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ABSTRACT 

This paper presents a fast and efficient hardware 

memory allocation technique, called FEMA, to detect 

the existence of any free block of requested size in 

memory. The technique can allocate a free memory 

block of any number of chunks in any part of memory.  

The hardware algorithm which was proved more 

efficient by using the benchmark in [6], the gate-level 

design of the hardware unit and its area-time 

measurements versus some memory parameters are 

given in this paper. VHDL synthesis with FPGA 

implementation shows that the proposed memory 

allocation technique has less complicated hardware, 

and is faster than the known hardware techniques. 

 
I. INTRODUCTION 

In the design of computer or electronic systems, dynamic 

memory allocation (DMA) is a very important topic. The 

speed of memory allocator is a critical factor to improve 

the system performance. Therefore, it is highly desirable 

to have a fast and high efficient hardware memory 

allocator. 

 

The high performance algorithms for DMA have been a 

considerable interest in the literature. As well known, the 

common allocation techniques can be divided into four 

categories: Sequential fits, Segregated fits, Bitmapped fits 

and Buddy systems. The Sequential fits and Segregated 

fits algorithms keep a free list of all available memory 

chunks and scan the all list.  The Bitmapped method uses 

two bitmap for allocation process, one for the requested 

allocation size, another for encoding the allocated block 

boundaries, i.e. the size of allocated blocks. The Buddy 

system is a fast and simple memory allocation 

technique[1]. It allocates memory in blocks whose lengths 

are power of 2. If the requested block size is not a power 

of 2, then the size is rounded up to the next power of two. 

This may leave a big chunk of unused space at the end of 

an allocated block [2], thereby resulting in internal 

fragmentation that occurs in the case of allocation more 

memory than what is requested. External fragmentation 

arises when a request for memory allocation cannot be 

satisfied even though the total amount of free space is 

adequate.  

 

The performance of the buddy system can be improved 

using hardware techniques [2-4].  A modified hardware-

based buddy system which eliminates internal 

fragmentation is proposed in [5-6]. In this allocation 

technique, the memory is divided into the fixed- sizes 

word groups called chunks, and their status (free-0, used-

1) are determined by using a bit vector. Each bit on the 

vector represents a leave of the or-gate tree given in 

Figure 1.  The method in [5] can detect a free block of 

size j only if the starting address of the free block is a 

factor of j, or k x j, where k ≥ 0 and j is a power of 2.  

Even though a block with the requested free space is 

available in the memory, their hardware design may not 

be able to detect it due to the limitations of the or-gate 

tree structure.  

 

 
Figure 1.  Generic structure of or-gate prefix circuit 

 

In recent years, the multiple buddy system that predefines 

the size set have been introduced in order to reduce the 

external fragmentation [7]. However, the modified buddy 

system still performs better than the multiple buddy 

system. Agun and Chang [8]  proposed an  Active 

Memory Management algorithm, based on the modified 

Buddy system, and implemented in a hardware unit 

(AMMU), embedded into SoC design.  Finally, a bitmap 



based memory allocator is designed in combinational 

logic, works in conjunction with application-specific 

instruction set extension[9]. The dynamic memory 

management unit allows easy integration into any 

processor, but it requires high memory for the big object 

sizes and numbers, since the total amount of memory for 

the needed bit maps is proportional to the object size (OS) 

and the numbers of objects (NO).   

 

This paper presents a fast and efficient hardware 

allocation algorithm to detect any available free block of 

requested size and to minimize internal and external 

fragmentation. The proposed technique can allocate a free 

memory block of any length located in any part of a 

memory. While [6] detects only all free blocks of size 
 k2log

2 , the new technique can allocate the free blocks of 

size 
 k2log

2 +
  k

k 2log
2 2(log

2
−

, providing more memory 

space. 

 

The simulation results obtained in [6] show that EMA 

occupies approximately 9.2% less memory space than the 

modified buddy system [5].  Also, EMA hardware has 

been synthesized with VHDL, tested for the several 

measurements such as the mean allocation and 

deallocation time, total area etc., and compared to the 

memory management system in [8]. With respect to the 

total fragmentation (better than 22%) and the allocation 

time, EMA causes a significant improvement on memory 

allocation behaviour.  

 

The rest of the paper is organized as follows.  Section 2 

describes the proposed memory allocation algorithm. 

Section 3 presents the detailed hardware design of the 

allocator/deallocator proposed in this work. Section 4 

includes its FPGA implementation and some test results.  

Concluding remarks are made in Section 5. 

 

II.   EFFICIENT MEMORY ALLOCATION  
Consider that the memory is partitioned into a number of 

chunks which have the same number of words and a 

memory block consists of one or more chunks. The status 

of all memory chunks by either a 0 or a 1 depending on 

whether the chunk is free or used, respectively is 

represented by a bit-vector. In a bit-vector, memory 

allocation information is held. The bits of the bit-vector 

are labeled from left to right in ascending order, starting 

with 0. Each bit of the bit-vector has an address register 

containing its label as the address.  The algorithm is as 

follow: 

ALGORITHM 

Input:  

Allocation: the size value k of the requested blocks for 

allocation 

Deallocation: the starting address of the block to be 

deallocated  

Output:  

Allocation: (i)  the starting address of the allocated block,  

                    (ii)  the bits corresponding to the chunks of  

                           the  allocated block, inverted from 0 to 1. 

Deallocation:   the bits corresponding to the chunks of the   

                          deallocated block,  inverted from 1 to 0. 

 
Figure 2.   Block diagram of EMA algorithm 



Figure 2 shows a simplified flowchart of Algorithm 

FEMA. In order to implement the above algorithm, the 

logic structures of the circuits or-gate prefix, the search-

free block and the detect-free block are given in Section 3.   

Step 1 determines that the request is memory allocation or 

deallocation. Step 2 detects the free memory chunks of 

size
 k2log

2 . If k is not a power of 2, then Step 3 detects 

the free memory chunks of size 
 k2log

2 + 
  k

k 2log
2 2(log

2
−

.  

Steps 4 to 5 allocate the free block with the highest 

address and invert the k bits of the bit-vector 

 

 

III.  MEMORY ALLOCATOR HARDWARE  

 
In order to implement the above algorithm, search-free-

block and detect-free-block circuits are designed at the 

following.      

  

SEARCH OF FREE BLOCKS (STEPS 2 AND 3) 

To detect all free blocks of size 
 k2log

2 + 
  k

k 2log
2 2(log

2
−

, 

we use the or-gate prefix circuit whose logic circuit 

structure was given in [6].  In the or-gate prefix circuit 

that is designed for a memory of N chunks shown in 

Figure 1., any node at level Li represents an OR gate.   As 

seen from Figure 1, there are n+1 level selectors labeled 

S0; S1; : : : ;Sn for a 2n-bit vector. For any free block of 

size 2
i
, there will be exactly one corresponding or-gate 

node with value 0 at level Li of the or-gate prefix circuit. 

The outputs of all or-gates are inverted and then become 

the inputs of the tri-state buffers. When level selector Si is 

asserted, the outputs of those tri-state buffers which 

correspond to free blocks generate their associated 

vertical lines Vj, j ≥0 depicted in Figure 2. These vertical 

lines (called V-vector) generate the address associated 

with the first chunk of the available blocks of the 

requested size. When a block of size k is requested 

depending on k,  in Step 2  or  Step 3,  only level selector 

Si is asserted,   i =
 k2log

2  or  for i = 
  k

k 2log

2 2(log −  ,  respectively. 

 

In this technique, the or-gate prefix circuit can detect any 

free block if its size is a power of 2, no matter where the 

free block is located in the memory. If k is a power of 2, 

the technique uses the or-gate prefix circuit only once in 

Step 2.  In step 2, free blocks of size 
 k2log

2  are detected 

by an high-priority encoder, then the decoded bits are 

compared with the requested block sizes, if they are same 

it can be easily seen that the requested size is a power of 

2, and S1 is selected as the input size of the or-gate prefix 

circuit (S). However, if k is not a power of 2, the or-gate 

prefix circuit is used twice (Steps 2 and 3).  In Step 3, 

instead of bit-vector bits, the NANDed V-vector bits, 

shown in Figure 3, is used.  Using this new bit-vector, the 

algorithm detects the free blocks of size 
  k

k 2log
2 2(log

2
−

 

which is equivalent to free blocks of size
 k2log

2 + 
  k

k 2log
2 2(log

2
−

 in the original bit-vector.  

 

Shown in Figure 3., the subtractor differs the requested 

block sizes, k from S1. This difference (k-S1) corresponds 

to the free blocks of size 
  k

k 2log
2 2(log

2
−

.   As the similar 

procedure in Step 2, in Step 3, by an (high priority) 

encoder then a decoder circuits the obtained block size is 

loaded into a shift register, holds the content of S2.  If the 

decoded size bits not equal to the difference size, the shift 

register is enabled to shift one bit position to left(x2), 

otherwise the decoded size bits are only loaded into the 

register without any shift. 

 

Example:  Assume that the requested memory size is 38 

chunks. In Step-2, using the or-gate prefix circuit EMA 

detects free blocks of size 32=  38log 22
 

and activates the 

V-vector address bits of those blocks by S5=1. Memory 

request size is not a power of 2, therefore EMA employs 

the or-gate-prefix circuit again to detect all the free 

blocks of size 

     4083222
382log

22 238(log38log
=+=+

−

.  Since, in 

Step-2, address registers which holds V-vector are 

activated from level S5 of the or-gate prefix circuit each 

active register represents a free block of size 32. 

Moreover, 9 consecutive active address registers equal 

to a free block of size 40, because or-gate-prefix circuit 

has the following property: if the address register a 

represents the n chunks of memory, say bit-vector bits 1 

to n, then the address register a+1 represents the bit-

vector bits 2 to n+1. FEMA takes advantage of this 

property of the or-gate prefix circuit to detect the free 

blocks of size 40 by using V-vector in the bit-vector of 

the or-gate-prefix circuit. After the NAND operation, the 

free block of size 40 is represented by 8 consecutive 

active bits of V1 register, which can be detected by or-

gate prefix circuit. The results of NAND operations are 

inserted into bit-vector by inverting each result, so that 

the active bits of the new bit-vector are represented by 

0s in the original bit-vector. Finally, in Step-3, FEMA 

detects the free blocks of size 40 by finding the 8 

consecutive active bits in the new bit-vector. 

THE FREE BLOCK DETECTION WITH THE 
HIGHEST ADDRESS (STEP 4) 

This step is to determine the free block whose first 

chunk's address is the greatest; the first chunk's address of 

a block is called its starting address.  The bits of  V-vector 

generated by the or-gate prefix circuit  indicate that  the 

requested blocks are to be allocated or not.  If  the 

corresponding k bits are 1’s,  they are allocatable for k 

size of the free blocks. When more than one bit is set in 

V-vector, the selection of the highest address 

corresponding to these bits is achieved by using a high-

priority encoder circuits as shown in Figure 3.   

 



        

Figure 2.   The or-gate prefix logic circuit 

 

Figure 3. The Search and Detect-free block  circuit 

 

 

BIT INVERSION (STEP 5) 

Let us denote the starting and ending addresses of  the 

determined  blocks , SA and EA, respectively.  Using the 

formula  EA = SA+k-1,  EA can be easily computed for the 

size k of the requested block.  Since the V vector-bits 

represent the bits corresponding to the allocated block,  

SA and EA correspond to the addresses of the first and last 

bit, respectively, of this vector.  The bits of V vector  must 

be inverted to 1  to indicate that they are allocated.  

 

MEMORY DEALLOCATION (STEP 6) 

In case of memory deallocation, the starting address SA 

and the size k of the block to be deallocated are given. 

Since the ending address EA of the block is known, in 

Step 6, bit inverters invert the bits from 1 to 0 to indicate 

that they are free. 

 

4.  VHDL SYNTHESIS AND TEST RESULTS 

In this section, the area and time delay of the proposed 

hardware unit are investigated. For different parameters 

such as bit-vector size and maximum object size, some 

test results are obtained. For this purpose, Xilinx ISE 

6.2.03i tool is used to generate a gate level representation 

of  the memory allocator/deallocator hardware design.  

 

Table 1 shows that the number of cycles needed to 

perform an allocation/deallocation process. Each 

allocation request takes 5 clock cycles, in the case that  its 

size is a power of  2, otherwise, 6 cycles, and each 

deallocation request needs only 2 cycles.   

 
 

 



Table 1.  Propagation delays for the proposed hardware unit 

 

     Allocation Steps (2-5) 

 

  Clock     

  Cycles  

    Search of free blocks         (Step 2-3)        2 

    High Adres Detection        (Step 4)          1 

    Bit Inversion                      (Step 5)            2 

    Deallocation                      (Step 6)       2 

 
In this study, in order to compare FEMA to the known 

technique (AMMU),   AMMU is implemented by using 

VHDL and its total fragmentation is computed.   

As shown in Table 2,  FEMA reduces total fragmentation 

in the ratio of 22 %. Because AMMU allocates memory 

blocks each of whose size is a power of two; so the 

allocator suffers from internal and external fragmentation. 

However, in FEMA only external fragmentation can exist. 

Also, FEMA can perform allocation process in a shorter 

time, since allocation time is proportional to inverse of the 

max. clock frequency.  But, implementation cost (used 

slice number) of  FEMA is much higher  than  AMMU.      

Table 2.  Comparison results of  FEMA with AMMU 

Memory Size 256 512 

Techniques FEMA AMMU FEMA AMMU 

Total  

Fragmentation 0.682 

0.878 0.683 0.884 

Max. clock 

frequency(Mhz) 

69.07 9.649 63.135 7.922 

Used Slice 

number 

3414 1071 7735 2104 

 
5.  CONCLUSIONS 

In this paper, a memory allocation/deallocation hardware 

technique is presented. A hardware unit is designed to 

allocate free blocks of requested sizes in any part of 

memory. It detects all free blocks of 
 k2log

2 + 
  k

k 2log
2 2(log

2
−

 chunks in memory. This leads to better 

utilization of memory space, thereby allowing more 

memory blocks to remain free than is possible with the 

known hardware memory allocators and the proposed 

hardware unit is less complicated than those of previous 

works [5,8].  

 

The gate-level design of the unit by the Xilinx ISE tool is 

presented in this work.    The proposed allocator unit is 

compared to AMMU, one of the recent works on the 

topic. Te total fragmentation is reduced in the ratio of 

22% by using FEMA.  The allocation time when using 

FEMA is increased with the size and number of allocated 

object slowly while AMMU allocation time is increased 

fastly, and FEMA can perform allocation process in a 

shorter time than AMMU.  
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