"ELEC0'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

E01.04/D-05

THE 8085 TRAINING KIT WITH DISASSEMBLER CAPABILITY

Salih Fadud
Department of Electrical Engineering
Osmangazi University
Ban Meselik, 26480, Eskischir, TURKEY
Tel: (222) 239 1074, E-mail: sfadil@ogu.edu.tr

ABSTRACT

The 8085 training kit and its disassemblers are ex-
plained in this paper. The disassembler programs
written for the training kit have ability to disassemble
a given input file or a specified memory region of the
kit. Disassembler programs are used (o translate ma-
chine codes to source codes so that users can under-
stand and analyze these codes easily. Disassembly
process is also important when changing the program
codes in the memory. When the program codes are
changed, users can observe the changes in the source
codes by using the written disassembler programs. The
hardware and software of the training kit with new
features are also explained.

INTRODUCTION

In the classical microprocessor training kils, machine
hex codes of the user program are found from the
instruction sct of the microprocessor at first. Then,
obtained hex codes are entered to the memory manu-
ally by using a hex keyboard. However, this procedure
is not a practical method for loading user programs
into the memory because it takes long time. Many
errors may also occur in this process. Intel’'s SDK-85
is one of these training kits. It is a single board micro-
computer designed with 8085 microprocessor for
training purposes. SDK-85 system has extra abilities
like single step execution and setling breakpoints to
the program. The 8085 training kit has more abilities
than these classical training kits. Since machine codcs
of the user programs are produced by the compiler of
the computer program, there is no need to assemble
the machine codes manually in the 8085 training kit.
The abilities of the training kit are not limited with
compiling, loading and running. The training kit also
allows users to follow the execution of their programs.
The users can view and change any memory content,
registers and flags after pausing the exccution of their
programs {1}.

1. SYSTEM HARDWARE

The 8085 training kit is composcd of several boards
that communicate each other through the system bus.
These are microprocessor board. memory and system
communication board, ADC/DAC board. parallel
communication board, serial communication and timer
board. The hardware of the system is expandable so
that new boards can be added to the system. The system
has two 32 Kb RAMSs and one 32 Kb EPROM. The
system operates in two modes which are DUMP and
RUN modes. These modes are sclected by using a
switch. There is also a reset button available that resets

Cem Polat
Department of Electrical Engineering
Osmangazi University
Bati Megelik, 26480, Eskisehir, TURKEY

the microprocessor. In the DUMP mode, the user
programs or the subprogram is loaded into the mem-
ory of the system by the system program. The user
programs are run in the RUN mode.

In decoding of the memory chips, “memory ex-
pansion technique” is used so that all of the memory
area (64 Kb) can be allocated for the user programs.
In order to accomplish this job, an additional address
bit is created (A16) by using a D-type flip-flop. The
memory maps in DUMP and RUN modes are shown
in Table 1 and Table 2 respectively

Al5| Al6| Address Range | Selected Unit
0 x| 0000H-7FFFH EPROM
1 0 | 8000H-FFFFH RAM 1
1 1 | 8000H-FFFFH RAM 2

Table 1: Mcmory map in DUMP mode.

Al5| Al6| Address Range | Selected Unit
0 X 0000H-7FFFH RAM 1
1 0 8000H-FFFFH EPROM
1 1 8000H-FFFFH RAM 2

Table 2: Mcmory map in RUN mode.

The training kit communicates with a personal
computer by using the scrial communication and
timer board with RS232 serial communication proto-
col. The parallel communication board is used for
parallel communication with cxternal peripherals
like the experiment board. The experiment board is
an external board containing a DC motor, displays,
relays and scnsors. It is designed for making experi-
ments by using these peripherals. The ADC/DAC
board allows to praocess analog data. It is possible to
record and play sound by using ADC/DAC board
with its audio amplifiers [2].

2. SYSTEM SOFTWARE

The system program stored in EPROM with the
compuler program in the personal computer forms
the operating system of the training kit.

2.1 The System Program

The system program is storcd in the EPROM. The
main purpose of the system program is to load user
assembly programs into the RAM memory of the kit.
The system program locates any program which is
transmitted from the computer in Intel-hex format, to
the specified RAM memory region. The computer

294

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

and the kit communicates with each other by using
many control characters in their communication proto-
col. They do not transmit or receive data unless the
other side is ready for operation. The system program
also prepares the user programs that are loaded in the
RAM memory to run. All these operations are per-
formed in the DUMP mode.

The user assembly programs can be run either step
by step under the control of the computer or independ-
ently from the computer. If the user assembly pro-
grams are run under the control of the computer, the
microprocessor does not perform real time operation
because its operation is paused or delayed in each step.
Although running the programs in steps makes the
programs casy to understand for the user, the opera-
tion speed is dramatically reduced in this mode. When
the user programs are run under this operating mode,
the communication between the system and the com-
puter is performed by the subprogram in the RUN
mode. The subprogram is loaded to the last 4 Kb of the
RAM memory so that the user programns can not be
loaded to this region. The subprogram can be loaded
into the RAM memory from the subprogram file in the
computer in Intel-hex format or it can be loaded from
EPROM. Indeed, the subprogram can be loaded more
fast if it is loaded from EPROM. The ability of loading
subprogram from EPROM is a new feature of the up-
dated version of the system program. The user pro-
grams can be also run independently from the com-
puter. This operation mode is called as “direct load”.
This modc is essential if the user programs require
real time operation.

The system program receives data from the coin-
puter in Intel-hex format. This type of data is sent in
rows. Each row includes byte count, starting address,
record type and sum check information with maxi-
mum 16 bytes of data. The data received in Intel-hex
format is converted to the binary data by the system
program before loading it to the memory.

In the updated version of the systein program.
sound messages can be played after a user program or
the subprogram is loaded. If an error occurs while
loading these programs. a sound message is also
playcd. These sound records were recorded by using
the ADC/DAC board and they were stored in EPROM.
Playing the sound records can be enabled or disabled
in the options menu in the computer program.

The used memory expanston technique causes
some problems in the system program. In this tech-
nique, two mcmory locations in RAMI and RAM2
have the same addresses and they are selected by Al6
(See Table 1 and Table 2). So, there is also another
memory location with the samec address of the stack
pointer. One possible problem occurs if the RAMs are
changed inside a subroutine. In this case, the program
counter is placed with the address located at the other
memory location instead of the address of the stack
pointer. So, the program can not return from subrou-
tine to the main program and it fails. For that reason,

295

in the previous version of the system program, sub-
routines that use the stack pointer were not used. In
the updated version, this difficulty is overcame by
selecting RAM2 where the stack pointer is placed,
before subroutine calls and returns. In this version,
many subroutines are used without any problem in
order to perform the common operations [3].

2.2 The Computer Program

The computer program that communicates with the
training kit is written in Visual Basic programming
language. This program allows users to edit, com-
pile, load and run their assembly programs.

The computer program has a main window in-
cluding menus, a toolbar and editors. There are four
editor windows available so that users can open and
edit four different files at the same time. The in-
struction lines of the user program written into these
editors are arranged and checked for the errors.

The file menu provides commands for creating
new files, opening existing files, saving files, print-
ing files, and exiting the computer program. The
recent files are also contained in this menu.

The edit menu contains common edit commands
which are undo, cut, copy, paste, select all, delete,
find and replace comimands. When find or replace
commands are clicked, find window appears. By
using this window, the words entered can be
searched and replaced by other words in the active
editor.

In the special operations menu, compile, add
breakpoint and dump commands, load subprogram
submenu and direct load option are included. The
compile command compiles the user program in the
active editor. The add breakpoint command calls
break point window. The user can put and remove
break points on desired lines of the assembly pro-
gram in the active editor. The dump command
dumps or loads the compiled user program into the
memory of the training kit. The load subprogram
submenu includes load subprogram from EPROM
and load subprogram from file options. The direct
load option enables or disables direct load operation.

The window menu contains window manage-
ment commands which are tile vertical, tile hon-
zontal and arrange. Break point window, list win-
dow and Intel-hex window can be also reached from
this menu. The list window shows the list file of the
assembly program in the active editor. The Intel-hex
window shows the machine codes in Intel-hex code
of the assembly program in the active editor. When
the active editor is changed, the content of those
windows are changed automatically.

The options menu allows to change the colors,
fonts and other properties of the computer program.
The general use window that can be accessed from
this menu allows to change the number systcm
(decimal, binary, hex) and representation of num-
bers (unsigned. oncs complement, twos comple-

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

ment) which are used in displaying the contents of the
registers in the memory and register window. The
feature of playing sound miessages can be enabled from
this window. The calculator program of windows can
be also accessed from this menu.

The help menu provides access to the help files.
These help files include information about 8085 As-
sembly language, the hardware of the training kit and
the computer program.

The operations performed by the commands in
these menus can be also performed by the buttons in
the toolbox and short cut keys.

The user files opened or created in the editors
should be compiled before loading them to the training
kit. The compiler of the computer program is a special
8085 compiler that converts user program written in
Assembly language to Intel-hex format. This conver-
sion is required because Intel-hex format is used in
data transmission. After compilation, the compiled
user program can be loaded to the memory of the
training kit. But this operation should be done in
DUMP modc. Then, RUN mode can be selected and
the user program is run. If the direct load option is not
sclected from the special operations menu, the run
time window and the memory and registers window
appears. The loaded program that is run can be
stopped, paused or restarted by using the buttons on
the run time window. The user program is also placed
in the run time window. The instruction currently
exccuted is highlighted so that the order of the execu-
tion of the instructions can be followed. The user pro-
gram that is run can be paused by the pause buiton and
it can continuc to run by the continue button. The
execution of the user program can be restarted by the
restart button. The stop button closes the run timec
window and stops the execution of the user program.
The user program can be run step by step manually in
order to control cach step of the execution of the pro-
gram. The exccution of the program can be also ani-
mated. In this case. the steps of the program is exe-
cuted automatically so that the operation is not paused
in cach step. The commands in the microprocessor
control menu also performs these operations. The
memory and registers window shows the registers and
the content of the memory at the specificd memory
region when the program currently run is paused. This
window has the memory request. plot graph and disas-
scmble buttons. In the memory request process, the
content of thc memory region of the loaded program or
any memory rcgion can be reccived from the training
kit. If the memory region of the loaded program is
requested. the memory region between the start and
end addresses of the loaded program is received and
replaced 1o the memory grid located on the registers
and memory window, The users can sclect another
memory rcgion by manually entering the start and end
addresses, The content of the memory and registers
can be also changed by just clicking over them. The
graph of the memory content that is received can be

plotied by clicking the plot graph button. The disas-
sembler button in this window activates the memory
disassembler. The disassemblers are explained in
detail in the disassemblers section {4}.

3. DISASSEMBLERS

The disassemblers are the programs that convert the
machine codes of the microprocessors to the source
codes or mnemonics. The purpose of disassembling
machine codes is to make the machine codes mean-
ingful for the user. In fact, machine codes are hard
to understand and translating them to the corre-
sponding instructions manually is not a practical
method. Machine codes can be easily analyzed by
using disassemblers. Also, if the source code of a
program is lost, the source code can be easily gener-
ated by using a disassembler.

The disassemblers convert machine language
files that were previously converted from source
code files. to the source code files. Since all labels
and variables are lost during compilation, the source
codes generated in the disassembly process do not
contain any original labels or variables. The disas-
semblers prepared for the training kit can generate
labels by processing the label addresses. Although
the actual names of the labels are lost, symbolic
names with numbers (LABXXX) are given to the
labels in these programs.

The disassemblers prepared for the training set
were written in C programming language. C lan-
guage is preferred because it is fast and powerful.
Thesc disassemblers are included in a single DLL
{Dynamic Library Link) application (Dasm835.dll).
DLLs can be called by any windows application and
also they can be shared among multiple applica-
tions. By this way, the computer program written in
Visual Basic can call and exccute the functions of
the disasscmblers written in C. DLLs include sev-
eral exportable functions which are also called as
Application Programming Interface (API) functions.
The disassembler APIs are interfaced and used by
the computer program after they are declared for
Visual Basic,

The disassemblers of the training kit are the file
disasscmbler, the memory disassembler and the line
disasscmbler. The memory and file disassemnblers
usc the same function as they have common proc-
esses. In fact. they are the different operating modes
of the dasm API function. Since. the operations
performed in line disasscmbler is different, it has its
own API function that is the line_dasm function.

3.1 The File Disassembler

The file disassembler is used to disassemble the
binary files (*.bin) and the Intel-hex files (*.abs) to
obtain their source code files. These files can be
disassembled to the source code files if they are
opcned by (he open file command in the file menu.
When a file with binary file extension (*.bin) or a

296

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

file with an Intel-hex file extension (*.abs) is at-
tempted to open, the disassembly program is executed
by calling the dasm API function with the required
paramelers.

If an Intel-hex file is opened, the Intel-hex file is
firstly translated to a temporary file (temp.bin) which
is in binary format. This process is performed by a
special algorithm. In this algorithm, the origin ad-
dresses are also selected and recorded. Then, the
starting address is found. In the first pass, all the bytes
in the temporary binary file is read and the labels are
searched. While searching the labels, it is considered
that they are only used with jump and call group in-
structions which are three byte branch instructions. It
is also considered that the same label addresses should
take the same labels. In the second pass, labels and
origins are placed and the actual disassembly process
is performed. A label is placed with comparing the
label addresses with the recent address in a loop. If a
label is not defined for the recent address, the program
exits from the loop without placing a label. This proc-
ess should be performed before disassembling an in-
struction because labels are placed before instructions
in the source code. After label check, the recent ad-
dress is also checked if it is the last address before an
origin. Il so, the corresponding origin address is
placed with “ORG"™ directive before the next address.
Then the first byte of the temporary file is read. The
corresponding opcode for this byle is placed to the
temporary source code file from the opcode table. Its
size is also found from the opcode size table. Depend-
ing on the size of the instruction, the next byte or bytes
are placed as operands. If it is a one byte instruction,
no operand is placed. If the instruction is a three byte
branch instruction, the corresponding label found in
the first pass is placed after the opcode instead of the
label address. The rccent address is updated after
placing an instruction. This process continues in a
loop with generating new command lines until the end
of the temporary binary file is reached. Then the pro-
gram exits from the dasm API function and returns to
the computer program after closing the opened files.
The computer program just places the crcated source
code file (temp.src) to the sclected editor window. The
list file created is placed lo the list window and the
Intel-hex file processed.is placed to the Intef-hex win-
dow in the same way.

The list file (temp.lst) of the input file is crecated
with the same procedure but the line numbers. ad-
dresses and the hexadecimal codes of the instructions
are also added to the lines before the instructions.

If a binary file is opened by the open file command
in the computer program. the same procedure is ap-
plied to disasscinble this file with a difference. The
binary file is firstly translated to a temporary Intel-hex
filc (tcmp.abs) and then the translated Intel-hex file is
disassembled with the same procedure. The binary file
to Intel-hex file conversion is performned for some
rcasons. First of all. disassembling binary files in-

cluding large spaces directly by disassembler is not
practical because the source code file generated
includes large numbers of “NOP” instructions in
this case. Actually, the hexadecimal code of “NOP”
instruction is 00h and it represents the space char-
acter at the same time. If a source code program
starts with a high address, large spaces are gener-
ated in the binary file after it is compiled. If this file
is directly disassembled, the disassembler can not
distinguish “NOP” instructions from spaces. So, the
output file size increases significantly and it takes
longer time to process. In order to prevent this , it is
considered that more than five “NOP” instructions
can not be used consecutively in the source code
files. So, if a binary file has more than five consecu-
tive 00h codes it means that these are the space
characters. Here, the number five is arbitrarily cho-
sen and any small number is acceptable. This algo-
rithm searches for the 00h codes and finds the
spaces. After finding the spaces, addresses between
the spaces are found and the Intel-hex file is gener-
ated after this opcrations. The binary codes are con-
verted to hexadecimal numbers in rows when a
binary file is translated to an Intel-hex file. The
Intel-hex file should be created because Intel-hex
codes of the binary file is required for the Intel-hex
window of the computer program. If the disassem-
bled file is a binary file, the binary file is also placed
to the hex window. The binary file is viewed with its
hexadecimal codes and the ASCII forms of that
codes in the hex window.

3.2 The Memory Disassembler

The memory disassembler disassembles a specified
region of the memory. It is activated when the disas-
semble button in the memory and registers window
is clicked. A message button appears and asks the
uscr to disassemble the memory region of the loaded
program or any other memory region. If the memory
region of the program is disassembled, the region of
the memory belween the start and end addresses of
the loaded program is disassembled. Alternativcly,
the user can enter his own start and end addresses
manually and the memory region between these
addresscs is disassembled.

Alfler determining the memory region, the mem-
ory disassembler receives the contents of this mem-
ory region from the training kit. Then the program
places the received data to the memory grid in the
memory and registers window and saves this data to
the temporary binary file. Actually, the memory
disasscmbler docs not disassemble the memory di-
rectly. It just disassembles the content of memory
from this file. This file is also updated when the
memory content is changed.

The memory disassembler disassembles the tem-
porary binary file by calling the dasm API function
with the required parameters. The same procedure is
followed with the file disassembler except that the

"ELEC0'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING”

temporary binary file is directly disassembled. Also,
the starting address of the program is set 1o the address
of the memory region in this case. For the memory
disassembler, the starting address parameter can not
be ignored because the starting address of the codes
found in memory should be known.

After disassembling the specified memory region,
the generated temporary source code file is placed to
an unused editor. The user may edit and compile this
file after exiting from the run mode. This file can be
also loadced back to the training kit and it can be run
again. By using the memory disassembler, the user has
the ability to modify the loaded program in memory.

The limit of the memory request is 2000 bytes. The
same limit is also valid for the memory disassembler
as it shares the same data with the memory request. In
fact, the size of the many user programs in the mem-
ory is less than 2000 bytes. Also the size of the gener-
ated file after disassemble process can reach more than
ten times of that size. Indced, the size of one instruc-
tion in a binary file is not more than 3 bytes but it
corresponds to one line of the gencrated source code
file. The text boxes of the editors arc limited with 32
Kb of data. The disassemble process is limited with
this size for that reason.

In order to vicw and cdit the loaded programs in
memory, the user should sclect the disassemble the
memory rcgion of the program choice form the mes-
sage box. In this casc, the program aulomatically sc-
lects the start and end addresses of the program re-
gion, If the start and cnd addresses are arbitrarily
entered, the program can be clipped from the middle.

The memory region manually sclected may not
include the program codes of the loaded file. There
may be old codes of the previously loaded programs or
data in the specified region. The memory disasscmbler
may not disasscmble the old codes correctly because
the exact start address of thesc codes should be known.
In this case, the disassembler may start disassembling
from an operand instead of an opcode on the entered
start address and the codes arc not disassembled cor-
rectly.

3.3 The Line Disassembler
The line disassembler gencrates one line with disas-
scmbling a single instruction. The linc disassembler is
activated if the incimory content in the memory grid is
changed when the program is paused

When a memory grid is changed. the compuler
program calls line_disasm APl function with the re-
quired parameters. This function disassembles the old
and new values of the changed memory location. The
line_disasm function firstly finds the address of the
instruction of the changed code. This process is
achicved in a loop with computing the address of the
instruction. After it is computed. the old and new
codes are disassembled to their instructions. In order
to indicatc the changes in the operands, labels are not
used in this function. This information is saved to a

temporary file and the computer program gets this
information from this file.

The computer program reads the corresponding
instructions of the new and old codes with their
addresses and hex codes and indicate them on the
line disassembler window. The hex codes of the new
and old codes and their instructions are in different
colors so the user can notice the changes. The mem-
ory location is set with the new value. The program
indicated at the grid of the run time window is also
updalted. This program is updated with disassem-
bling the binary codc of the changed program in the
temporary binary file by the memory disassembler.
The labcels of the original program are changed with
the generated labels as a result of the disassemble
process. The user can also undo the changes by
clicking the canccl button of the line disassembler
window. In this case, the previous value of the code
at the changed memory location is placed to the
memory grid. The mcmory location and the tempo-
rary binary file are also updated.. The program at
the run time window is rebuilt by disassembling the
updated Llemporary binary file.

The line disassembler is operational for only the
memory region of the loaded program. For the
memory locations outside this rcgion, the line disas-
scmbler is disabled. In this case. the disassembler
may not distinguish opcrands from the opcodes or
data from program codes so the process fails.

Alter changing the memory content of the loaded
program, thc user can continue 1o run the loaded
program that was pauscd beforc changing the mem-
ory content [3].

4. CONCLUSION

The hardware and software of the 8083 training kit
with the prepared disasscmblers are explained in
this paper. Both hardwarc and softwarc of the
training kit were tested many times and it is seen
that they work properly. Tt is planned to enhance the
abilitics of the training kit with the addition of a
logic analyzer. In order to accomplish this job, a
logic analyzer board will be installed on a PC so that
obtaining the timing diagrams of the 8085 micro-
processor will be possible. It is also planned to add
wircless serial communication ability between the
personal computer and the training kit by adding
radio frequency serial communication boards. The
kit with its experiment board is currently used in our
8-bit microproccssor lab.

REFERENCES

{1} Gaonkar S. R.. Microprocessor Architecture, Programming, and
Applications with the 8085/8080:\. Macntillan Publishing Com-
pany, Inc. 1989, pp 621-631.

[2] Kandemir, C. M., Ozksr, T, Garlek. H. G., 8085 egitim seti
tasarnm ve gergeklegmesi. August 1995, pp. 9-10.

[3] Polat C.. Disassembler programs for the 8085 training kit, July
1999, pp. 4-53, 12-18.

[4] Ergiin U.. Kuzlkava Z.. 8085 Egitim Sctinin Scri Haberlesme
Rullanan Monitér Programimin Hazirlanmasi. dugust, 1996, pp. 33-
43

298

