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Abstract 
  

In this study, systematic procedure of the flight controller 
design for a small-scale unmanned helicopter is presented. 
The procedure is based on a linear dynamical model. The 
proposed controller is composed of state feedback and 
reference feedforward. Reference tracking performance is 
formulated in terms of 2L gain from reference inputs to 
tracking errors and respective integral terms. Solution of the 
optimal controller with minimum 2L  gain is cast to the semi 
definite programming problem with a set of Linear Matrix 
Inequality (LMI) constraints. Six degree-of-freedom linear 
helicopter model with two degree of freedom rotor dynamics 
is used to illustrate the effectiveness of approach through 
simulations. Numerical simulations show that the stability of 
controlled system and boundedness of control signals against 
reference trajectories with bounded magnitudes are 
guaranteed by the proposed controller. 

  
1. Introduction 

  
Unmanned Aerial Vehicles (UAV) have seen unprecedented 

levels of development over the last decade. It is well known that 
UAVs will be used in the future comprehensively for civilian 
and military applications such as environmental monitoring, 
power line inspection, surveillance, search and rescue etc. From 
all classes of UAVs, unmanned rotorcrafts, and in particular 
unmanned helicopters, have superiorities over fixed wing UAVs 
because they take-off and land vertically, they do not require a 
runway, and they are able to hover and fly in very low altitudes 
[1].  

The flight controller is essential for a UAV to achieve 
autonomous flight missions [2].  A large variety of attempts that 
have been reported in literature to develop flight controllers 
using various algorithms. Optimal linear quadratic controllers 
are designed in previous researchs [3-5]. Robust and multi loop 
PID controllers proposed for autonomous flight [6-7]. Neural 
network approach offered by several researchers to obtain 
adaptive controllers [8-10]. Isodori et al. used the differential 
geometry method to combine adaptive and robust control 
structures [11]. The robust and ∞H  control techniques applied 
by various researchers [12-15]. The composite nonlinear 
feedback control with decoupling approach considered as a 
potential solution by Peng et al. [16]. 

In this study, a new ∞H  controller with state feedback and 
reference feedforward is proposed for reference tracking. To 
avoid actuator saturation problem, boundedness of control 
signals against magnitude bounded reference inputs is 
formulated by LMIs. In order to examine the performance of 

proposed controller by numerical simulations, parameterized 
linear model of Raptor 90 SE is used. 

Rest of the paper is organized as follows: Section 2 describes 
the synthesis of the proposed controller. Numerical simulation 
results are given in Section 3. Finally, Section 4 concludes the 
paper. 

  
2. LMI Based State Feedback and Reference 

Feedforward Actuator Saturated ∞H  Controller 
  

In this section, we consider an optimal state feedback and 
reference feedforward actuator saturated ∞H  controller 
synthesis problem. Structure of the controller can be seen in Fig. 
1. 

 
  

Fig. 1. Controller Structure 
  

Consider a Linear Time Invariant (LTI) system  
  

 BuAxx +=    (1) 
  

where nx ℜ∈ is a state vector, mu ℜ∈ is a control input vector, 
nxnA ℜ∈ is a state matrix and nxmB ℜ∈ is a control input 

matrix. To design a tracking controller, state space system (1) 
should be augmented  
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21a

21aaa
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   (2) 

  
where pr ℜ∈  is a vector of reference trajectories and cz ℜ∈  is 

a vector of controlled outputs, ( ) ( )pnxpn
aA ++ℜ∈  is the 

augmented state matrix, ( )xppn
1B +ℜ∈  is the reference inputs 

matrix, ( )xmpn
2B +ℜ∈  is the control inputs matrix and C , 1D , 

2D  are the matrices with appropriate dimensions to construct 
controlled output vector. Assume that, the first p element of 
given state vector p

tx ℜ∈ are the states supposed to track 
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reference trajectories. Hence the state space system (2) can be 
written as 
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  For a control law which is a linear function of x  and r  

  
 LrKxu +=    (4) 

  
where mxnK ℜ∈  and mxpL ℜ∈  are the controller gain 
matrices with appropriate dimensions. Closed loop system can 
be written 

  

 
( ) ( )

( ) ( )rLDDxKDCz
rLBBxKBAx
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+++=

+++=
   (5) 

  
There exists a positive definite quadratic Lyapunov function 

( ) a
T

aa PxxxV = where 0PP T= and its negative definite 
derivative for any stable LTI system. ∞H  performance problem 
is to find an controller that makes 2L  gain of the closed loop 
system from reference inputs to controlled outputs, less than a 
positive scalar γ . If minimization of γ  is achieved, then the 
computed controller is an optimal  ∞H  controller.  Stability and 

2L  gain properties of a LTI system can be expressed 
simultaneously by a single inequality which is called 
Hamiltonian of the system 

  
 ( ) 0rrzzxV T2T

a <γ−+    (6) 
  

Although the stable controller design with 2L  gain of γ  
considered, the actuator saturation problem has not been taken 
into account yet. In order to meet the problem, assume that the 
reference input vector belongs to the following set 

  

 { }1Rrr;rW Tp ≤ℜ∈=    (7) 
  

with 0RR T= . In this case, r  is bounded by a quadratic 
norm which reflects bounds on r  [17-19]. Note that, if R  is an 
diagonal matrix, it denotes that ii R1r ≤ , where 

iR represents the i th diagonal element of R , p,...,1i = [17]. It 
is well known that, quadratic Lyapunov functions constructs an 
invariant ellipsoid for LTI systems. Since quadratic Lyapunov 
function is positive definite and its derivative is negative 
definite, the state trajectories that initialized in ellipsoid 

  
 1Pxx a

T
a ≤    (8) 

  
do not escape from this domain [20]. Consider Hamiltonian of 
the system (6) and the application of S-procedure [21], a 
sufficient inequality to relate (6), (7) and (8) is obtained. 

  
 ( ) ( ) ( ) 0Rrr11PxxrrzzxV T

2a
T

a1
T2T

a <−τ+−τ+γ−+   (9) 

  
with positive scalars 1τ , 2τ . In particular, if (10) and (11) 

are satisfied, 
  

 ( ) 0RrrPxxrrzzxV T
2a

T
a1

T2T
a <τ−τ+γ−+    (10) 

  
 12 τ<τ    (11) 

  
Thus inequality (9) also holds [17]. Hence, this can be 

concluded that (9) ensures that the trajectories initialized in 
ellipsoid (8), stays in this ellipsoid (7). Arranging the inequality 
(10), the following matrix inequality can be obtained as 
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 0≺ϕ    (13) 

  
Since LrKxu += , one can always write 

  

 2
max

T
max2 uuuuu ≤↔≤    (14) 

  
For simplicity, let assume that 1umax = , by scaling 2B . 

Hence (12) can be rewritten as an ellipsoid 
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which is a set of the state trajectories and reference inputs do not 
cause actuator saturation. To avoid actuator saturation ellipsoid 
(14) must contain the union of ellipsoids (7) and (8) which is 
written below 
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Problem of designing a state feedback and reference 

feedforward actuator saturated ∞H  controller can be formulated 
by Bilinear Matrix Inequalities (BMI) (13) and (19). By 
applying congruence transformation [21] pre and post multiply 
these BMIs by 
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where 1T PXX −== . Then, BMIs (13) and (19) are converted 
to 

  
 0≺ϕ    (21) 
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with KX:W = . The resulting matrix inequalities are still in the 
form of BMI. Therefore, by applying Schur complement 
formula [21], expression (21) and (22) are equivalent to 
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Finally, controller design is formulated with LMIs (23) and 

(24). The following theorem summarizes the state feedback and 
reference feedforward actuator saturated ∞H  controller design 
as a convex optimization problem.  

 
Theorem:  
The control law LrKxu += where 1WXK −=  and L  are 

optimal state feedback and reference feedforward ∞H controller 
gains for closed loop system 
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with an actuator saturation constraint  
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12 τ<τ  
  

3. Numerical Simulations 
  

In this section, simulations are carried out in order to 
illustrate the effectiveness of proposed controller in reference 
tracking. All the simulations and computations are accomplished 
using MATLAB with SIMULINK. For the solution of resulting 
LMIs, YALMIP Parser and SEDUMI solver are used [22-23]. 
When 1τ is fixed to 14 and R is given as (25), γ  is computed as 
0.0218. 

  
 ( )( )2222 414141101diagR π=     (25) 

  
For simulation studies and controller design, parameterized 

linear model of the Raptor 90 SE is considered. This model 
structure is a very appropriate for controller design and 
simulation since the ability of establish a generic solution to the 
small-scale helicopter identification problem is approved by 
literature [1]. The linear parameterized model is based on 
Mettler’ s model for the Carneige Mellon’ s Yamaha R-50 and 
MIT’ s X-Cell 60 [24]. The structure of the model proposed by 
Mettler has been already successfully used for the parametric 
identification of several helicopters of different sizes and 
specifications [4-5], [12], [15], [25-26]. The related state space 
is given as follows 

  
 BuAxx +=     (26) 

  
where  
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where u , v , w  are the linear velocities respect to Body 

Fixed Frame (BFF). p , q , r  are the angular velocities respect 
to Body Fixed Frame (BFF). φ , θ , ψ  are the euler angles. a  
and b  are states of the first order rotor flapping dynamics 
and lonu , latu , colu , latu  are the control inputs which are scaled 
to 1± [1].  

The values of state space model parameters can be found in 
[1]. Proposed controller is tested for trajectory tracking of Body 
Fixed Frame (BFF) linear velocities and yaw angle. For 
trajectory generation from reference inputs in the form of step, 
linear second order critically damped reference models with 
2 srad  bandwidth are used as shown in Fig. 2. 

 
  

Fig. 2. Second order reference models for trajectory generation 
  

Fig. 3 shows the trajectories generated by second order 
reference models. The trajectory generation procedure enables 
smooth tracking performance.  
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Fig. 3. Trajectory generation from step reference imputs 
  

BFF velocity and yaw angle tracking control performances 
are shown in Fig. 4. Generated trajectories are tracked 
successfully without any overshoot. 
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Fig. 4. Reference tracking performance  
  

Time histories of control inputs during tracking can be seen 
in Fig. 4. Actuator saturation problem is not occurred since the 
signal magnitudes do not exceed 1± .  
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Fig. 5. Time history of control inputs  
  

Resulted pitch and roll angles along trajectory tracking are 
shown in Fig. 6.  
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Fig. 6. Roll and pitch angle time histories during reference 
tracking 
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4. Conclusions 

  
In this study, systematic procedure of the flight controller 

design for small-scale unmanned helicopters is presented. The 
proposed flight controller is composed of state feedback and 
reference feedforward. The controller design problem is 
formulated as a convex optimization problem with LMIs. 
Parameterized linear state space model is used for both 
simulation and design studies. Numerical simulation results 
demonstrate that the proposed controller can track reference 
trajectories without any overshoot and more importantly the 
magnitudes of control signals stay in adequate level to avoid 
saturation. Consequently, the proposed controller has a great 
potential in systematic tracking controller design for small-scale 
unmanned helicopters which can be represented by linear 
parameterized dynamic models. 
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