
A FAST AND EFFICIENT HARDWARE TECHNIQUE FOR MEMORY

ALLOCATION

Fethullah Karabiber
1

Ahmet Sertbaş
1

Hasan Cam
2

1
Computer Engineering Department

Engineering Faculty, Istanbul University

34320, Avcilar, Istanbul

{fetullah, asertbas}@istanbul.edu.tr

2
Computer Science and Engineering Department

Arizona State University

Tempe, AZ 85287

hasan.cam@asu.edu

Key words: Memory allocation, digital system design, VHDL synthesis, FPGA

ABSTRACT

This paper presents a fast and efficient hardware

memory allocation technique, called FEMA, to detect

the existence of any free block of requested size in

memory. The technique can allocate a free memory

block of any number of chunks in any part of memory.

The hardware algorithm which was proved more

efficient by using the benchmark in [6], the gate-level

design of the hardware unit and its area-time

measurements versus some memory parameters are

given in this paper. VHDL synthesis with FPGA

implementation shows that the proposed memory

allocation technique has less complicated hardware,

and is faster than the known hardware techniques.

I. INTRODUCTION

In the design of computer or electronic systems, dynamic

memory allocation (DMA) is a very important topic. The

speed of memory allocator is a critical factor to improve

the system performance. Therefore, it is highly desirable

to have a fast and high efficient hardware memory

allocator.

The high performance algorithms for DMA have been a

considerable interest in the literature. As well known, the

common allocation techniques can be divided into four

categories: Sequential fits, Segregated fits, Bitmapped fits

and Buddy systems. The Sequential fits and Segregated

fits algorithms keep a free list of all available memory

chunks and scan the all list. The Bitmapped method uses

two bitmap for allocation process, one for the requested

allocation size, another for encoding the allocated block

boundaries, i.e. the size of allocated blocks. The Buddy

system is a fast and simple memory allocation

technique[1]. It allocates memory in blocks whose lengths

are power of 2. If the requested block size is not a power

of 2, then the size is rounded up to the next power of two.

This may leave a big chunk of unused space at the end of

an allocated block [2], thereby resulting in internal

fragmentation that occurs in the case of allocation more

memory than what is requested. External fragmentation

arises when a request for memory allocation cannot be

satisfied even though the total amount of free space is

adequate.

The performance of the buddy system can be improved

using hardware techniques [2-4]. A modified hardware-

based buddy system which eliminates internal

fragmentation is proposed in [5-6]. In this allocation

technique, the memory is divided into the fixed- sizes

word groups called chunks, and their status (free-0, used-

1) are determined by using a bit vector. Each bit on the

vector represents a leave of the or-gate tree given in

Figure 1. The method in [5] can detect a free block of

size j only if the starting address of the free block is a

factor of j, or k x j, where k ≥ 0 and j is a power of 2.

Even though a block with the requested free space is

available in the memory, their hardware design may not

be able to detect it due to the limitations of the or-gate

tree structure.

Figure 1. Generic structure of or-gate prefix circuit

In recent years, the multiple buddy system that predefines

the size set have been introduced in order to reduce the

external fragmentation [7]. However, the modified buddy

system still performs better than the multiple buddy

system. Agun and Chang [8] proposed an Active

Memory Management algorithm, based on the modified

Buddy system, and implemented in a hardware unit

(AMMU), embedded into SoC design. Finally, a bitmap

based memory allocator is designed in combinational

logic, works in conjunction with application-specific

instruction set extension[9]. The dynamic memory

management unit allows easy integration into any

processor, but it requires high memory for the big object

sizes and numbers, since the total amount of memory for

the needed bit maps is proportional to the object size (OS)

and the numbers of objects (NO).

This paper presents a fast and efficient hardware

allocation algorithm to detect any available free block of

requested size and to minimize internal and external

fragmentation. The proposed technique can allocate a free

memory block of any length located in any part of a

memory. While [6] detects only all free blocks of size
 k2log

2 , the new technique can allocate the free blocks of

size
 k2log

2 +
  k

k 2log
2 2(log

2
−

, providing more memory

space.

The simulation results obtained in [6] show that EMA

occupies approximately 9.2% less memory space than the

modified buddy system [5]. Also, EMA hardware has

been synthesized with VHDL, tested for the several

measurements such as the mean allocation and

deallocation time, total area etc., and compared to the

memory management system in [8]. With respect to the

total fragmentation (better than 22%) and the allocation

time, EMA causes a significant improvement on memory

allocation behaviour.

The rest of the paper is organized as follows. Section 2

describes the proposed memory allocation algorithm.

Section 3 presents the detailed hardware design of the

allocator/deallocator proposed in this work. Section 4

includes its FPGA implementation and some test results.

Concluding remarks are made in Section 5.

II. EFFICIENT MEMORY ALLOCATION
Consider that the memory is partitioned into a number of

chunks which have the same number of words and a

memory block consists of one or more chunks. The status

of all memory chunks by either a 0 or a 1 depending on

whether the chunk is free or used, respectively is

represented by a bit-vector. In a bit-vector, memory

allocation information is held. The bits of the bit-vector

are labeled from left to right in ascending order, starting

with 0. Each bit of the bit-vector has an address register

containing its label as the address. The algorithm is as

follow:

ALGORITHM

Input:

Allocation: the size value k of the requested blocks for

allocation

Deallocation: the starting address of the block to be

deallocated

Output:

Allocation: (i) the starting address of the allocated block,

 (ii) the bits corresponding to the chunks of

 the allocated block, inverted from 0 to 1.

Deallocation: the bits corresponding to the chunks of the

 deallocated block, inverted from 1 to 0.

Figure 2. Block diagram of EMA algorithm

Figure 2 shows a simplified flowchart of Algorithm

FEMA. In order to implement the above algorithm, the

logic structures of the circuits or-gate prefix, the search-

free block and the detect-free block are given in Section 3.

Step 1 determines that the request is memory allocation or

deallocation. Step 2 detects the free memory chunks of

size
 k2log

2 . If k is not a power of 2, then Step 3 detects

the free memory chunks of size
 k2log

2 +
  k

k 2log
2 2(log

2
−

.

Steps 4 to 5 allocate the free block with the highest

address and invert the k bits of the bit-vector

III. MEMORY ALLOCATOR HARDWARE

In order to implement the above algorithm, search-free-

block and detect-free-block circuits are designed at the

following.

SEARCH OF FREE BLOCKS (STEPS 2 AND 3)

To detect all free blocks of size
 k2log

2 +
  k

k 2log
2 2(log

2
−

,

we use the or-gate prefix circuit whose logic circuit

structure was given in [6]. In the or-gate prefix circuit

that is designed for a memory of N chunks shown in

Figure 1., any node at level Li represents an OR gate. As

seen from Figure 1, there are n+1 level selectors labeled

S0; S1; : : : ;Sn for a 2n-bit vector. For any free block of

size 2
i
, there will be exactly one corresponding or-gate

node with value 0 at level Li of the or-gate prefix circuit.

The outputs of all or-gates are inverted and then become

the inputs of the tri-state buffers. When level selector Si is

asserted, the outputs of those tri-state buffers which

correspond to free blocks generate their associated

vertical lines Vj, j ≥0 depicted in Figure 2. These vertical

lines (called V-vector) generate the address associated

with the first chunk of the available blocks of the

requested size. When a block of size k is requested

depending on k, in Step 2 or Step 3, only level selector

Si is asserted, i =
 k2log

2 or for i =
  k

k 2log

2 2(log − , respectively.

In this technique, the or-gate prefix circuit can detect any

free block if its size is a power of 2, no matter where the

free block is located in the memory. If k is a power of 2,

the technique uses the or-gate prefix circuit only once in

Step 2. In step 2, free blocks of size
 k2log

2 are detected

by an high-priority encoder, then the decoded bits are

compared with the requested block sizes, if they are same

it can be easily seen that the requested size is a power of

2, and S1 is selected as the input size of the or-gate prefix

circuit (S). However, if k is not a power of 2, the or-gate

prefix circuit is used twice (Steps 2 and 3). In Step 3,

instead of bit-vector bits, the NANDed V-vector bits,

shown in Figure 3, is used. Using this new bit-vector, the

algorithm detects the free blocks of size
  k

k 2log
2 2(log

2
−

which is equivalent to free blocks of size
 k2log

2 +
  k

k 2log
2 2(log

2
−

 in the original bit-vector.

Shown in Figure 3., the subtractor differs the requested

block sizes, k from S1. This difference (k-S1) corresponds

to the free blocks of size
  k

k 2log
2 2(log

2
−

. As the similar

procedure in Step 2, in Step 3, by an (high priority)

encoder then a decoder circuits the obtained block size is

loaded into a shift register, holds the content of S2. If the

decoded size bits not equal to the difference size, the shift

register is enabled to shift one bit position to left(x2),

otherwise the decoded size bits are only loaded into the

register without any shift.

Example: Assume that the requested memory size is 38

chunks. In Step-2, using the or-gate prefix circuit EMA

detects free blocks of size 32=  38log 22

and activates the

V-vector address bits of those blocks by S5=1. Memory

request size is not a power of 2, therefore EMA employs

the or-gate-prefix circuit again to detect all the free

blocks of size

     4083222
382log

22 238(log38log
=+=+

−

. Since, in

Step-2, address registers which holds V-vector are

activated from level S5 of the or-gate prefix circuit each

active register represents a free block of size 32.

Moreover, 9 consecutive active address registers equal

to a free block of size 40, because or-gate-prefix circuit

has the following property: if the address register a

represents the n chunks of memory, say bit-vector bits 1

to n, then the address register a+1 represents the bit-

vector bits 2 to n+1. FEMA takes advantage of this

property of the or-gate prefix circuit to detect the free

blocks of size 40 by using V-vector in the bit-vector of

the or-gate-prefix circuit. After the NAND operation, the

free block of size 40 is represented by 8 consecutive

active bits of V1 register, which can be detected by or-

gate prefix circuit. The results of NAND operations are

inserted into bit-vector by inverting each result, so that

the active bits of the new bit-vector are represented by

0s in the original bit-vector. Finally, in Step-3, FEMA

detects the free blocks of size 40 by finding the 8

consecutive active bits in the new bit-vector.

THE FREE BLOCK DETECTION WITH THE
HIGHEST ADDRESS (STEP 4)

This step is to determine the free block whose first

chunk's address is the greatest; the first chunk's address of

a block is called its starting address. The bits of V-vector

generated by the or-gate prefix circuit indicate that the

requested blocks are to be allocated or not. If the

corresponding k bits are 1’s, they are allocatable for k

size of the free blocks. When more than one bit is set in

V-vector, the selection of the highest address

corresponding to these bits is achieved by using a high-

priority encoder circuits as shown in Figure 3.

Figure 2. The or-gate prefix logic circuit

Figure 3. The Search and Detect-free block circuit

BIT INVERSION (STEP 5)

Let us denote the starting and ending addresses of the

determined blocks , SA and EA, respectively. Using the

formula EA = SA+k-1, EA can be easily computed for the

size k of the requested block. Since the V vector-bits

represent the bits corresponding to the allocated block,

SA and EA correspond to the addresses of the first and last

bit, respectively, of this vector. The bits of V vector must

be inverted to 1 to indicate that they are allocated.

MEMORY DEALLOCATION (STEP 6)

In case of memory deallocation, the starting address SA

and the size k of the block to be deallocated are given.

Since the ending address EA of the block is known, in

Step 6, bit inverters invert the bits from 1 to 0 to indicate

that they are free.

4. VHDL SYNTHESIS AND TEST RESULTS

In this section, the area and time delay of the proposed

hardware unit are investigated. For different parameters

such as bit-vector size and maximum object size, some

test results are obtained. For this purpose, Xilinx ISE

6.2.03i tool is used to generate a gate level representation

of the memory allocator/deallocator hardware design.

Table 1 shows that the number of cycles needed to

perform an allocation/deallocation process. Each

allocation request takes 5 clock cycles, in the case that its

size is a power of 2, otherwise, 6 cycles, and each

deallocation request needs only 2 cycles.

Table 1. Propagation delays for the proposed hardware unit

 Allocation Steps (2-5)

 Clock

 Cycles

 Search of free blocks (Step 2-3) 2

 High Adres Detection (Step 4) 1

 Bit Inversion (Step 5) 2

 Deallocation (Step 6) 2

In this study, in order to compare FEMA to the known

technique (AMMU), AMMU is implemented by using

VHDL and its total fragmentation is computed.

As shown in Table 2, FEMA reduces total fragmentation

in the ratio of 22 %. Because AMMU allocates memory

blocks each of whose size is a power of two; so the

allocator suffers from internal and external fragmentation.

However, in FEMA only external fragmentation can exist.

Also, FEMA can perform allocation process in a shorter

time, since allocation time is proportional to inverse of the

max. clock frequency. But, implementation cost (used

slice number) of FEMA is much higher than AMMU.

Table 2. Comparison results of FEMA with AMMU

Memory Size 256 512

Techniques FEMA AMMU FEMA AMMU

Total

Fragmentation 0.682

0.878 0.683 0.884

Max. clock

frequency(Mhz)

69.07 9.649 63.135 7.922

Used Slice

number

3414 1071 7735 2104

5. CONCLUSIONS

In this paper, a memory allocation/deallocation hardware

technique is presented. A hardware unit is designed to

allocate free blocks of requested sizes in any part of

memory. It detects all free blocks of
 k2log

2 +
  k

k 2log
2 2(log

2
−

 chunks in memory. This leads to better

utilization of memory space, thereby allowing more

memory blocks to remain free than is possible with the

known hardware memory allocators and the proposed

hardware unit is less complicated than those of previous

works [5,8].

The gate-level design of the unit by the Xilinx ISE tool is

presented in this work. The proposed allocator unit is

compared to AMMU, one of the recent works on the

topic. Te total fragmentation is reduced in the ratio of

22% by using FEMA. The allocation time when using

FEMA is increased with the size and number of allocated

object slowly while AMMU allocation time is increased

fastly, and FEMA can perform allocation process in a

shorter time than AMMU.

REFERENCES

1. K.C. Knowlton, A fast storage allocator,. Comm. ACM,

Vol.8, pp.623-625, Oct.1965.

2. E.V. Puttkamer, .A simple hardware buddy system

memory allocator,. IEEE Trans. Computers, Vol. 24,

No. 10, pp. 953-957, Oct. 1975.

3. I.P. Page and J. Hagins, .Improving the performance of

buddy systems,. IEEE Trans. Computers, Vol. 35, No.

5, pp. 441-447, May 1986.

4. J.M. Chang anf E.F. Gehringer, .Object caching for

performance in object-oriented systems,. Proc. of IEEE

Int'l Conf. Computer Design, pp. 379-385, Oct. 1991.

5. J.M. Chang and E.F. Gehringer, ‘A high performance

memory allocator for object-oriented systems’,. IEEE

Trans. on Comp., Vol. 45, No. 3, pp. 357-366, March

1996.

6. H. Cam, M. Abd-El-Barr, and S.M. Sait, .Design and

Analysis of a High-Performance Hardware-Efficient

Memory Allocation Technique,. Proc. of the ICCD'99

Int. Conf. on Computer Design, October 10-13, 1999,

Austin, USA, pp. 274-276.

7. C.-T.D. Lo, W. Srisa-an, and J.M. Chang, .Performance

analyses on the generalised buddy system,. IEE Proc.

of Computers and Digital Techniques, Vol. 148, No.

45, pp. 167-175, July-Sept. 2001.

8. S.K. Agun and J.M. Chang, .Design of a reusable

memory management system,. Proc. Of 14th Annual

IEEE Int'l ASIC/SOC Conf., pp. 369-373, Sept. 2001.

9. J.M. Chang, W. Srisa-an, C.T. Dan Lo and E. F.

Gehringer, ‘DMMX: Dynamic memory management

extensions’, Journal of Systems and Software, Vol. 63,

Issue 3, Pages 187-199, Sept. 2002.

