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Abstract

Localization is an important ability for a mobile robot. 

The probabilistic localization method becomes more popular 

because of the ability of representing the uncertainties of the 

sensor measurements and inaccuracy environments, robust 

solutions for a wide perspective of localization problem. The 

particle filter is one of the Bayesian-based methods. In this 

study, data taken by sonar range sensor is used to localize 

mobile robot. Sonar range sensors suffer from wrong 

reflection effects which may cause outliers.  Also, outliers 

may occur in the particle filter process. In this study, a new 

sensor model Repealing Range Sensor Model (R2SM) is 

proposed and integrated to particle filter to reduce the 

effects of outliers. In order to show the effectiveness of the 

proposed method, Grubbs’ T-Test, a well-known outlier 

rejection method, is implemented. Experiments show that 

results of the proposed approach are comparable to the 

results of the Grubbs’ T-Test in terms of Localization 

Success Ratio (LSR) and Number of Iterations (NOI)

required for localization. The main advantage of the 

proposed R2SM is that it does not require any additional 

information such as critical value table. This provides more 

flexible outlier rejection approach. 

1. Introduction

Robot localization is one of the important topics in the 

mobile robotics area. The process of estimating robot 

configuration (position and orientation) related to a given map 

of the environment is the localization problem. The probabilistic 

approaches are the most popular and commonly used methods

among the localization solutions. They provide useful 

representation when uncertainties related to sensor and 

environment in the estimation process present. A known 

probabilistic approach is Kalman Filter [1], [2]. The Kalman 

filter provides estimation of a posterior distribution of robot 

poses by using odometer and range sensors. However, the 

Kalman filter has an important limitation that the initial 

configuration of the robot must be given. In order to cope with 

the limitation of the Kalman filter, Bayesian-based localization 

methods have been studied. Particle Filter is a Bayesian-based 

localization method and it has been commonly known as Monte 

Carlo Localization (MCL) and was introduced by Dellaert [3]

and Fox [4]. In MCL, randomly drawn samples are used instead 

of describing a probability density function. 

One of the important issues of probabilistic localization 

methods is how raw sensor measurements are converted to 

localization information. For this purpose, the sensor 

model, which is defined as the probability of 

measurement with respect to robot’s position vector and 

map information , is used. Sensor model in the particle filter 

approach represents various phenomena such as sensor 

uncertainty and environment inaccuracy.  For this purpose,

generally, sensor measurement noise is introduced into the 

model. The noise is related to error function of map-matching 

[5].  Several sensor models for particle filter were presented in 

the literature [6], [7]. The sensor models in these studies have 

specific parameters and do not provide a reliable adaptation for 

different density functions. On the other hand, designing a better

sensor model has become more important to improve the 

performance of the particle filter. In [8] and [9], the authors 

consider the characteristic of the likelihood function and they 

observe that if the function is peaked, the number of samples 

required for successful localization increase. In order to 

overcome this problem, a different sensor model is proposed [7].

Mobile robots usually use sonar, laser range finder and 

camera measurements in sensor model [3], [4]. Laser range 

finder provides sensitive angular resolution and accurate 

readings. On the other hand, sonar range finder is mostly used in 

mobile robots because of their lower cost, lower power 

dissipation, and less weight. However, sonar range finders have 

some disadvantages such as angular uncertainties and wrong 

reflections. Sonar sensors can only provide range information on 

the nearest object or obstacles and the angular information 

cannot be obtained from them because of their large beam 

width. Additionally, in some cases such as mirror-like 

reflections, high-order reflections, or cross-talk, the range 

information may not be correct [10]. These wrong reflections 

may affect the performance of the applications that require 

accurate measurements. In literature, there are studies that are 

aimed to obtain more accurate information from raw sonar 

sensor data. In [11], Majchrzak et. al, state that the sensor model 

should be described in order to obtain more accurate sonar 

information. They also proposed an empirical method to 

determine the measurement error and to define the sensor 

model. However, the requirement of defining the sensor model 

before the sonar sensor is used incurs some additional 

computational load. In [12], [13], raw sonar measurements are 

adjusted by using some soft computing methods instead of 

describing the sensor model.

In literature, there are studies that aim to compensate the 

sensor error by integrating the data read from different sensors.

Zingaretti proposed an approach that uses both camera and sonar 

data to decrease measurement errors and to provide quick 

localization [14]. On the other hand, to obtain accurate sensor 

data, some incorrect sensor measurements can be rejected by 

using outlier rejection methods and they may not be taken into 

account in process to form reliable information. Vaganay et. al,

proposed an outlier rejection method  to navigate the 

Autonomous Underwater Vehicles (AUV) by using Extended 

Kalman Filter (EKF) and acoustic measurements [15]. Vlassis 
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et. al, proposed an auxiliary particle filter (APF) based robot 

localization method for high-dimensional sensors (images).

They integrated an outlier rejection method into traditional APF

to obtain more robust filter. Additionally, they claimed that the 

method would be used when the observation model is not 

known [16].  Olson et. al, proposed a range-only beacon 

localization method for AUV and they demonstrated that the 

method could be successfully used for simultaneously 

localization and mapping (SLAM). In this method, authors were 

presented graph partitioning range-measurement outlier 

rejection method in the EKF [17].  Bekris et. al, proposed a 

bearing-only SLAM method. They used similar outlier rejection 

method to adjust measurements obtained from the camera in the 

Rao-Blackwellized particle filter [18].

In this paper, a new sensor model is used during correlation 

process of the estimated position and the actual position for 

particle filter-based localization. In the sensor model, sonar 

range sensor is used. The well-known outlier rejection method 

Grubbs’ T-Test is used to compare the effectiveness of the 

proposed R2SM. Experiments show that results of the proposed 

approach are comparable to the results of the Grubbs’ T-Test in 

terms of LSR and NOI.

The rest of paper is organized as follows: The background for 

the proposed method is covered in Section 2, the new approach 

for particle filter-based localization is given in Section 3, the 

applications and the detailed analysis of the algorithm are given 

in Section 4, conclusions and the future work are presented in 

Section 5.

2. Background

2.1. Bayes Filtering

Bayes filter estimates the state (configuration) x of a robot in 

an environment by using sensor measurements.  Bayesian 

approaches assume that the environment is Markovian, that is 

the past and future measurements are independent from the 

current ones [19].

Assume that is the state vector of robot 

configuration at time , where are the 

position and is the orientation components. Let be the 

action vector of robot and be the sensor readings at time .

The main idea behind the Bayes filters is to estimate the 

posterior density by using measurements. Generally, the 

posterior is named belief and defined as follows:

                              (1)

The initial belief describes the initial value of the state. In the 

global localization, the robot has no information about its state. 

Therefore, a uniform distribution is used for the initial belief.

Bayes filters estimate the belief of the robot by using two 

recursive steps: Prediction and update steps. In the first step, the 

motion model is used to integrate the movements to the current 

posterior. The motion model is described as conditional 

density . The predictive density over is as 

follows:

(2)

In the second step the sensor model is used. The sensor 

model is expressed in terms of likelihood and is 

described as the likelihood to be at with the sensor 

measurements . The resulting posterior density over  as 

follows:

2.2. Particle Filter

Particle Filter represents the belief by a set of N weighted 

samples.  

                         (4)

where represent the state and the importance factor of the 

ith sample at time t. In global localization, initially all particles 

have the same importance factor, that is [20].

In analogy with the Bayes filter, the particle filter estimates 

the belief of the samples by using two recursive steps. In the 

first step, the motion model is applied to all particles and the 

predictive density is obtained as in equation 5.

                              (5)

Then, the sensor model is applied to the predictive density to 

calculate the importance factor of all particles.

                                      (6)

The new sample set is obtained from the predictive 

density according to the importance factor of the samples .

2.3. Grubbs’ T-Test

An outlier can be defined as the data in a given data set that 

does not belong to the same characteristic with the rest of the 

data. For example, most of the data could be close to a linear 

line while the outliers may lie far away from the close 

neighborhood of the line. Also, an outlier is an extreme data in a 

distribution. The outlier example is shown in Fig. 1. 

Fig. 1. Outlier example

The outlier data may cause undesired effects in making 

decision process.  In order to avoid the effects of the outliers, 

one can remove the outlier data from the data set. In this stage, 

the potential outliers should be examined carefully because they 

may result from an inherent error such as calculation, sensing, 

etc. or they correctly describe an extreme situation and the data 

should be taken into account in decision making. Therefore the 

outlier detection is an important issue. In literature, there are 

several outlier detection (rejection) methods. Grubbs’ T-Test is

one of the most known outlier rejection methods. It is 
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appropriate for normally distributed data sets and has easy 

procedure as follows:

Step1: Calculate T value that represents the distance of a point 

from the others:

where x is a point in the set,  and s are the mean and the 

standard deviation of the data set, respectively.

Step2: Grubbs’ T-Test has a critical value table that includes

threshold values to determine the outlier data. Generally, the 

rows and the columns of the table show the number of data n,

and the number of potential outliers that you would encounter ,

respectively [21]. If T is greater than , the data is accepted as 

outlier and rejected from the data set. 

3. Proposed Method

3.1. Problem Definition

Particle filter-based mobile robot localization method that 

uses sonar range sensors suffers two important drawbacks. One 

of them is caused by the nature of the sonar range sensor. Sonar 

range sensors are being used in mobile robots localization

because of their lower cost, lower power dissipation and less 

weight. However, sonar range sensors have an important 

disadvantage that can be called as wrong reflections. In Fig 2, 

the cases mirror-like reflections, high-order reflections or cross-

talk are given, respectively.

(a)                               (b)                             (c)

Fig. 2. a) Mirror-like reflection. b) High-order reflection.           

c) Cross-talk.

The other drawback is caused by the particle filter process. In 

the traditional particle filter [3], the total sensor probability is

calculated by multiplication of individual sensor probabilities.

The total sensor probability represents the importance factor for 

each particle. As a result, the importance factor for a particle is 

calculated as follows:

               

where n represents the number of sensors. 

In some cases, some of the probabilities might be much 

different than the expected values and the total sensor 

probability is negatively affected. Mathematically, these cases 

can be expressed as:

or        (9)

where 

                                     (10)

Two examples about this phenomenon are given in Fig. 3-b

and 3-c. In Fig. 3-a, the robot is shown at the correct 

configuration and the lines indicate the distance measured by the 

sensors. In Fig. 3-b and 3-c two particles and their assumed 

distance measurements are shown.  The particle in Fig. 3-b is in 

the neighborhood of the correct robot configuration and the 

sensor reading shown with an arrow is much different than the 

expected reading. Thus, the probability of this reading becomes 

much smaller than the probability of other readings and the total 

sensor probability is dominated by this low sensor probability. 

As a result, the particle that is supposed to survive is negatively 

affected and it may be eliminated. Fig. 3-c shows another case. 

Here, the particle is in a different configuration than the correct 

configuration of the robot. However, the sensor readings given 

with arrows are approximately equal to the actual readings. 

Therefore, these sensor readings will have higher probabilities 

than the rest of the sensor readings and cause high total sensor 

probability. In this situation, the particle may survive although it 

is placed in a wrong configuration. The cases mentioned above 

can be named as adverse probability effects.

(a)                      (b)                        (c)

Fig. 3. a) Robot at actual configuration. b), c) adverse 

probability cases.

In this paper, a new sensor model is proposed in order to 

localize the robot by using sonar range sensors. The proposed 

method is named Repealing Range Sensor Model (R2SM). It is 

capable of detecting and rejecting the outlier that is caused by 

both the particle filter and sonar range sensor.

3.2. Repealing Range Sensor Model 

In this study, a new sensor model, Repealing Range Sensor 

Model (R2SM), is proposed in order to eliminate the effects of 

the adverse probabilities. In this model, the mean of the sensor 

probabilities and the absolute deviation of the each individual 

sensor from the mean are calculated. The probabilities are listed 

in descending absolute deviation order together with the 

information that the probability is above or below the mean. 

After that, R2SM determines the side (above or below of the 

mean) where the highest-deviation sensor (leader) is placed. The 

leader is removed from the list. Same procedure is applied to the 

new list until the leader of the new list is at the opposite side of 

the first leader. Then the geometric mean of the sensor 

probabilities in the new list is calculated. This value is used as 

the total sensor probability of the sensor model. The details of 

the algorithm are given in Fig. 4.
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Fig. 4. Repealing Range Sensor Model (R2SM)

The R2SM provides that the particles in the neighborhood of 

the correct robot configuration may have high sensor 

probability. On the other hand, the particles at different 

configurations than the correct one may have low sensor 

probability. Therefore, the R2SM forces the particles to 

concentrate around the actual robot configuration in fewer steps 

than the traditional sensor model. As a result, the R2SM 

algorithm improves the localization success and decreases 

duration of localization than the case with the traditional sensor 

model.

4. Application and Analysis of the Proposed Method

In this section, the proposed Particle filter approach is 

applied to localize a Pioneer P3-DX robot in a laboratory 

environment. The P3-DX has a balanced drive system which 

includes two-wheel differential drive, caster wheel, and high-

resolution motion encoders. It has also wireless Ethernet 

networking system and Pentium-based onboard computer 

system [22]. The sensors on the robot are: 16 ultrasonic sensors, 

a SICK LMS200 laser range finder, a PTZ Camera, and a 

compass. The laser range finder is used for the applications. 

Fig. 5. The environment and path used in the experiments

The applications were realized in the Eskişehir Osmangazi 

University Electric-Electronic Engineering Department 

Artificial Intelligence and Robotics Laboratory. The width and 

height of the experiment environment are 7300mm and 8500mm,

respectively. The map of the experimental environment and the 

path followed by the robot at localization process are shown in 

Fig. 5. Data from compass, 16 sonar, 180 laser range finder data, 

the position coordinates, and orientation angle are recorded into 

a txt file at every 1000 msec. Later, the txt file is used as the 

input of the proposed localization method.

4.1. Analysis of the Proposed Method

In order to analyze the results of the proposed approach, first 

some definitions are given: 

NOS (Number of Samples): Density of the samples in Unit 

Sample Space (USS). 

NOI (Number of Iteration): Number of iterations of the 

system that successful localization is achieved.

LSR (Localization Success Ratio): Ratio of the number of 

successful localizations and total number of experiments.

In this study, the USS for the position and orientation are 

chosen as 1m2 and 180°, respectively. Results of R2SM, Grubbs’

T-Test, and no outlier rejection methods are compared in terms 

of NOI and LSR for 40 NOS and different number of sonar

sensors. It is important to note that the comparison for NOI is 

done by using only successful experiments.  Additionally, in the 

experiments, the start point to the localization process is 

randomly determined.

In order to localize mobile robot correctly and quickly, the 

accurate and sufficient data must be injected into the localization 

process. It is expected that NOI increases due to deleting data 

when the outlier rejection methods (Grubbs’ T-Test and R2SM) 

are applied. Although some data are deleted, the characteristic of 

NOI with respect to number of sensor remains same. The reason 

of this result is that outlier rejection methods remove only 

disruptive data. Therefore, the outliers are not taken into account 

on the localization process and NOI does not affected. The 

results are shown in Fig. 6.

Fig. 6. NOI versus Number of Sensor
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In particle filter without outlier rejection methods, the 

localization success is negatively affected from the adverse 

probability conditions. However, the outlier rejection methods

eliminate the adverse-probability sensor readings. Thus, the LSR 

is clearly improved. As shown in Fig. 7, the results for R2SM 

and Grubbs’ T-Test are similar. The advantage of the R2SM is 

that it does not require any additional information such as 

critical value table. 

Fig. 7. LSR versus Number of Sensor

5. Conclusions

In this study, a particle filter-based localization method for 

mobile robot is proposed. Sonar range sensors are used for 

localization. It is clear that, sonar sensors have many drawbacks 

that affect the localization performance. Generally, the 

localization with sonar sensors are more complicated than other 

sensors. In order to cope with this trouble, a new sensor model 

R2SM is integrated to the particle filter. R2SM acts as an outlier 

rejection method and eliminate the disruptive sensor data. The 

performance of the proposed method is compared with well-

known outlier rejection method Grubbs’ T-Test. Both methods 

are implemented and examined in the experimental 

environment.  The results show that both outlier rejection 

methods have similar performance in terms of NOI and LSR. 

The proposed R2SM is more preferable than other statistical 

outlier rejection methods because R2SM does not need any 

additional parameters such as critical value tables.
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