ltex format or it can be loaded frorn
EPROM. Indccd, the subprogranr can be loaded rnore
fast if it is loadcd frorn EPROM. The abilitS' ot loading
subprograrn from EPROM is a nerv feature of thc up-
dated version of the s-vstern program. The user pro-
grams can be also run indepeudently fronr lhe conl-
puter. This operation mode is called as "direct load".
This modc is essential if the user programs require
rcal tinre opcration.

The s.vstern progranr receivcs data frorn tlre corn-
puter in Intel-he.x forrnat This t1'pe of data is sent in
rorvs. Each rorv includes blte count, sta(ing address,
record trpe and sunr chcck irrforrnation rvith maxi-
mum 16 b-rles of data. The data rcccived in Intel-hc.r
fornrat is conr'efted to lhe biuarl, data b.! the s)'stenl
progranl bcfore loading it to the nlernon'.

In the updated version o[the q'stcrn prograrn.
sound rncssagcs can be plal'ed aftcr a user prograln or
the subprogrirrrr is loadcd. If an error occurs rvhile
loading thcse progranrs. a souncl message is also
playcd. These souud records u'ere recordcd by using
the ADC/DAC board and lhev rvcre storcd in EPROM.
Plafing the sound records can be enablcd or disabled
in thc options urcnu in the conlputer prograrn.

The used Incrnon, expansion technique causes
sonre problenrs in thc s)'stenr progranr. In lhis tcch-
niquc, trvo nrcnlory locations in RAMI and RAM2
have tlrc same addresses and tho' are selccted bv A16
(See Table I and Table 2). So. thcre is also anothcr
rnenrory location rvith tlre sanrc address of the stack
pointer. One possible problern occurs if the RAMs are
changed inside a subroutine. In this case, tlre prograrn
countcr is placed 'rvith the address located at the othcr
memory location instead of thc addrcss of the stack
pointer So, thc progranl can not return from subrou-
tinc lo lhc nrain progrartr and it fails. For that re:rson.

in tlre pret.ious version of the q'stem program, sub-
routines that use the stack pointer lverc not used. In
the updated version. this difliculty is orercame by
selecting RAM2 rvhere the stack pointer is placed,
before subroutine calls and returns. In this version,
rnany subroutines are used u,ithout any problem in
order to perfonn the cornmon operations [31.

2.2 The Computcr Program
The cornputer program that communicates tvith the
traiuing kit is rvritten in Visual Basic programrning
langrage. This program allorvs users to edit, com-
pile, load and run thcir assernbly programs.

The conrputer progranr has a rnain rvindorry in-
cluding rnenus, it toolbar and editors. There are four
editor rvindorvs available so that users can open and
edit four different files at the salne time. The in-
struction lines of the user prograrn tvritten into these
editors are arranged and checked for the errors.

The file nrenu provides conrnrands for creating
nov files, opening existing files, saving files, print-
ing files, and exiting the computer program. The
recent files are also contained in tlris lnenu.

The edit nrenu contains comrnon edit commands
u'hich are undo, cut, copy, paste, selcct all, delete,
find and replace coluulands. When find or replace
conrnrands are clicked. find rvindorv appears. By
using this sindow', the rvords e ntered can be
searched and replaccd b-v other tvords in the active
editor.

In tlre special operations menu, compile, add
breakpoint and dunrp comruands, load subprogram
submenu and direct load option are included. The
cornpile cornnrand conrpiles the user program in the
active editor. The add breakpoint command calls
break point rvindorv The user can put and remove
break points on dcsired l ines of rhe assembly pro-
granr in the actir,e editor. TIte durnp command
durnps or loads the cornpilcd rlser program into the
mellron' of the training kit. The load subprograrn
subnrenu includes load subprogranr frour EPROM
and load subprograrn from filc options. The direct
load option cnables or disables direct load operation.

Thc rvindorv rnenu contains rvindorv manage-
Inent cornnrands rvhich arc tile ve(ical, tile hori-
zontal and arrange. Break point rvindorv, list rvin-
do*'and Intel-hex s'indorv can be also reachcd frorn
this menu. The list windorv shorvs the list file of the
assemblv prograrn in the active editor. The Intel-hex
rvindou'shoss the nrachine codes in Intel-lrex code
of thc asscurbh prog,rarn in thc actir.e editor. When
the active editor is changcd, the con(ent of those
u'indoss are changed autolnatically.

The options menu allorvs to change the colors,
fonts and othcr properties of the computer program.
The general use u'indorv that can be accessed from
tltis urenu allorys to change the nurnber systcm
(decirnal, binary', he.r) and representation of num-
bcrs (unsigncd. oncs courplcnrent. trvos cornple-

295

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

ment) which are used in displaying the colllenls of the

registers in the memory and register rvindolv. The

fcature of playing sound ruessages can be enabled from

this rvindorv. The calculator program of rvindorvs can

be also accessed from this tnenu.
The lrclp menu provides access to the help files.

These help files include infonnaiion aborrt 8085 As-

sembly language, the hard\\'are of the lraining kit and

thc courputer prograllr.
The operations pcrfornted b1' lhe commands in

these menus can be also perlonned b1' the buttons in

the toolbox and short cut keYs.
The uscr files opened or created in the editors

should be compiled before loading thetn to the training

kit. The conrpiler of tlte conrputer progratll is a special
8085 compiler that converts user program rvritten in

Assembly language to Intel-hex format. This conver-

sion is rcquired becatrse Intel-hex fornrat is used in

data transnlission. Afler compilation. the conrpiled

user progranl can be loadcd to thc nrerrrory of the

lraining kit But this operation sltould bc done irt

DUMP modc. Then. RllN nrode can bc selccted and

the user prograln is run. If the direct load option is not

sclcctcd frortt tlre special operatiotts tttcttu, tlte rutt

time rvindorv and the lllernory and registers lindorv

appears. The loaded program that is run can be

stoppcd, paused or restarted b1' usittg the buttons oll

the mn tirne rvindorr,. The ttser prograrn is also placcd

in the run tinre rvindorv. Tlte instnrction currently

cxccuted is ltighlighted so that the order of tlte execu-

tion of the instnrctions can be follou'ed. The user pro-

gram that is run can be paused bv the prtuse button artd
it can continuc to nlt l b1' t l rc continue btl l ton. Thc
execulion of tlte user prograln can be rcstarlcd b1' the
restan button. The stop button closcs t l le run t inlc
rvindorv and stops the execution of thc uscr progralll

The user prograrn can bc ntn stcp b)' step manually in

ordcr to control caclt stcp of the cxeculion of the pro-

granr. Tlrc eNecution of the prograru can be also ani-

rnatcd. In this case. thc steps of llte prograln is exe-
cuted autornctical l l 'so thar thc operal ion is not paused

in caclr stcp The conrtt tands in thc rtr icroproccssor

control nrenu also perlortt ts these operations. The
lnernoD'and registers rvindotv sltorvs thc rcgistcrs and
tl lc coutcnt of the nteruor) ' at thc spccif icd nlel l loD'
region rrhcn thc prograrn currentl) rrut is patrsed Tlr is

uindorv has l l rc nlct l lon' rcqtrcst. plot graph and disas-

scrublc billtous ln tlte nlclnoD' rcqucst Process, lhe

content of thc nrcnron' rcgion o[tltc loadcd progralll or

an)' nlemor]' rcgion can be rcccivcd frorn thc training
kil. If thc rncnlot]' region of the loaded prograttt is

requestcd. thc ntcurory rcgion bct\\ectl the start and
end addrcsses of the loaded progratlr is rcccit'ed and
rcplaccd lo the nrentory grid located ort thc registers
and rneuron u'inclorv Tlte uscrs can sclcct another
nrernor), region b1' rnanuali-r' enlcriug thc stnrt and end
addrcsscs Thc contcnt of t l tc t t teutory artd rcgisters

can be also cltangcd bv j trst cl icking oler thcnl TI lc
graph of thc rncnrory contcllt thitt is rcccived can be

plottcd by clicking the plot graph button. The disas-
sembler button in this rvindorv activates the memory
disassenrbler. The disassernblers are explained in
detail in the disassenrblers section [-11.

3. DISASSEMBLERS
The disassenrblers are the programs that conve(the
rnachine codes of the microprocessors to the source
codes or nrnenronics. The purpose of disassembling
machine codes is to nrake tlte rnachine codes mean-
inglul for the user. In fact, nrachine codes are hard
to understand and translatiug theru to the corre-
sponding instnrctions manually is not a practical
method. Maclrine codes can be easily analyzed by
using disassernblers Also, if the source code of a
program is lost, the source code can be easily gener-
ated by using a disassembler.

The disassenrblers convert rnachine language
files that rvere previoush' converted from source
code files. to the source code files. Since all labels
and variables are lost during coutpilation, the source
codcs gcnerated in the disassembly process do not
contain ant'original labcls or variables. The disas-
seurblcrs preparcd for the trainiug kit can gencrate
labels b1'processing thc label addresses. Although
thc actual nanres of the labels are lost, symbolic
uaurcs sith nunrbers (LABXXX) are given to the
labcls in these programs.

The disassernblers prepared for the training set
l'ere rrritten in C prograntnting language. C lan-
guage is prefcrrcd because it is fast and porverful.
Tlresc disasscnrblcrs are included in a single DLL
(D_vnanric Libraq' Link) application (Dasm85.dll).
DLLs can bc called b1' an1, rvindorvs application and
also tlrc_y cirn bc slrarcd arnong rnultiple applica-
tions. 81' this rral', the conrputer prograln rvritten in
Visual Basic can call and exccute tlte functions of
the disasscnrblcrs rvrittcn in C. DLLs include sev-
eral e.rportable functions rvhiclt are also called as
Appl ica ti on Prograrnnri ng I nterface (API) functions.
The disasscnrblcr APIs are itrterlaced and used by
thc conrputer progrilrn aftcr tltcy are declared for
Visual Basic

Thc disassenrblcrs of the training kit are the fi le
disasscnrblcr. the rueruon'disassentbler and the l ine
disasscmbler. Thc rncrrron and fi le disassernblcrs
usc thc srrnc furrction as thc) ltave cornnton proc-
esscs. ln [act. thel'are thc dilfcrent opcrating nrodcs
of thc dasnr API function Since. tlte operations
pcrforrncd in linc disasscnrblcr is diffcrent, it has its
orvu API frrnction thr'lt is lhe line dasnr function.

3.1 Tltc Filc Disasscrnblcr
Tlre file disassenrbler is used to disassenrble the
biuaq' f i les (*.bin) and the Intcl-ltex fi les (*.abs) to
obtain tlrcir sourcc code files. These files can be
disassernbled to the source code files if they are
opcncd bv lhe open filc cornutand in thc file mcnu.
Whcn a fi lc rvith binary' l i le extension (*.bin) or a

296

''ELECO'99INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

file with an Intel-hex file estension (*.abs) is at-
lcnrpted to open, the disassernbl)' progratn is e.xecuted
by calling the dasrn API function rvitlt tlte required

Parameters.
If an Intel-hex file is opened, the Intel-hex file is

firstly translatcd to a temporary file (temp.bin) which
is in binary format. This process is performed by a
spccial algorithnr. In this algorithm, the origin ad-
dresses are also selected and recordcd. Tltcn, the
starting address is found. In the first pass, all the b1'tes
in the tenrporary blnary file is read artd the labels are
searched. While searching llre labels, it is considered
that thel' are only used rvith jump and call group in-
structions rvhich are three b)'te branch instructions. lt
is also considered that tlte satne label addresses should
take the sarne labels. In the second pass, labels and
origins are placed and the actual disassenrbll'process
is perforrned. A label is placed rvith conrparing the
Iabel addresscs rvith the recent address in a loop. If a
label is not dcfrncd for thc recetrt address, the progranl
exits from thc loop without placing a labcl. This proc-
ess should be perfornred belore disassernbling an in-
struction because labcls are placed bcfore instructiorts
in the source codc. After label check. the recent ad-
dress is also checked if it is the last address before an
origin. If so, the corresponding origin address is
placed rvith "ORG" directive before lhe next address.
Then the first b1,te of tltc tentporary file is read. Tlte
corrcsponding opcode for this blte is placed to tlte
temporan' source code file frorn the opcode table. Its
size is also found frorn lhe opcode size table. Depend-
ing on the size ofthe instruction. the ncxt b)'te or b\1es
are placed as operands. If it is a otte blte instntclion.
no operand is placcd. I[the instruction is a three bltc
branch iustructioll, the corresponding labcl found rn
the frrst pass is placcd aftcr the opcode instead of the
label addrcss. Tltc rccent address is updatcd afler
placing an instnrctiort. This process continues itt a
loop rvith generatillg netv cornnmnd lines until the end
of the tenrporary binarl'file is rcaclted. Then the pro-
grarn e.rils fronr the dasur API function and returrts to
the cornputer program aflcr closing tlre opened files
The conrputcr progratn just places llre crcated source
codc lilc (tcrnp.src) to thc selecled cditor rvindorv. Thc
list f i lc crcated is placed to thc l ist rrinclorv and thc
IntelJrex fi le processcd.is placed to the lntcl-ltex uin-
dorv in thc sanle way.

The list f i le (temp.lst) of l lre input f i le is crcated
rvith the sanrc procedure but the linc nurnbers. ad-
drcsscs and the hexadecintal codcs of thc irtstructious
are also addcd to the lines bclorc thc instnrctions.

If a binary fi le is opencd b1 tlre opcn fi le conrrnand
in thc conrputer prograln. llte sanre procedure is ap-
plied to disassernble this file rvitlr a diffcrertce. The
binary file is firstly translated to a lcrnporar-1' Intcl-lte.r
I i lc (tcnrp.abs) and theu the translaled Iutcl-lrex fi lc is
disassernblcd u'ith the sanre proccdure Thc binan fi le
to IntelJrcx file convcrsion is pcrfonned for sonre
rcasons. First of all. disasseurbliug birury l i lcs iu-

cluding large spaces directly by disassembler is not
practical because the source code file generated
includes large nunrbers of "NOP" instructions in
this case. Actually, the hexadecimal code of "NOP"
instruction is 00h and it represents the space char-
acter at the sarne tirne. If a source code program
starts \vith a high address, large spaces are gener-
ated in the binary file afler it is cornpiled. If this file
is dircctlv disassernbled. the disassernbler can not
distinguish "NOP" instructions from spaces. So, the
output file size increases significantly and it takes
longer tiurc to process. In order to prevent this , it is
considered that rnore than five "NOP" instructions
can not be used consecutively in the source code
files. So, if a binary file has more than five consecu-
tive 00h codcs it means that tlrese are the space
characters. Here, the nunrber five is arbitrarily clro-
sen and any srnall nurnber is acceptable. This algo-
rithur searcltcs for the 00h codes and finds the
spaces After finding the spaces, addresses betrveen
the spaces are found and the Intel-hex file is gener-
ated after lhis opcrations. Tlre binary codes are con-
verted to hexadecinral nunrbcrs in rorvs rvhen a
bina4' I'ile is translated to an Intel-lre.x file. The
Intel-hex hle should be created because Intel-hex
codes of the binary file is rcquircd for the Intel-hex
rvindorv of the cornpuler prograln. If the disassem-
blcd filc is a binary file. the binary file is also placed
to the heN s'indorv. Thc binary file is viened rvith its
hesadecirnal codes and the ASCII fonns of that
codes in the hex u'irtdorr'.

3.2 Thc l\ lcnrorv Disasscmblcr
The rnenrory disassemblcr disassenrbles a specified
legion of the nlcuton' It is activatcd rvhcn the disas-
sernble button in lhe rnemon'and rcgisters rvindorv
is clicked. A rncssagc button appcars and asks the
uscr to disassenrble the urentory rcgion of the loaded
prog,raur or any other rnernory region. If the memory
rcgion of the prograru is disassernbled, the region of
the nrenrory betu'een the slart and cnd addresses of
tlrc loadcd prograln is disassenrbled. Altcrnativcly,
tlre user can clltcr his orvn start and end addresses
ruranuallv and the nlernory region betrveen these
addresscs is disasscnrbled.

Aflcr detcrrnining thc rncn)on' rcgion, the rnern-
on' disasseulblcr rcceives tllc contents of this nrenr-
or1' regiou frorn llre training kit. Then tlre program
places thc rcccircd data to the nremory grid in the
nlenlon'and registcrs rvindorv and sar.cs this data to
ihe tcnrporary binary' fitc. Actualll.'. the memory
disasscrnbler docs nol disassenrble the rnemory di-
recth [t just disassenrblcs tlre content of rnenrory
fronr this file This file is also updated rvhen the
rncrnon contcnt is changed

The urcnrory disassentbler disassenrbles the tenl-
poran binan fi le bv call ing the dasm API function
u,ith tlrc rcquircd palantctcrs- Thc sarne procedure is
follorvcd u'itlr thc llle disasscrubler except tllat the

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

temporary binary file is directly disassentbled. Also,
the starting addrcss o[the prograrn is set to tlte address
of the rnemory region in this case. For the melnory
disasseu'rbler, the starting address parameter can not

be ignorcd bccause the starling addrcss of the codes
found in rnemory should be knorrn.

After disassernbling the spccified ntenrory region,

the gencratcd ternporary sourcc code file is placcd to

an unused editor. The uscr Inay edit and cornpile this
file after esiting from tlre run tnode. Tltis file can bc
also loadcd back to the training kit and i t can bc run
again. By using the meulory disassenrbler. thc user has
the ability to rnodi$ the loadcd progralll in rnemory.

The lirnit of the rnernory requcst is 2000 b)les. Thc

same lirnit is also valid for the Inemory disassetnbler
as it shares tlte sarne data rvith the tnernory request. In

fact, the siz-e of the ntany user Progranls in tltc tnetn-

ory is less tlran 2000 b1'tes. Also the size o[the gener-

ated file after disassentble process can reaclt more than

ten tirncs of that siz.c. Indccd, lhc sizc ol one instruc-

tion in a binary file is not nrore tltan 3 bltes but it

corresponds to one line of thc gencratcd source code
fi le. Thc te.r l boxes of the cditors arc l i rnited rvit l t 32
Kb of data. The disassemble process is litttited u'itlt
this size for that reason

In ordcr to viov and cdit tltc loadcd prograrns in
memory, the user should select tlte disassetnble the
memory rcgion of the program choice fornr the ures-
sage box. In this casc. the progrartt autornaticall)' sc-
lects the start and end addresses of tlte prograrn rc-
gion. If the start and cnd addrcsscs are arbilrarill'
errtercd. thc prograrn can bc clippcd frortr tltc rniddlc,

The urernory region nranuall-v sclcctcd lnay not
include the progrant codcs of the loaded file. Tlterc
may bc old codcs of tlrc prcviouslt' loadcd progriurls or
data in the spccified region. The lnernon' disasscrttbler
lray not disasscrnble the otd codcs correctll'becausc
the eNact start addrcss of tltcsc codcs sltould bc krtoNn.
In this case. t l re disnssenrbler Inal 'sta11 disasscnlbl ing
fronr an operand instead of an opcodc on the entercd
start addrcss and thc codcs arc not disasscrnblcd cor-
rect l l .

3.3 Thc Line Dis:rsscnrblcr
Tlre l inc disnssemblcr gencrl l tes one l ine *i th disas-
scnrbl ing a single iustrucl ion The l inc disasscnrbler is
activated i I t l re rncrnory col l tcnt in thc nrcurorv grid is
changcd uhcn lhc prograul is pauscd

When a r lrcnlory gl id is clmugcd. t l re colnputcr
prograln cal ls l ine_disasnr API furtct ion rvith thc rc-
quired paranreters. This function disnssentbles thc old
and rrcrv values of the changed n)cnrory location. Tlte
line_disasnr function firsth' finds the address of the
instruction of the changcd code This process is
achio,cd in a loop rvith conrputing thc address of the
instnlct ion. After i t is cornputcd. the old and ncrv
codes are disasscrnblcd to their instruct ions. In order
to indicatc l l le changes in t l te operartds, labcls are not

used in this function. This infornration is savcd to a

tcnlporary file and the conlputer prograrn gets this
inforrnation fronr this file.

The cornputer progranl reads the corresponding
instructions of the nerv and old codes with their
addrcsses and hex codcs and indicate them on the
line disasscnrbler rvindorv. The hex codes ofthe nerv
and old codes and their instructions are in diffcrent
colors so tlrc user can noticc the clrangcs. Thc mcrn-
ory location is set lyith the nerv value. The program
indicated at the Erid of the run tirne rvindorv is also
updatcd. Tlris progranr is updated rvith disassern-
bling the binary code ofthc changed program in the
l,cnlporary binarl' file b1' the nrcrnory disassembler.
Thc labcls o[llre original prograrn arc changed with
the generatcd labels as a result of tlre disassemble
process. Tlre user can also undo thc changes by
clicking thc canccl button of thc line disassernbler
n'indo*. In lhis case. the previous value ofthe code
at thc changed rnenron' location is placed to the
rncrnory grid. The lncnroD, location and the ternpo-
rary binary,file are also updated., The program at
the run tirne u'indorv is rebuilt by disassembling the
updatcd tcrnporary binan' filc.

Thc line disassenrblcr is operational for only the
nrcnrory region of the loaded program. For the
nlculory locations outside this rcgion, the line disas-
scntblcr is disabled. In this case. the disassembler
nray uot distinguish opcrands frorn the opcodes or
data frorn progranl codcs so tlre process fails.

After changing the menrory content ofthe loaded
progranl. llre uscr can continue to run the loaded
prograrn that u'as pauscd bcforc changing the mcrn-
ory content [31

{ . CONCLUSION
Thc hardrvare ancl softrrare of the 8085 training kit
rvitlr the prcparcd disasscurblcrs are e.xplained in
this papcr. Botlr lrardrvarc and softrvare of the
training kit rvere tcstcd rlranl tinrcs and it is secn
tllal thcv lork propcrll ' It is planned to cnhance the
abil it ics of thc lraining kit rvith the addition of a
logic anallzcr. In order to accontplish this job, a
logic auallz-cr board u'ill bc installcd on a PC so that
obtajning tlrc t inring diagrarns of thc 8085 rnicro-
proccssor rvill be possible. It is also planned to add
lirclcss scrial cornrnunication abil ity betn'een tlre
pcrsonal colnputcr and thc training kit by adding
raclio frequcnc_r seriul conrnrunication boards. The
kit \\ i th its espcrinrcnt board is currcntlv used in our
8-bit uricroproccssor lab.

REFERENCES
l l lGror*rr S R. \l icroprocessor Archil*lrrre. Programing and
Appficalior-s rrith thc 8085/8080:\]t'lacuillan Publithing Corn-
pany, lnc. I 989, pp 63) -6J I

[2] Kand.'mir. C. \t. Ozkrr, T., G0rtck. t l C., 8085 elit im set
trsxr lf nr ve g!'rfekf ef f f r!'si. .4 t t gt L s t I 99 5. pp. 9- I t)

[] l l 'ol i l t C . I)isrrscnrhlcr progranN fbr t lre 8085 training kit, Jrly
1999, pp. r-j. / l- l.\ '

[+l Urgiin U. Krzrlkal'a 2.. E085 Elit im Scrinin Scri Haburle5me
Kulfrrrrrr i\f,rrritor Pr.rgrrnrrnrrr Hazrrlanrrrusr..4rgust. 1996. pp 33-

298

