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Abstract 
  

The proposed analysis strategy is based on the "segregation 
procedure", meaning the separation between the circuit 
linear part and the nonlinear one. All types of nonlinearities 
are accepted, excepting hysteresis phenomena. We accept 
the general case when the mutual inductors are distributed 
into different subcircuits. The diakoptic way is assumed for 
splitting the given circuit into subcircuits, the state variables 
approach to build the symbolic circuit equations for each 
subcircuit and the waveform relaxation method for finding 
the solution. Compared with common approaches of state 
equations, the main advantage of this procedure is related to 
the numerical computation quality, thanks especially to the 
lower order of the equation systems in the mathematical 
model. 

  
1. Introduction 

  
An electric circuit can contain both linear and nonlinear 

elements that are connected into specified topological structure. 
Diakoptic way [1,2] uses a division approach by partitioning a 
network into multipoles to achieve a high efficiency in the 
solution of large-scale networks. One of the published 
algorithms for partitioning is "central node tearing" [2,3]. In this 
paper, the basic idea for circuit partitioning is the "segregation 
procedure" [2,4], meaning the separation between the circuit 
linear part and the nonlinear one. 

For mutual inductors, one possible way is to assign them, by 
partitioning, to the same subcircuit. Unfortunately, this way is 
not always adequate for latency exploitation or parallel 
implementation. A good choice of the partitioning strategy is 
essential for solving circuit equations by waveform relaxation 
(WR) method [4-6], a natural method which is well suited for 
parallel simulation and fully exploitation of latency and 
multirate behavior. In this paper, we accept the general case 
when the mutual coupling branches are distributed, by 
partitioning, into different subcircuits.  

The analyzed circuit may contain excess elements of any 
types. The nonlinear elements – dynamic or resistive – are 
treated by local linearization, using dynamic parameters and 
incremental sources. 

We shall assume the diakoptic strategies for splitting the 
given network into subnetworks, the state variables approach for 
formulating the subcircuits equations, and the WR method for 
finding, step by step, the correct solution. 

A circuit example illustrating the proposed strategy is finally 
presented. 

 
 
  

2. Diakoptic segregation procedure 
  

The analyzed nonlinear circuit can be viewed as 
interconnection between many linear and nonlinear multipoles. 
The segregation procedure assumes the multipoles grouping 
[2,4], thus the linear and nonlinear partitions (l, respectively n) 
on the initial circuit can be separated by a cross section S [2,7].  

The nets between subcircuits are cut while partitioning, and 
the connections are replaced by a set of voltage or/and current 
sources called "virtual sources" (see figure 1). 

Concerning the computational time reduction, the best results 
are obtained using the same or complementary type virtual 
sources [2,8], without changing the subcircuits order of 
complexity. Therefore, any virtual voltage source forms C – E 
loop, respectively any virtual current source forms L – J cutset.  

Let )(tv  be the vector of virtual sources inputs, the same for 
the two subcircuits, and let )(ty  be the vector of virtual sources 
outputs, the same for the two subcircuits. 

The output variables vector )(tnz  is necessary only for the 
nonlinear subcircuit and contains the voltages of the tree 
resistors and the currents of the cotree resistors.  

Concerning the two subcircuits, )(l  and )(n , the inputs of 
the controlled sources used for modeling the cross induction 
voltages [9] can be expressed as: 
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where nlln LL ,  are matrices containing mutual inductances. 
Using the equivalent sources method [10], we express the state 
equations of the two subcircuits as: 
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In connection with notations  
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Fig. 1. Diakoptic segregation procedure 
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where 421421 ,,,,, nnnlll AAAAAA  are partitioned matrices, 
the state equations (2) and (3) can be expressed as:  
 
        ,543210 nlllllll zAuAvAuAxAxA ++++= ��  (6) 
 
        .543210 nnnnnnnn zAuAvAuAxAxA ++++= ��  (7) 
 
The initial condition vectors are the following: 
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Concerning the whole given circuit, the state variables vector 

x  and the independent inputs vector u  can be expressed as: 
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where each vector is structured in connection with the 
segregation procedure. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Liaison equations 
  

The mathematical models of the two subcircuits, the linear 
and the nonlinear one, are coupled by liaison equations.  

Using the partitioned matrix:  
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the state equations (6) and (7) can be compacted into the form: 
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The vector of virtual sources outputs for the linear subcircuit 

can be expressed as: 
 

            vCuCxCy 321 lllll ++= . (12) 
 

The nonlinear subcircuit output equations can be expressed as:  
 

 wvBuBxBzB +++= 3210 nnnnnnn . (13) 
 

The vector of virtual sources outputs for the nonlinear 
subcircuit can be expressed as:  

 
 .4321 nnnnnnn zCvCuCxCy +++=  (14) 
 

We used the notations lx  for the linear subcircuit state 

variables vector, nx  for the nonlinear subcircuit state variables 

vector, lu  for the linear subcircuit independent inputs, 

respectively nu  for the nonlinear subcircuit independent inputs. 

The matrices m
lllll BBBBA ,,,, 21  are always constant, but 

310321 ,,,,,, nnnnnnnn BBBBBBBA ÷ , w  are generally 
state dependent matrices [2,8]. 

From equations (12) and (13), using the notations 
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we obtain the liaison linear algebraic equation 
 
              .3210 nzCuCxCvC ++=  (16) 
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This equation assures the liaison between the two subcircuits 

and, mathematically, the liaison between proposed algorithm 
stages. 

 
4. The solving algorithm 

  
The proposed solving algorithm includes the following steps: 
a) Perform an analysis time division in discrete values: 

finalkk ttttt ,...,,,...,, 110 + . 
 
 

b) Starting from initial conditions 0x , compute the output 

variables 0
nz  for the moment 0tt = , using a classic method 

[2,11]. 
 
 

c) Solve the linear algebraic equation (16) for 0tt = : 
 

           ,)( 0
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0
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obtaining the virtual sources inputs for this moment, 

)( 0
0 tvv = . 

 
 

d) Solve the nonlinear algebraic equation (13) for 1tt = , 
using a specific iterative method [2,11]: 

 
 wvBuBxBzB +++= 0

312
0

10 )( nnnnnn t . (18) 
 
Using the previous calculated values 0

nz  as start point, we 

obtain the vector )( 1
1 tnn zz = . 

 
 

e) Solve the state equation (11) in the form: 
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finding the solution 
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f) For 1+= ktt  solve as follows: 

- The algebraic nonlinear equation (13), starting from k
nz  and 

using the previous calculated values k
nx  and kv : 
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It results 1+k

nz . 
- The state equation (11) in the particular form 
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- The liaison linear algebraic equation (16) in the particular 

form 
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finding 1+kv . 

 
 

g) Repeat the step f) for all the discrete moments of analysis 
time, finding the solutions )(),( tt nzx . 

 
5. Example 

  
Let us analyze the transient behavior of the nonlinear circuit 

shown in fig. 2. It is a common half wave rectifier with fitting 
transformer, RL load and power factor correction. Besides 
adjusting the level of the load voltage, the fitting transformer 
works like an excellent filter of the current drawn from the 
power system. 

Thus, the given circuit contains the short-circuit impedance of 
the power system, the RC snubber circuit of the switching device 
and parasitic parameters of the fitting transformer. The switching 
device is modeled by a nonlinear voltage controlled resistance. 
The linear subcircuit and the nonlinear one obtained by splitting 
the given circuit with the cross section S, are shown in fig. 3. 
Neither circuit contains excess elements. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Example circuit 
 

 
 
 
 
 

 
 
 
 
 

 
Fig. 3. Linear and nonlinear subcircuit 

 
The state and output variables are: 
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Thus, we have the controlled voltage sources: 
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The state equations of type (2) and (3), as well as the virtual 

sources outputs of type (12) and (14), built automatically by our 
dedicated program, are: 
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from where 
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from where 
 

1312 iiy −−= . 
 

The liaison equation of type (16) is now obvious: 
 

45131263855 vGiiiivGvG +−−−+−= . 
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Fig. 4. Some results of the numerical computation 

 

The output equation of type (13) is: 
 

0)( 91311109109 =+−++ wivGvGGd , 
 
where 9dG  is the dynamic conductance of the nonlinear 

element and 9w  is the incremental independent current source 
introduced by the local linearization. 

The above prepared symbolic equations allow using the 
solving algorithm described in section 4. Some results of the 
numerical computation are shown here, in qualitative manner 
only. 

Also, in fig. 4 there are given: the state variable 11v  (curve 

1); the state variable 13i  (curve 2); the state variable 6i  (curve 
3); the network voltage and the drawn current (as synchronized 
curves 4 and 5, showing the effect of the power factor 
correction).  

 
6. Conclusions 

  
A new circuit analysis strategy is presented and its associated 

robust algorithm too. Using the "segregation procedure", the 
diakoptic way is assumed for splitting the given large-scale 
circuit into subcircuits and the state variables approach to build 
the subcircuit equations. An algebraic linear equation assures the 
liaison between the linear subcircuit and the nonlinear one. 

The major advantages of the proposed analysis strategy and 
algorithm are the following: 
- does not require topologic restrictions excepting the 
consistency assumption; the analyzed circuit may contain any 
type of excess elements, mutual inductors distributed between 
the two subcircuits and any type of nonlinear elements; 
- does not require matrices inversion if the topological 
formulation of subcircuits state and output equations is based on 
a suitable method; 
- offers a convenient way for equations matrices construction; 
- assures a good computational stability and convergence, also a 
remarkable accuracy guaranteed by the convenient choice of 
computing algorithms;  
- the computational effort and analysis time are reduced as 
compared to the previous studied diakoptic methods. 
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