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ABSTRACT 

This paper addresses the problem of selecting 
appropriate weights in mixed sensitivity controller 
design, when various specifications are the design 
objectives. Genetic algorithm is used for tuning weight 
functions in order to improve the performance 
satisfactory of design. Application of the resulting 
method is used to design a controller for flexible 
transmission system.  
 

I. INTRODUCTION 
There has been a great interest in the control community, 
using mixed sensitivity controller design. Such an interest 
is motivated by the fact that the controller design is 
simply based on nominal plant model P(s) and bounds or 
weights on sensitivity and complementary sensitivity 
functions. The success of achieving performance 
constraint in an optimal mixed sensitivity control design 
depends, in large part, on the selection of appropriate 
weights used in optimization process. In [1], the problem 
of weight selection for sinusoidal tracking performance 
has been addressed. However, there is no proved method 
for selection of weights according to various specified 
specifications in problem. 
 
In this paper, we outline a guideline for selecting the 
parameters of the weighting functions in the mixed 
sensitivity design when multiple specifications in time 
and frequency domain are considered. The method is 
based on selecting a structure for weight functions and 
tuning their parameter in order to maximize a satisfactory 
performance function through an optimization method 
which in this paper is genetic algorithm. Selecting a 
structure for weight functions is not difficult according to 
robust control literature [2] but fine tuning the parameters 
have been always a point of confusion in mixed 
sensitivity problem. The strength of this method is that it 
is applicable to all problems including the ones with 
multiple specifications and MIMO systems. The method 
is presented by designing a controller for flexible 
transmission system. This system has been the subject of a 

benchmark on robust control at the European Control 
Conference in Rome 1995. Very low damped vibration 
modes and their large variation with loads along with 
several specifications make this system in general very 
difficult to control. Several controller design methods 
have been presented for this system, including adaptive 
control, QFT, GPC, CRONE, pole placement with 
sensitivity loop shaping, and mixed sensitivity 
optimization with multiplicative uncertainty [2-3]. 
However, only one of the proposed approaches, has 
satisfied all the specifications. In this paper, two 
controllers are constructed using mixed sensitivity 
optimization and genetic algorithm is used to improve 
their performance. 
 

II. BENCHMARK PROBLEM STATEMENT 
Flexible Transmission system consists of three horizontal 
pulleys connected by two elastic belts. The first pulley is 
driven by a DC motor whose position is controlled by a 
local feedback. Since the dynamic of this feedback loop is 
much faster than the mechanical parts, it can be neglected 
in the analysis of the system. The objective is to control 
the position of the third pulley which may be loaded by 
small disks. The schematic diagram of this system is 
shown in Figure 1. 

 
Figure 1. Flexible transmission system. 
 



The plant model is given as a set of three transfer 
functions depending on the loads, as given below. 
No load: 

7 4 7 3 2

11.56( )
714 10 1225 10 0.08607 0.07395 11.56NLG s

s s s s− −=
× + × + + +

 (1) 

Half load: 

7 4 7 3 2

11.56( )
2159 10 2458 10 0.2017 0.07395 11.56HLG s

s s s s− −=
× + × + + +

 (2) 

Full load: 

7 4 6 3 2

11.56( )
3604 10 369 10 0.3173 0.07395 11.56FLG s

s s s s− −=
× + × + + +

 (3) 

This system is characterized by two low damped vibration 
modes, and their large variation with loads as shown in 
Figure 2. The goal is to tune the parameter of the weight 
function in the mixed sensitivity problem to achieve the 
following specifications: 
a) Time domain specification: 

1- Rise time (tr) of less than 1 sec. 
2- Overshoot (Mp) of less than 10 %. 
3- Settling time (ts) of less than 1.2 sec. 

b) Frequency domain specifications: 
1- Modulus margin greater than 0.5, 6S

∞
<  dB.  

2- A maximum value of less than 6 dB of the input 
sensitivity function. 

3- Disturbance attenuation in the low frequency 
band from 0 to 0.2 Hz. 

In the benchmark defined in European Control 
Conference in Rome, there was no condition on settling 
time (specification 3). Adding this specification makes the 
problem of designing the controller more difficult. 

Figure 2. Freuency characteristic of the system, full load   
(dash-dot), half load (solid), no load (dot). 

 
III. CONTROLLER SYNTHESIS 

 
A. MIXED SENSITIVITY PROBLEM 

We initiate the discussion by considering the feedback 
system shown in Figure 3 Let 1( ) (1 )S s GK −= +  and 

( ) 1 ( )T s S s= −  be sensitivity and complementary sensitivity 
transfer functions, respectively. In the mixed sensitivity 
problem the objective is to minimize the infinity norm 
shown below: 

[ ]TP R TW S W KS W T
∞

 (4)

where WP , WR and WT are weight functions. 
 

B.   WEIGHTING FUNCTIONS STRUCTURE 
According to robust control literature, there are several 
methods for selecting weight functions; we just outline 
clues used for weight selection in our benchmark 
problem. Due to changing the plant transfer function with 
loads, a type of perturbation must be used to model the 
system. According to the benchmark, it is assumed that 
GHL is the nominal plant transfer function and GNL is 
perturbed plant transfer function. To emphasize the effect 
of selecting weights structure on final results, two types of 
perturbation have been considered. 

Figure 3. Closed loop system. 
 
 
STRUCTURE 1: MULTIPLICATIVE UNCERTAINTY 
Condition to achieve robust performance for a plant with 
multiplicative uncertainty is [4]:  

1T PW T W S
∞

+ ≺  (5)
where WT is robust stability weight and should satisfy the 
following equation: 

                    1 ( ) ,NL
T

HL

G W jw w
G

− ≤ ∀                    (6) 

 
A little time with bode magnitude plot, WT can be 
calculated as (6) which satisfies (5). 

                      
2

2

( 0.1)
5(0.0001 1)T

sW
s

+
=

+
                     (7) 

Note that weight functions wisely selected to be proper 
and stable, in order to use Robust Control Toolbox of 
MATLAB [5]. The term (0.0001s+1)2 is added to meet 
this limitation. Gain and zero of WT should be tuned, in 
order to achieve best performance. So the structure of WT 

can be selected as bellow: 
2

1
2

2

( )
(0.0001 1)T

s aW
a s

+
=

+
 (8)

The initial value for 1a  and 2a will be 0.1 and 5 
respectively, which will be used in optimization 
algorithms. WP is nominal performance weight and can be 
determined by shaping closed-loop transfer function. The 
closed-loop transfer function which meets second and 
third specification is: 

2

2 2

(5.55)( )
6.66 (5.55)

T s
s s

=
+ +

 (9)

 
which is a standard second order system with ts=1.2 and 
MP=10 %. Then sensitivity function will be: 



( ) ( )
2 2

6.66
( ) 1

6.66 (5.55)
s s

S s T s
s s

+
= − =

+ +
 (10)

The weight function can be considered as S-1(s) which 
should be modified to be stable and strictly proper for 
better performance as follows: 

( ) ( )( )( )
2 26.66 (5.55)

0.00001 6.66 0.0001 1P
s sW s

s s s
+ +

=
+ + +

 (11)

Therefore structure of WP will be: 

( ) ( )( ) ( )
2 2

3 4

5 6

( )
0.00001 0.0001 1P

s a s aW s
a s s a s

+ +
=

+ + +
 (12)

Initial values are taken as in (11). WR is weight function 
on controller output and is taken to be constant with initial 
value of 1. 

7RW a=  (13)
 

STRUCTURE 2: ADDITIVE UNCERTAINTY 
Condition for robust performance for additive 
perturbation is [4]:  

1R PW KS W S
∞

+ ≺  (14)
where WR should satisfy the following equation: 

( ) ,NL HL RG G W jw w− ≤ ∀  (15)
Again, a little time with bode magnitude plot, WR can be 
calculated as: 

2

2

3
(0.1 1)R

sW
s

=
+

 (16)

So the structure of WR will be: 
2

1
2

2( 1)R
a sW

a s
=

+
 (17)

The initial value of 1a  and 2a will be chosen as (16) 
accordingly. Nominal performance weight WP is like 
structure 1 and WT is taken to be constant starting from 1. 
 

C.  SATISFACTORY PERFORMANCE INDEX 
A performance index should be determined to evaluate 
different controller designs. Satisfactory performance 
index is defined as the average of satisfactory ratio 
computed for each specification. Computing of 
satisfactory ratio may vary depending on problem and 
desired specifications. The satisfactory ratio which is used 
for flexible transmission problem is defined 100% if a 
condition is achieved by a controller and is defined 0 if 
the corresponding characteristic is two times greater (or 
less) than the limited value. The intermediate values are 
computed by linear interpolation. This definition can be 
used for a large variety of problems. In some cases, it is 
possible that a number of specifications are more 
important than others. Since all the specifications might 
not be satisfied by mixed sensitivity controller design, the 
importance of the specifications should be considered in 
optimizing the parameters. This can be done by defining 
the satisfactory performance index as the weighted mean 
of the satisfactory ratio. Here weights indicate the 

importance of the specifications. It is obvious that if a 
controller destabilizes the system, its satisfactory 
performance index will be zero. In mixed sensitivity 
problem satisfactory performance index (η ) depends on 
selecting weights, thus it is a function of weights’ 
parameter: 

( )1 2( ), , ,....., mF a a a a aη = =  (18)
where F is a scalar function and m is the number of 
parameters used in structure of weight functions. The goal 
is to maximize the performance index. However 
calculating an analytic form for F is very difficult (if not 
impossible), it is possible to find its maximum using 
software packages like MATLAB. 
 
D.  USING GENETIC ALGORITHM TO MAXIMIZE 

THE PERFORMANCE 
As said before, the main goal is to maximize the 
performance index. Thus using Matlab robust control 
toolbox an m-file function is defined whose input is 
vector a  and output is satisfactory performance index η . 
Various optimization methods can be used to maximize 
η  including direct search (which needs the initial vales) 
and genetic algorithm. 
 

E.  SUMMARY 
From the above analysis, a design procedure for improved 
performance mixed sensitivity problem is proposed as 
follows: 

1- Defining the problem and desired specification. 
2- Determining a structure for weight functions 

with some free parameters. 
3- Determining a satisfactory performance index 

according to the problem and desired 
specification as a function of weight functions 
parameters. 

4- Using optimization algorithms to tune weight 
function parameter in order to maximize the 
satisfactory performance index. 

 
IV. SIMULATION RESULTS 

The usefulness of the above procedure is demonstrated by 
designing an H ∞ controller for the benchmark problem 
illustrated in section II. Weights structure and satisfactory 
performance index used are the ones determined in 
previous section. The result for each structure is 
mentioned separately. 
 
STRUCTURE 1: MULTIPLICATIVE UNCERTAINTY 
Using weight functions (7) and (11) the resulting 
controller performance is not acceptable as specification 
for tr and ts are not achieved and performance index is 
about 55%. The proposed approach in [3], has tuned the 
weight functions parameters manually and increased the 
performance index to 84%. Using the procedure presented 
in the previous section, the resulting controller 
performance index improved to 92 %. Figure 4 shows the 



magnitude Bode plot of tuned weighting functions. 
Almost all specifications are indeed satisfied with a highly 
acceptable performance ratio except settling time for full 
loaded model. The simulation results for the three load 
cases are given in Figures 5-7 and Table 1. 

Figure 4. The Bode magnitude plot of tuned weighting 
functions (multiplicative perturbation), WT (dash-dot), WP 
(solid), WR (dot). 
 
Table 1: Resulting specifications for multiplicative 
uncertainty. 

 No load Half load Full load Performance 
ratio 

tr  (sec) 0.8 0.8 0.6 100 % 
Mp  (%) 1.5 2 5.8 100 % 
ts  (sec) 1.5 1.5 6 50 % 

||S|| ∞ (dB) 3.3 3.3 5.8 100 % 

||KS|| ∞ (dB) 0 0 0 100 % 

|S( jw )| (dB) 
for f < 0.2 Hz 

-1.1 -1.2 -1.3 100% 

Satisfactory Performance Index = 92 % 
 

Figure 5. Closed-loop step response (multiplicative 
perturbation), full load   (dash-dot), half load (solid), no 
load (dot). 
 

STRUCTURE 2: ADDITIVE UNCERTAINTY 
Again, using weight functions primarily computed will 
not satisfy specifications. The controller designed, using 
genetic algorithm for optimizing the parameters,    
satisfies specifications with about 90% performance 
indexes. The Bode magnitude plot of the tuned weighting 
functions has been shown in Figure 8. The simulation 
results are given in Figures 9-11 and Table 2. 

 
Figure 6. Output sensitivity function (multiplicative 
perturbation), full load   (dot), half load (solid), no load 
(dash-dot). 

Figure 7. Input sensitivity function (multiplicative 
perturbation), full load   (dot), half load (solid), no load 
(dash-dot). 
 

 
Figure 8. The Bode magnitude plot of tuned weighting 
functions (multiplicative perturbation), WR (dash-dot), WP 
(solid), WT (dot). 
 
 
Table 2: Resulting specifications for additive uncertainty. 

 No load Half load Full load Performance 
ratio 

tr  (sec) 1 1 0.7 100 % 
Mp  (%) 1.3 1.4 6 100 % 
ts  (sec) 1.8 1.7 7 35 % 

||S|| ∞ (dB) 2.9 3.2 4.7 100 % 

||KS|| ∞ (dB) 0 0 0 100 % 

|S( jw )| (dB) 
for f < 0.2 Hz 

0 0 0 100% 

Satisfactory Performance Index = 90 % 



 
Figure 9. Closed-loop step response (additive 
perturbation),  full load        (dash-dot), half load (solid), 
no load (dot). 
 

 
Figure 10. Output sensitivity function (additive 
perturbation), full load   (dot), half load (solid), no load 
(dash-dot). 

 
Figure 11. Input sensitivity function (additive 
perturbation), full load   (dot), half load (solid), no load 
(dash-dot). 

 
Figure 12.  Output disturbance rejection response 
(multiplicative perturbation), full load   (dash-dot), half 
load (solid), no load (dot). 

 
Figure 13. Output disturbance rejection response (additive 
perturbation), full load( dash-dot), half load (solid), no 
load (dot). 
 
There is no condition on disturbance rejection time in 
problem specifications in section II (i.e. the time 
necessary to reject to 10 % of measured peak value a step 
output disturbance filtered  by 1/A(s), where A(s) is the 
denominator of plant model). This objective have not used 
during optimization; however, the designed controllers 
have acceptable disturbance rejection as showed in Fig. 
12 add Fig. 13. This and any other objective specifications 
can easily be considered in performance index and be 
optimized with genetic algorithm consequently. 

 
V. CONCLUSION 

In this paper, the problem of selecting weighting functions 
in mixed sensitivity problem has been studied. A structure 
for weighting functions has obtained and relating 
parameters is optimized using genetic algorithm to 
improve the robust performance. Application of results in 
improving the performance of flexible system has been 
demonstrated using two different types of perturbation. 
The final solutions achieve almost all specification with 
highly performance index. 
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