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ABSTRACT

In this paper the performance of the deterministic
maximum likelihood 3-D location estimator for the
near-field sources is studied based on the derivation
of Cramér-Rao bounds. In the derivation, the source
signals and unknown parameters are assumed to be
deterministic while the noise is Gaussian. Further-
more, some insights into the achievable performance
of the deterministic maximum likelihood approach is
obtained by numerical evaluation of the Cramér-Rao
bounds.

1. INTRODUCTION

In the past, many approaches addressed for the lo-
calization of passive sources using an array of sensors
operates under far-field assumption so that they can
only estimate azimuth (in 1-D) or azimuth and el-
evation (in 2-D). [1, 2]. In these approaches, waves
reaching from sources to sensor arrays are assumed to
be in the form of planar wave-front. However, when
a source is located close to the array, the waves im-
pinging on it cannot be assumed to be planar. In
such cases, the inherent curvature of the waveforms
can no longer be neglected. The scenarios taking into
consideration of inherent curvature of the waveforms
operate under near-field assumption. Near-field local-
ization algorithms have been widely used in speech
enhancement using microphone arrays, underwater
source localization, ultrasonic imaging, radar, elec-
tronic surveillance and seismic expoloration applica-

tions. Recently, a total least squares ESPRIT like
algorithm, based on the fourth-order cumulants was
proposed in [3]. In [4], a high resolution algorithm
that uses only second order statistics of the array out-
puts was developed. Few of the existing works dealt
with passive 3-D source localization [3, 4, 5]. This
paper deals with a performance of a new 3-D source
localization estimator which involves the estimation
of spherical coordinates, namely azimuth, elevation
and range [5]. It is based on the deterministic max-
imum likelihood (DML) criterion which employs the
source signals recorded by 2-D array under near-field
assumption.

Establishing bounds on the accuracy that can be
achieved in estimation is an important goal since it
provides benchmarks for evaluating the performance
of the actual estimators. In many signal processing
problems, Cramer-Rao bound (CRB) is used as a
lower bound for the covariance of estimated param-
eters. We therefore evaluate the performance of the
DML algorithm based on the derivation of the CRB.
This bound is often taken as a measure of how well an
estimator performs. The CRB derived in this paper
for the near-field source parameters and source signals
assumes that the signals and unknown parameters are
deterministic while the noise is Gaussian .

2. SYSTEM MODEL

Consider a near-field scenario in which narrowband
signals from d sources received by an K × L element



antenna array. Let the array center be the phase ref-
erence point with index ′(0, 0)′ as depicted in Figure
1. Assuming 2-D rectangular uniform linear array
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Figure 1: Near-field scenario with a 2-D linear array

consisting of omnidirectional sensors with interele-
ment spacing ∆ along each axes, we write the output
of the (k, l)th sensor with narrowband, co-channel sig-
nal as,

xk,l(tn) =
d∑

i=1

si(tn)ejτkl(i)+nk,l(tn), 1 ≤ tn ≤ N (1)

where si(tn) denotes the complex envelope of the ith

source signal, nk,l(tn) is an additive complex Gaus-
sian sensor noise and τkl(i) is the phase difference of
the ith signal collected at sensor (k, l) with respect
to the ith signal collected at reference sensor ’(0, 0)’.
Due to our narrowband assumption, the phase differ-
ence is given by

τkl(i) =
2π

λ
(rkl(i)− ri) (2)

where λ is the wavelength of the source wavefronts.
The distance between ith source and the (k, l)th sen-
sor equals

rkl(i)=ri

√
1+

(k2+l2)∆2

r2
i

− 2∆
ri

sin θi(k cosϕi+l sin ϕi)(3)

The plane wave approximation of far-field sources is
obtained by retaining only term up to the first power
of ∆

ri
and its multiplier in the binomial expansion of

(3). Since the near field sources are of interest in this
paper, we should include an extra term to approxi-
mate the effect of spherical waves. Such an approxi-
mation can therefore be obtained by retaining terms
up to the second power of ∆

ri
and its multiplier in

the binomial expansion of (3). We then arrive at the
fresnel approximation of the distance:

rkl(i) ≈ ri − k∆sin θi cos ϕi +
(k2)∆2

2ri
(1− sin2 θi cos2 ϕi)

− l∆sin θi sin ϕi +
l2∆2

2ri
(1− sin2 θi sin2 ϕi)

− kl∆2

2ri
sin2 θi sin 2ϕi) . (4)

The phase difference τkl(i) = [ωxik + φxik
2 + ωyil +

φyil
2 + βikl] is then

τkl(i)≈
(

2π∆
λ

sin θi cosϕi

)
k−

(
π∆2

λi
(1− sin2 θi cos2 ϕi)

)
k2

+
(

2π∆
λ

sin θi sin ϕi

)
l−

(
π∆2

λri
(1− sin2 θi sin2 ϕi)

)
l2

+
(

π∆2

λri
sin2 θi sin 2ϕi

)
kl (5)

where the parameters ωxi ,φxi ,ωyi,φyi and βi are
nonlinear functions of the azimuth θi, elevation ϕi

and range ri of the ith source:

ωxi =
2π∆

λ
sin θi cosϕi, φxi = −π∆2

λri
(1− sin2 θi cos2 ϕi),

ωyi =
2π∆

λ
sin θi sin ϕi, φyi = −π∆2

λri
(1− sin2 θi sin2 ϕi),

βi =
π∆2

λri
sin2 θi sin 2ϕi. (6)

Then, the noise corrupted array measurements at
the (k, l)th sensor can be approximately expressed as:

xk,l(tn) =
d∑

i=1

si(tn)ej[ωxik+φxik
2+ωyil+φyil

2+βikl]+nk,l(tn).

(7)
For a collection of observed outputs of K×L sen-

sors in 2−D array x(tn) = [xT
Lmin(tn), · · · ,xT

Lmax(tn)]T ,
the matrix formulation of (1) is obtained as follows

x(tn) = A(θ,ϕ, r)s(tn) + n(tn), 1 ≤ tn ≤ N (8)

where the super vector x(tn) consists of xl(tn) =
[xKmin,l(tn) · · ·xKmax,l(tn)]T which is only one col-
umn array vector, s(tn) = [s1(tn) · · · sd(tn)]T is the
collection of d source signals impinging to 2−D array,
n(tn) =

[
nT

Lmin
(tn) · · ·nT

Lmax
(tn)

]T is super Gaussian
complex vector with zero-mean and known spatial co-
variance σ2I, which consists of column array vectors
one forming as nl(tn) = [nKmin,l(tn) · · ·nKmax,l(tn)]T ,
A(θ, ϕ, r) = [A1(θ,ϕ, r) · · · Ad(θ,ϕ, r)] is the arrays
steering matrix in the near-field scenario which is
known as a function of unknown set of parameters
{θ, ϕ, r} = {(θ, ϕ, r)1 · · · (θ, ϕ, r)d}, consisting of col-
umn array steering vectors one forming asAi(θ, ϕ, r) =
[aT

Lmin
(θ,ϕ, r) · · · aT

Lmax
(θ,ϕ, r)]T and al(θ, ϕ, r) is

lth column array steering vector for ith source, in the
following form

al(θ, ϕ, r) =




ejτKminl(i)

...
1

ejτ1l(i)

ejτ2l(i)

...
ejτKmaxl(i)




. (9)



The joint azimuth, elevation and range estimation
problem is, for given array observations, to find the
azimuth θ, elevation ϕ, and range r using the model
(8). Many of the well known methods such as ML,
subspace fitting, and MUSIC that have been devel-
oped for DOA model are applicable to the 3-D source
localization problem. ML algorithms estimate the de-
sired parameters by solving an optimization problem
of the general form

[
θ̂, ϕ̂, r̂, ŝ

]
=arg min

θ,ϕ,r,s

N∑
tn=1

‖x(tn)−A(θ,ϕ, r)s(tn)‖2 .(10)

For the solution to (10) to be ML, however, requires
additional conditions to be satisfied: first that the
noise n(tn) is Gaussian and second, the source signals
are either deterministic or stochastic.

3. MAXIMUM LIKELIHOOD
ESTIMATION

We focus on the DML approach performance in the
sequel. In DML case we do not make any statis-
tical assumption on the source signal and treat it
as unknown but deterministic quantity. Since the
noise vector n(tn) is assumed to be additive, Gaus-
sian with covariance matrix σ2I, the negative log-
likelihood function (after neglecting unnecessary terms)
can be written as

L(x; θ, ϕ, r,s)=−
N∑

tn=1

[x(tn)−A(θ,ϕ, r)s(tn)]H

× [x(tn)−A(θ, ϕ, r)s(tn)] (11)

The ML estimate of the parameters ŝ and {θ̂, ϕ̂, r̂} is
a choice of parameters s and {θ, ϕ, r} which locally
maximizes the log-likelihood function (11). Typically
the maximization problem of (11) is solved in two
steps. First, maximize (11) with respect to s(tn),
keeping {θ, ϕ, r} fixed. The first step results in closed
form solution, since the maximization with respect
to s(tn) is a linear least-squares problem. However,
the second step, maximization of the log-likelihood
function with respect to {θ, ϕ, r}, results in a compli-
cated multiparameter optimization problem and does
not yield to a closed form solution. Solutions of such
problems usually requires numerical methods, such
as the methods of Scoring, Newton-Raphson or some
other gradient search algorithm. However, for the
problem at hand, these numerical methods tend to
be computationally complex. Therefore, Expecta-
tion/Maximization based iterative approach is pro-
posed in [5]. In this paper, we evaluate the perfor-
mance of that proposed DML estimator in the sequel.

4. CRAMER-RAO BOUNDS

The performance of the deterministic ML method is
evaluated based on the derivation of CRB for the un-
biased estimates of the nonrandom parameters. To
prove the deterministic CRB, let the parameter vec-
tor be defined as η ∈ C(N+3)d×1

η =
[
sT θT ϕT rT

]T

(12)

where s ∈ CNd×1 is the source signals vector, θ ∈
Rd×1 ,ϕ ∈ Rd×1 and r ∈ Rd×1 are the near-field
source location parameter vectors.

The CRB provides a lower bound on the variance
of any unbiased estimator. We derive the lower bound
on the covariance matrix of η̂ for the 3-D near-field lo-
calization problem. Suppose η̂ is an unbiased estima-
tor of a vector of deterministic unknown parameters
η (i.e., E{η̂} = η) then the estimator’s covariance
matrix satisfies

J−1(η) ≤ E
{
(η − η̂)(η − η̂)T

}
(13)

where J(η) is the Fisher information matrix (FIM)
defined by

J(η) = E

{(
∂L(x; η)

∂η

)(
∂L(x; η)

∂η

)T
}

. (14)

4.1. Computation of the Derivatives

We now start constructing the FIM by computing the
derivative of (11) with respect to η

′
= [sT

r (1) sT
c (1) · · ·

sT
r (N) sT

c (N) θT ϕT rT ]T where

sr(tn) = Re{[s1(tn), · · · , sd(tn)]T } (15)
sc(tn) = Im{[s1(tn), · · · , sd(tn)]T }

θ = [θ1, · · · , θd]T

ϕ = [ϕ1, · · · , ϕd]T

r = [r1, · · · , rd]T

τ = [θT ϕT rT ]T .

For notational simplicity, we omitted (θ,ϕ, r) in the
sequel. The partial derivatives of L(x; η

′
) with re-

spect to η
′
are:

∂L
∂sr(tn)

=
2
σ2

Re
{
AHn(tn)

}
(16)

∂L
∂sc(tn)

=
2
σ2

Im
{
AHn(tn)

}

∂L
∂θi

=
2
σ2

N∑
tn=1

Re
{

s∗i (tn)
∂AH

i

∂θi
n(tn)

}

∂L
∂ϕi

=
2
σ2

N∑
tn=1

Re
{

s∗i (tn)
∂AH

i

∂ϕi
n(tn)

}

∂L
∂ri

=
2
σ2

N∑
tn=1

Re
{

s∗i (tn)
∂AH

i

∂ri
n(tn)

}



The partial derivatives of the log-likelihood function
with respect to the near-field parameters written more
compactly,

∂L
∂τ

=
2
σ2

N∑
tn=1

Re
{SH(tn)DH

τ n(tn)
}

(17)

where

S(tn) = diag[s1(tn) · · · sd(tn)] (18)

S(tn) =




S(tn) 0 0
0 S(tn) 0
0 0 S(tn)




Dτ =
[

∂A(θ1,ϕ1,r1)
∂θ1

, · · · , ∂A(θd,ϕdrd)
∂θd

; ∂A(θ1,ϕ1),r1)
∂ϕ1

,

· · · , ∂A(θd,ϕd,rd)
∂ϕd

; ∂A(θ1,ϕ1,r1)
∂r1

, · · · , ∂A(θd,ϕd,rd)
∂rd

]
.

4.2. Evaluation of the FIM Matrix

We need the following assumption and results to fur-
ther proceed, (see e.g., [1]):

E[n(tn)nH(tm)] = σ2I (19)
E[n(tn)nT (tm)] = 0

E[nH(tn)n(tn)nT (tm)] = 0 .

Using the assumption and results given above, the
elements of the information matrix can be obtained
as

E

{(
∂L

∂sr(tn)

)(
∂L

∂sr(tm)

)T
}

=
2
σ2

Re
{
AHA

}
δn,m

E

{(
∂L

∂sr(tn)

)(
∂L

∂sc(tm)

)T
}

= − 2
σ2

Im
{
AHA

}
δn,m

E

{(
∂L

∂sc(tn)

)(
∂L

∂sc(tm)

)T
}

=
2
σ2

Re
{
AHA

}
δn,m

E

{(
∂L

∂sr(tn)

)(
∂L
∂τ

)T
}

=
2
σ2

Re
{
AHDτS(tn)

}

E

{(
∂L

∂sc(tn)

)(
∂L
∂τ

)T
}

=
2
σ2

Im
{
AHDτS(tn)

}

E

{(
∂L
∂τ

)(
∂L
∂τ

)T
}

=
2
σ2

N∑
tn=1

Re
{SH(tn)DH

τ DτS(tn)
}

4.3. Bounds for the Near-Field Parameters

To obtain the bounds only for the near-field param-
eters, we will use the partitioned matrix inversion
lemma. Let us then introduce following notation to
form partitioned FIM :

Ar =
2
σ2

Re
{
AHA

}
(20)

Ac =
2
σ2

Im
{
AHA

}

Λr(tn) =
2
σ2

Re
{
AHDτS(tn)

}

Λc(tn) =
2
σ2

Im
{
AHDτS(tn)

}

J(τ ) =
2
σ2

N∑
tn=1

Re
{SH(tn)DH

τ DτS(tn)
}

Then the FIM can be written in partitioned form as

J(η
′
) =




Ar −Ac 0 Λr(1)
Ac Ar Λc(1)

. . .
...

Ar −Ac Λr(N)
0 Ac Ar Λc(N)

ΛT
r (1) ΛT

c (1) · · · ΛT
r (N) ΛT

c (N) J(τ )




.

(21)
If we employ a standard result on the inverse of the
partitioned matrix, we obtain

CRB−1(τ ) = J(τ )−ΛT




Ar −Ac 0
Ac Ar

. . .
Ar −Ac

0 Ac Ar




−1

Λ

(22)
where Λ =

[
ΛT

r (1) ΛT
c (1) · · · ΛT

r (N) ΛT
c (N)

]T . Fi-
nally, we obtain CRB for the parameters of interest
as

CRB−1(τ ) =
2
σ2

N∑
tn=1

Re
{SH(tn)DH

τ (23)

× [
I−A(AHA)−1AH

]
DτS(tn)

}

A more explicit individual CRB expressions for the
near-field parameters θ ,ϕ and r can be obtained by
using a result on the partitioned matrix and its in-
verse. We then have

CRB−1(θ, ϕ) = µ−αH−1αT =
[

T V

V T U

]
,

CRB−1(θ) = T , CRB−1(ϕ) = U ,

CRB−1(r) = H −αT µ−1α , (24)

where

CRB−1(τ ) =




C D E

DT F G

ET GT H


 =

[
µ α
αT H

]
. (25)

5. SIMULATIONS

A 2 −D Uniform linear array of K = L = 3 sensors
with inter-element spacing ∆ = λ

2 was used to esti-
mate the locations of two sources located at {θ1, ϕ1, r1} =



{−650,−200, 2.5λ} and {θ2, ϕ2, r2} = {450,−300, 4λ}.
The number of the snapshots (N) was set to 500.

We tested the proposed method for different signal
to noise ratios (SNR = 0− 30dB and K = 200 trials
per each SNR point). In each trial, the RMSE of
the estimations for {θ1, ϕ1, r1} and {θ2, ϕ2, r2} were
recorded and the corresponding results are presented
only for source 1 due to lack of space in the Figure 2,
Figure 3, and Figure 4 respectively. The theoretical
Cramer-Rao Bound results were compared with the
experimental DML estimator performance results.

6. CONCLUSIONS

In this paper, we derived lower bound on the covari-
ance matrix of the proposed unbiased estimator and
presented Monte Carlo simulations to verify the theo-
retically predicted estimator’s performance. The ex-
amples demonstrated that the deterministic ML al-
gorithm achieve the CRB for high SNR values.
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Figure 2: CRB and RMS error for elevation
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Figure 3: CRB and RMS error for azimuth
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Figure 4: CRB and RMS error for range
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