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Abstract - A growing attention has been given in the recent 
years to the chaos-based techniques for using them in the 
field of secure communication. In this paper we present a 
methodology for designing the chaotic-based cryptosystems. 
For the simulation of such a cryptosystem we used the 
Matsumoto-Chua-Kobayashi circuit.   
 

I. INTRODUCTION 
 
 There were developed several methods in order to 
improve the security level of the chaotic carrier 
communications. Basically, these methods use classical 
cryptographic algorithms in the structure of the chaotic 
systems.  
         In this domain there are several ways to approach 
this problem, existing already many "schools": the 
"british school" [3][4], the "german school" [5] and the 
"american school" [8]. In the papers presented until now 
there are proposed different methods to realise 
cryptographic  systems.  
        A first direction to be followed is to use schemes 
based on digital filters. The second class of methods 
refers to the use of two chaotic signals: one for encrypter 
and decrypter synchronisation, the other one for the 
encryption itself.  
        New methods were proposed, combining the classic 
encryption with the synchronisation of chaotic systems. 
For enhancing the interception resistance of chaotic 
carrier communications, there were proposed methods 
that use classical cryptography blocks in the same 
structure with the chaotic systems. 
 
 

II. CHAOS-BASED CRYPTOGRAPHY USING 
DIGITAL FILTERS 

 
        There are presented in [3] and [4] digital filters-
based chaotic systems. It was demonstrated in [1] and [2] 
that the digital filters can be used in the construction of 
some chaotic systems. It was shown in [3] that digital 
filters with finite precision have a quasi-chaotic 
behaviour, that gives them following properties, named 
Quasi Chaos-properties (QC-properties): 
- the filter response (without having any input) has a 
noise-like spectrum for all possible selections of initial 

conditions; the noise-like signal is defined as a filtered 
version of the white gaussian noise. 
- the filter response to an arbitrary input has a noise-like 
spectrum for all possible selections of initial conditions, 
too. 
- the filter response to almost all (90-95%) arbitrary 
inputs is uncorrelated with input for almost all possible 
selections of initial conditions. 
- the filter response to the same inputs are uncorrelated 
for almost all possible selections of initial conditions. 
- two filters' states will be different for almost all possible 
selections of inputs in two identical filters, having 
different but close initial states. 
 
     The digital filter-based encrypter must have QC-
properties in order to have a quasi-chaotic behaviour and 
therefore to be of value in secure communications 
applications [3]. The encrypter having QC-properties can 
be used for securing the communication. 
         The encrypter and the decrypter obey the following 
defining equations: 
 
      a) Encrypter 
x(n) = h1(n) * u(n)+h2(n) * F(x(n), x(n - 1), ... , x(n - M)); 
e(n) = d(n)* x(n);  
     
      b) Decrypter  
x(n) = )(nd * e(n);  

x(n)= ( )nh1 * u(n)+ ( )nh 2  * F(x(n), x(n - 1), ... , x(n- M));     
 
where: 

• u(n) - the input sequence (plaintext signal); 
• x(n) - an internal signal; 
• e(n) - the encrypted signal to be transmitted to 

the receiver; 
• y(n) - the output sequence (decrypted signal); 
• h1(n), h2(n), ... - IIR (Infinite Impulse Response) 

or FIR (Finite Impulse Response). 
• F(.) - a general non-linear map suited to 

hardware implementation. 
• + and * - the addition and convolution 

operators.  



       The encrypter must respect the QC-properties and the 
decrypter must realise the inverse function of the 
encrypter. 
       Such a cryptographic system whose operation is 
based on equations  

e(n) = u(n) + { e(n - 1) + f(e(n - 2))} ; 
y(n) =  e(n) - { e(n - 1) + f(e(n - 2))} . 

is presented in Fig. 1: 
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       The encrypter consists of a chaotic system and an 
encryption function e(t). The cryptographic key k(t) is 
one of the state variables of the chaotic system. The 
transmitted signal s(t) is another state variable of the 
chaotic system. It is sent through a public channel to the 
decrypter and used to synchronise the decrypter.  
         The decrypter consists of a chaotic system and a 
decryption function d(). It should be noted that both the 
encrypted signal y(t) and the key signal k(t)  are not sent 
to the decrypter. It is different from traditional discrete 
cryptosystems where both the encrypted signal and the 
key should be transmitted to the decrypter.  
        The communication channel’s noise n(t) is added to 
s(t),  so the decrypter receives the sum signal s(t) + n(t). 
         Only when the decrypter and the encrypter are 
synchronised, the decrypter can find the encrypted signal 
and the key signal. Then, the decryption function d()  is 
used to decrypt the encrypted signal. 
  
 

IV. THE DESIGN OF A CHAOS-BASED 
CRYPTOSYSTEM USING CLASSICAL 

CRYPTOGRAPHIC ALGORITHMS 
 
 The proposed cryptosystem block diagram to design 
is that shown in Fig. 2. The central idea is realising the 
decrypter as a non-linear observer for the state of the 
encrypter. An observer is a dynamic system designed to 
be driven by the output of another dynamic system. The 
observer has the property that its state converges to the 
state of the other system.  
       According to this approach, the cryptosystem design 
consists of four stages: 
 
        a) The first of them proposes the establishment of 
chaotic system state equations: 

  )1(,)( cxbfAxx ++=!  
 
where: 
    x∈  Rnx1, A∈  Rn x n, b ∈  Rn x 1, c∈  Rn x 1 and f : Rn→ R. 
 
 b) In the second stage the encryption function for a 
given plaintext signal p(t) is set:  

( ) ( ) ( )( ) )2(,, tKtpete enen =  
 

where een(.) is the encryption function that uses the key 
signal K(t).  
        Using symmetric algorithms, the plaintext message 
p(t) is obtained from the ciphertext een(t) on the basis of 
relation: 

      ( ) ( ) ( )( ) )3(,, tKtedtp en=  
where d(.) is the decryption function.  
 
 c) In the third stage the encryption system is 
considered as a dynamic system described by the 
equations: 

( ) )4(.)( tebcxbfAxx en+++=!  

         The retrieval of the original message (plaintext) 
assumes the key generation at the receiver and the 
synchronisation between the encrypter and the decrypter.  
 
 d) The fourth stage defines the decryption system for 
the given encryption system (4) as being the dynamic 
system described by: 

( )( ) )5(,)( yszgcybfAyy −+++=!  
 

where g : R → Rn is a non-linear function, z(t) is a scalar 
signal transmitted through the public (unprotected) 
channel and s(y) is a scalar output of the chaotic system.   
 
       The decryption system (5) must be designed so that y 
converges to state x when t → ∞, i.e. e(t)=[y(t) - x(t)]→ 0 
as t → ∞ (where e is the synchronisation error).  
        If e(t) → 0 when t → ∞  for any initial condition 
(y(0), x(0)), we can say that the decryption system (5) is a 
global observer of the encryption system (4). 
  
         For illustrating the proposed approach the chaos-
based cryptosystem with Matsumoto - Chua - Kobayashi 
circuit was used. The above mentioned circuit has the 
following state equations:  
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where 
dt
dxx i

i =!  and g(.) is a linear function on sections, 

given by: 
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 For the plaintext encryption is used an n-shift cipher:  
     een(t) = f1( ... f1(f1(p(t), K(t)), K(t)), ... , K(t)),        (8) 
 
where: 
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with h = 5 şi n = 5.   
 
        The transmitted signal in the public channel is: 
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V. THE SIMULATION RESULTS 
 
      The  input  plaintext  signal  used  for  simulation  
were: a) p(t) = sin t; b) p(t) - binary signal (randomly 
generated). The encryption key K(t) = x4(t) was chosen.  

          For the simulation we realised a program in 
Matlab.  In Fig. 3a and in Fig. 3b we present the obtained 
results for the sinusoidal and binary input signals, 
respectively.  
 
 

 

 
 

Fig. 3.  Time waveforms for the sinusoidal input signal (a) and binary input signal (b): original signal -  up, 
encrypted signal - middle and recovered signal - down. 
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VI. CONCLUSION 
 

        Basically, to increase the interception resistance of 
the chaotic carrier communications three classes of 
methods are used: 

a. the use of digital filters having QC-properties 
together with non-linear mapping functions, 
b. the use of digital filters having a chaotic 
behaviour together with binary shift registers, shift 
cipher and auto-key ciphers, 
c. the use of chaotic systems involving two chaotic 
signals: first for the chaotic encrypter and decrypter 
synchronisation and the other for informational 
signal encryption using a classical encryption 
algorithm (by example with shift ciphers). 
 

         In order to enhance the interception resistance of 
chaotic carrier communications, there were realised other 
methods which use classical cryptographic blocks in the 
same structure with the chaotic systems. 
 The proposed cryptosystem in this paper offers a 
good security level. It is known that the more complex is 
the transmitted signal, the higher is the security of the 
communication system. The designed cryptosystem 
delivers in the public channel a very complex signal: 
transmitted signal z consists of three summed signals - 
the chaotic signal f(x), the linear combination of all 
chaotic state variables kx and the encrypted signal een(t). 
       A good advantage of the described methodology is 
that the cryptosystem design is very flexible. The 
proposed cryptosystem can include also other chaotic 
system (Chua, Rossler, etc.). 
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