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Abstract

New diagnosis method of induction motor faults based on
classification of the current waveforms is presented in this
paper. This method is composed of two sequential processes:
a feature extraction and a rule decision. The diagnosis is
realized the detection of different faults—bearing fault,
stator fault and rotor fault. K-nearest neighbor (K-NN) is
used as decision criterion. The flexibility of this method
allows an accurate classification independent from the level
of load. This method is validated on a 5.5-kW induction
motor test bench.

1. Introduction

In the classification, the optimization procedure of time—
frequency representation (TFR) via parameter kernel is
computationally prohibitive. We propose to design and use the
classifier directly in the ambiguity Doppler delay plane. Since
all TFRs can be derived from the ambiguity plane, no a priori
assumption is made about the smoothing required for accurate
classification [1-2]. Thus, the smoothing quadratic TFRs retain
only the information that is essential for classification [3-4].

In this paper, we have proposed a classification procedure
based on the design of optimized TFR from a time—frequency
ambiguity plane in order to extract the feature vector. We have
used the K-nearest neighbor (K-NN) with Mahalanobis distance
and Euclidean distance as decision rule. In this study, the goal
is to realize an accurate diagnosis system of motor faults such as
bearing faults, stator faults, and broken bars rotor faults
independent from the level of load.

2. Classification algorithm

2.1. Optimal TFR method

The optimal TFR method is applied to diagnose three kinds of
induction machine faults, which are the bearing fault, stator fault
and rotor fault. Thus, four classes are considered:

- class of healthy motor

- class of bearing fault

- class of stator fault

- class of broken bars
The classification algorithm of these three classes of defects and
the healthy class is shown in the Figl.
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Fig.1. classification algorithm

classification algorithm is composed of the following two parts:
extraction features and decision making. In the training stage, in
order to build the extraction features, three optimal kernels are
designed for separating four classes. The details of extraction
features are described in [5]. A decision criterion is based on
the rule of the k - nearest neighbors (k - NN).

2.2. Rule of the k - nearest neighbors (k - nn)

Let X, =(X.X,,..X,) the training set consists of N

independent vectors, each labeled with an M known classes. The
principle of the rule of k - NN is to assign a new observation X

to the class largely represented among its k - nearest neighbors.
In fact, the easiest way to develop this rule is to measure the
distance between the new observation vectors and each of the
training set. The new observation will be assigned to Class
predominantly represented among its k —NN [6]. In the choice
of distance in the rule of k — NN, different distances can be
used, defined by the general formulation:

(X, Y)=(X-Y) AX-Y) (1)

where: A is a positive definite matrix.

d (X , X) : Distance between x andy .

X andY:vector dimension of d’ Several special cases can be

drawn from this formulation:
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* The Euclidean distance where A is an identity matrix:
dp(X.V)=(X-Y) AX-Y) @

* The distance Mahanalobis where A is the inverse of the total
variance-covariance matrix X:

A (X.N=(X-v)> " (x-1) 3)

Rule of k - mnearest neighbors with rejection
in reality, there are two main concepts of rejection: rejection
ambiguity in relation to a

new observation lies between two or more classes and rejection
in distance corresponds to a new observation at a distance away
from classes X . Decision rule includes the two options will be

applied for discharges (M + 2)classes:

‘X, > Q. (c=LM): X, isclassifiedin .
* X, ambiguity is rejected then: x — Q.

* X, Distance is rejected then: ¥ — Q.
with

Q,: Fictitious class of observations rejected in distance.
Q,: Fictitious class of observations rejected in ambiguity.

k-NN rule including two options for rejection: Reject Rejection
of ambiguity and distance can be expressed by:

Ku - Qd Si d(Kuamc»Tc
X, »>Q, sidX,m)<T, et k, =max k, (k'

¢ r=l,M

X, > Q, si d(X,,m )<T. et k, =maxk, )k
r=1,M (4)

3. Experimental results

An acquisition of current signals was carried out on
a test bench that was made of a 5.5kW induction motor
(Fig. 2). The sampling rate was 10 kHz. The number of
samples per signal rises at N = 10,000 samples. The data
acquisitions et on the machine consists of 15 examples of
stator current recorded on different levels of load
(0%,25%,50%,75%,100%).

Fig. 2. Test bench of induction motor

Different operating conditions from the machine were
considered: healthy, bearing fault, stator fault and rotor fault.
The training set is carried out on 10 current examples. The last
five current examples are used to test system classification. The
design of Fisher’s discriminant ratio kernel was made on two
levels; the first level is used for class separation among bearing
fault, stator fault and rotor fault. The second level deals with the
determination of severity degree for a given type of fault. Thus,
we design a kernel for each degree of severity.

Each classification consists of the separation of fault classes.
The Fisher’s point locations are represented in the Doppler-
delay plane. We retained three point locations per kernel

{&2)(62).} for stronger contrast. These locations ranged in
the feature vector for training {FVI,_,_, FVg}. This selection is

made on the basis of contrast value and a compact localization
in the ambiguity plane. We also removed the locations that have
close-by values or points similar to those of other classes. The
second step is the testing phase which is to classify new
observations (Table. 1).

Tablel. New observations X,

new contrasts
observation
X, 12.36
20.45
15.23
5.7
X,, 15.2
10.8

Classification by the k-NN rule is established for the same
new observations illustrated in Table 1. uses both two distances
Euclidean distance and Mahanalobis distance. In this work we
have chosen three procedures of decision by the k-NN. The first
is the classification of the vector test point by point. The second
classification simply checks two points instead of the entire test
vector to make a decision. The third classification is the center
of gravity vector test.
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The decision p oint by point
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Fig.3. the decision point by point by Euclidean distance

Fig.3 shows the classification of two new observations X and
X, by the procedure "point by point" using the Euclidean
distance. We note that the first point of the vector X  is
assigned to the class () that corresponds to the rotor fault but

the other two points are rejected in ambiguity, therefore the
decision is rejected by ambiguity vector with an error rate of
33% ( the error rate is the number of misclassified points on the
number of points of the vector observed), whereas the second
point of the vector X is assigned to the class i.c. the stator

fault and other points are rejected distance, hence the distance

vector is rejected with an error rate of 33%.
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Fig. 4. Decision point by point by Mahalanobis distance

Fig.4 shows the classification of two new cases X, and X, by

the procedure "point by point" but this time through the use of
distance Mahanalobis. We note that the decision is the same as
the Euclidean distance, that is to say the vector X, is rejected

an ambiguity and the vector X, is rejected a distance. This

similarity of results between the two distances is explained by
the principle of Fisher, the separation between classes is greater
and the point of the class is closer. The learning points are from
the Fisher principle stronger contrast.

The decision by two points
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Fig. 5. Decision point by two satisfied by the Euclidean
distance
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Fig. 6. Decision by two points satisfied by Mahalanobis distance

Fig.5 and 6 illustrate the case of any two points Xu]and X,

therefore X, vector is assigned to the class €, and therefore

the class of rotor failure but with an error rate of 66% and the
vector is rejected X, in distance with an error rate of 33%.

Fig.7. Decision by the center of gravity by the Euclidean
distance
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The decision by the center of gravity
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Fig. 8. Decision by the center of gravity by Mahalanobis
distance

In the third step, we used the center of gravity of each vector.
Fig.7 and 8 show the classification of vectors into different
classes as possible. We observe that the vector X " is rejected

an ambiguity, this result corresponds to the classification step by
step as we have seen previously and the vector X ” is rejected

an ambiguity with an error rate of 66% this is due to the distance
between the points of vector X -

Table 2 and 3 summarizes the allocation of new comments to
various classes of the training set: ()] bearing fault class, (2

stator fault class, Q3 rotor fault class, Qg the class of rejection
an ambiguity and Qg the class of rejection an distance.

Table 2. Decision by Euclidean distance

Table 3. Decision by Mahalanobis distance

The decision by Euclidean distance
New Point by point vector by center
observation two of
points | gravity
pointl — Q3
X, point2 — Qa Qa Q3 Qa
point3 — Qa
point]l —» Qd
X,, point2 — QI Qd Qd Q2
point3 — Qd

The decision by Mahalanobis distance
New center
observation Point by point vector by of
two gravity
points
point]l — Q3
X, point2 — Ql Qa Q3 Qa
point3 — Qa
pointl — Qd
w2 point2 — Qa Qd Qd Qa
point3 — Qd
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4. Conclusions

In this study we proposed a method of time-frequency
representation for the classification of faults. We have used k-
nearest neighbor technique for three procedures of classification
of new observations: point by point, by two point and the center
of gravity. Using Euclidean distance and Mahalanobis distance,
results shows that the classifications through the center of
gravity of vector test is the most simple and powerful and also
the results of the two distances (Euclidean and Mahalanobis) is
close because the points of the training set points is more high
contrast are relatively close to each other. The classification by
the k-nearest neighbor method is the more efficient and
interpretable in terms of classification results.
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