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ABSTRACT 
In the present study kinematics and dynamics as well as the 
control of a 6-3 SPM are considered. First, the dynamic 
model of the considered mechanism outlined and the 
solutions of the relevant equations given in great details. 
Then, in order to obtain a precise positioning and good-
dynamic performance model, a control algorithm developed. 
Adequacy and success of the developed algorithm are 
numerically tested for various initial values, the results 
obtained indicate its high accuracy in capturing desired 
orientation.  
 

I.  INTRODUCTION 
The Stewart platform (SPM) can be considered as a six-
degree-of-freedom mechanism with two bodies connected 
together by six extensible legs. This parallel manipulating 
structure is obtained from generalization of the 
mechanism originally proposed by Stewart as a flight 
simulator [1]. After the instruction of Stewart platform as 
a flight simulator many variations have been introduced 
as fully parallel and serial-parallel manipulators. 
 

 
Fig.1. A General 6-3 Stewart Platform Mechanism 

 
A glance at last two decades clearly indicates that the 
parallel manipulators have received more and more 
attention since Stewart published his famous article in 
[1965]. In the last few years the parallel manipulator have 
been to some extent kinematically and dynamically 
investigated by many researchers. The General Stewart 
Platform has a base and a moving platform connected by 
six extensible legs with spherical joints at the both ends or 

a spherical joint at one end and a universal joint at the 
other (Fig 1.) [2].  
 
This fully parallel kinematics linkage system as a 
manufacturing manipulator has two fundamental 
characteristics by which it is apart from machine tools and 
industrial robots. It is a closed kinematics system with 
parallel links. This parallel mechanism link-ends are 
simply supported, making the manipulator system far 
more rigid in proportion to size and weight than any serial 
link robot. [3-5] In addition to that, the links of the 
Stewart Platform are arranged so that the major force 
components of all six actuator add together, resulting in a 
force output-to-manipulator-weight ratio more than one 
order of magnitude grater than most industrial robots. 
 
In this study the one considered here is 6-3 SPM its 
extensible legs connected to the moving platform as a pair 
in order to get easy controllable and stronger manipulator 
as a parallel mechanism. The lower part of each legs 
connected to base platform by universal joint which has 
its fix axis perpendicular to the line which is through the 
lower connection points of pairs and also parallel to the 
base platform. Upper part–connection of each pair is 
performed by using revolute joint. And in each revolute 
joint which has the rotation center in the plane defined by 
pair of the legs there is a spherical joint. Connections of 
the revolute joints to the moving platform are performed 
by means of this spherical joint in each revolute joint. 
 
The mass definitions of both platforms and inertia 
moments of legs and the methodology of derivation of the 
dynamic equations for the 6-3 UPS SPM dynamic model 
are adopted by ref. [6]. In that model, which is developed 
in the sense of Newton-Euler approach, frictions in all 
types of joints are considered  
 

II.  THE DYNAMIC MODEL 
In recent years many practical and theoretical works have 
been conducted on the kinematics and dynamics of 
parallel mechanism. Several methods such as the 
Lagrange formulation, Newton-Euler formulation and 
principle of virtual work are proposed to derive the 
dynamic equations of parallel mechanism [7-11]. The 
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method of virtual work is a more convenient approach to 
derive dynamics equations for the inverse dynamics of 
parallel mechanism [12,13]. On the other hand, the 
Lagrange formulation is well structured and can be 
expressed in closed form, but a large amount of symbolic 
computation is needed to find partial derivatives of the 
Lagrangian in this method [14]. However, the Newton-
Euler approach requires computation of all constraint 
forces and moments between the links. And depending on 
the dynamic model developed these forces and moments 
may be related to the control parameters for the 
simulations that we have just succeeded in this study. To 
be clear in understanding of dynamic model the required 
definitions are as follows; the leg vectors in fixed 
reference axis are; 

ii  pRq =                     ( i :1,2,   ,6 )              (1) 

iii btqS −+= ,        ( i : 1,2,..,6)               (2) 
In order to prevent indices ambiguity, the corners of 
moving platform are indicated by vectors {q1, q1, q2, q2, 
q3, q3}.  From the kinematics point of view the velocities 
of pairs of legs must be the same.  

tqωS !!          ii +×=  ,     ( i : 1,2,...,6)               (3) 
The unit vectors and the lengths of the legs are 
respectively as follows, 

si = Si / Li                                            (4)    
||  || L ii S=                                     (5) 

The geometric and the kinematics relations for the legs 
are given in their own axis. However the dynamic 
equations are written in the basis axis system or in the 
system, which are parallel to this system. The 
transformation matrix between two-axis system can be 
written. 
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Where, k -direction is the direction of universal joint’s 
fixed rotation axis. The upper and lower parts gravity 
vectors and their inertia matrices are given in the leg-axis 
system respectively, 
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The relative velocity between two part of a considered leg 
is,  

iiiL Ss !! ⋅= ,                                    (13) 
And the angular velocity is,  

iiii L/    SsW !×=                            (14) 
 

III.  ACCELERATION ANALYSIS 
The acceleration of the upper part connection point of a 
leg can be given as two forms depending upon the 
equation in which it is used. 
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i1pii UaS +=!! ,                                        (16) 

Where A is the angular velocity and L!!  sliding 
acceleration of two parts of the leg considered, 

 ipi     qαta ×+= !!  ,                                    (17) 
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The leg angular acceleration defined in equation (15) can 
be written as follows, 
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Having the assumption that the lower part of the leg is 
only rotating while the upper part is not only rotating, but 
also translating. Since the lower part and the upper part 
accelerations are respectively, 

( ) 3idiPii
i

di          
L
1 Urasa +××=   ,     (23) 

   )(
L
1     )( 4iUiPii

i
iPiiUi Urassasa +××+⋅=    (24) 

)      ( diiidii2i3 rWWrUU ××+×=          (25) 

iii

uiiiuii2iii4

L2

)      (u

sW

rWWrUsU

×+

××+×+=
!

     (26) 

 
IV.  DERIVATION OF DYNAMIC EQUATIONS 

The force balance for each individual pairs-moving parts 
of legs under assumption of constant velocity, (fig.2) 
 

 
Fig. 2. All the forces and moments exerted on a pair 

 of  legs 
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FLi = Reaction force between two legs in the pairs, 
Fi = Pressure applied to piston 
FSi = The force applied to the legs by the moving 
platform 

iP LC !
 = Friction force revealed by the sliding 

movement of the upper and the lower parts 
The moment balance on the all legs can be generalized by 
using Newton-Euler Formulas as follows, 
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Mui = The moment revealed by the revolute joint at 
the connection point to the moving platform 

CuWi = Viscous friction reaction moment revealed 
by universal joint. 

Musi = The moments revealed by fixing the leg's 
rotation axis  

Ai = Angular acceleration of the legs 
Wi = Angular velocities of the legs 
 

 
Fig. 3.  The relations between gravity center the position 
vector of a leg ( rd, ru ) and the unit vector of the leg (si) 

 
The center of the gravity vectors for the lower and the 
upper parts of a leg (Fig.3.) in terms of known quantities 
are, 

ididsi  . r sr=                             (29) 

iuiusi  . r sr=                             (30) 

idsididi srrK −=                     (31) 

iUsiUiUi srrK −=                    (32) 
The forces acted upon the moving platform by the legs 
can be written. 
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Fig. 3. The forces and the moments acted on the moving 

platform 
 

V.  THE DYNAMICS EQUATIONS FOR THE 
MOVING PLATFORM 

With the similar manner, force and moment balance on 
the moving platform might be written  
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These two equations are rearranged in order to obtain the 
final form of the dynamic equations for the moving 
platform. 
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Where, J is complicated inertia matrix, η is the resultant 
moment vectors, H is input-output force transformation, F 
is input vector and R is the rotation matrix; all these 
quantities are explicitly given in the appendix.  
Accelerations and the required velocity equations for the 
Runge-Kutta Method can be rearranged for the 
simulation. 
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VI.  SIMULATION 

After a tedious study the dynamic equations of system 
considered are obtained. The simulation of the system has 
been succeeded by the 4th and 5th order Runge-Kutta 



Method (RK45) which is given as a routine the ode45 in 
Matlab. In the practical work, done in many studies, the 
determination of position and orientation of moving 
platform is generally performed measuring leg’s length. 
These measurements, which can be managed by using 
linear sensors, are carried into the forward kinematic 
equations to simulate the precise positions and 
orientations. In this study, the leg-lengths are assumed to 
be measured. By using these known values, the required 
forces Fi needed to be applied to the pistons on the legs 
controlled by a developed PD algorithm. 

iivi0iipi L)K(}L)L{()K(F !−−=          (40) 
Where Kp is proportional gain and Kv is derivative gain.  

The simulations of the dynamic system is depicted in 
fig.4, started the initial values 0000  , t, ,t θθ!! and desired 
 leg-lengths (Li)0 and time step size h=0.01 s with the 
 (Kp) = 4000, (Kv)i=300 values,  for 1000 time steps. 
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Fig. 4. Simulation results of the considered dynamical system including legs-length, position and orientation of 

moving platform 
 

VII.  RESULTS 
Let have short review on the study in hand. Firstly, the 
dynamical equations are derived in great details. A leg-
length-based algorithm is developed to control moving 
platform in the range of certain precision. 
In order to obtain highly accurate positioning and 
orientation determining of a 6-3 SPM mechanism a PD 
Control algorithm is developed. This PD algorithm is 
implemented to the dynamical model by which it is 
possible to express all the trajectories of this SPM might 
have. The application of PD algorithm developed results 
in positioning error less than %1. 
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