
An Algorithm to Compute a Basis of Petri Net Invariants
S. Cayir and M. Ucer

Electronics and Communication Department, Istanbul Technical University, Istanbul, Turkey
cayirs@itu.edu.tr and murvet@ehb.itu.edu.tr

Abstract - A fast, simple and effective method to
compute a basis of Petri Net invariants is presented in
this paper. Another algorithm to obtain a basis with only
positive elements is also initiated. Both of the algorithms
are based on simple row operations. Where as the
second algorithm is a modified form of the first one
under specific constraints. Results of the algorithms
applied on an example net are covered and the running
times for different sized nets are given.

INTRODUCTION

Petri Nets are known as one of the best defined
approaches to modeling of discrete and concurrent
systems. Petri Nets are a graphical and mathematical
modeling tool used to model and analyze information
processing systems, communication systems and
protocols, real-time systems, multi-processor systems,
automatic production systems, flow charts, chemical
reactions, ecological systems which may show
concurrent, asynchronous, distributed, parallel, non-
deterministic and/or stochastic behavior [1], [2].

Using Petri Nets in system design takes the steps of
modeling, analysis and implementation. Modeling step
includes graphical visualization of complex systems,
while implementation step is comprised of well defined
synthesis procedures. Petri Net analysis step includes
system analysis of structural and behavioral properties.
Reachability, boundedness, liveness, reversibility,
coverability, persistence and fairness are the most
known behavioral properties. Behavioral properties rely
on the initial state of the Petri Net, whereas structural
properties depend on the topology of the net. Structural
boundedness, conservativeness, controllability,
structural liveness, and consistency are the most known
structural properties. Murata in [2] argues structural and
behavioral properties of Petri Nets in detail.

Properties such as boundedness and conservativeness
can be completely determined by means of Petri Net
invariants. While reachability and liveness properties
can be tested using Petri Net invariants. A detailed
discussion on the relation between controllability and
boundedness of Petri Nets based on invariants can be

found in [3]. Many definitions of place invariants and
transition invariants have been made in the literature [4-
10].

In this paper, the main concern is to find a basis of
invariants which figure a powerful tool to study
structural properties of Petri Nets. Several methods have
been proposed in the literature. These methods can be
classified in two groups ; algorithms to obtain all and/or
minimal positive invariants in [4] and [5], and
algorithms to obtain basis of invariants in [6] and [7].
The method proposed in this study focuses on finding a
basis of invariants based on simple row operations
applied on the incidence matrix. The first method is
focused to find basis without consideration if the results
are positive or negative. Then a more restricted approach
to find a basis with positive or semi-positive elements is
researched. The constraints and necessary conditions of
the approach are also established. Though the method is
simple it is also effective, fast and open to further
development.

NOTATION AND DEFINITIONS

A generalized Petri net is a 5-tuple, PN = (P, T, F, W,
M0) where,

P = {p1, p2… pm} is a finite set of places,
T = {t1, t2… tn} is a finite set transitions,
F ⊆ (PxT) ∪ (TxP) is set of directed arcs defining the

relations between the places and the transitions,
W: F → {1, 2, 3 …} is a weight function,
M: P → {0, 1, 2 …} is the initial marking,
P ∪ T≠∅ and P ∩ T=∅, m is the number of places

and n is the number of transitions. [2]
The graphical representation of a place pi is with a

circle, whereas a transition tj is represented with a box or
bar. The relation between a place and a transition is
represented with a directed weighted arc. The weight of
an arc from place pi to transition tj is represented as w(pi,
tj), whereas an arc in reverse direction is represented
with w(tj, pi).

The dynamic behavior of a system is modeled
through flow of tokens on the net. A marking M assigns
a nonnegative integer to every place. M is m-vector,

where m is the number of places. M(pi) is the number of
tokens in place pi. M0 is the initial marking. A marking
Mk corresponds to the state of the net at a given moment.
A transition tj is said to be enabled at marking M in case
all of the input places have at least as many tokens as
weight of the arc from the input places to that transition.
After a transition is fired under marking Mk, distribution
of the tokens changes according to weights of the arcs.
And the state changes to Mk+1. [2]

The change of states in Petri Nets is captured with
State Equation. The state equation is based on algebraic
equation 1.

M = M0 + A.u (1)

Where, M0 is the initial marking.
M is the marking reachable from M0 after

consecutive transition firings.
A is the incidence matrix. It is nxm matrix of

integers. The aij’th element of the incidence matrix is
computed in 2.

aij = w(ti, pj) – w(pj, ti) (2)

i = 1, 2, …, n, j = 1, 2, …, m, n and m denotes the
number of transitions and places respectively.

u is called the firing count vector. It is nx1 vector of
non-negative integers. The ith element of σ implies how
many times ti transition must be fired in a sequence of
firings.

P-invariants are integer solutions of homogenous
equation 3.

A.x = 0 (3)

Place invariants formalize invariant properties
regarding places in Petri Net. For example in a set of
places the sum of tokens remains unchanged after firing.
Then this set can define a place invariant. A good
discussion of various implications of P-invariants can be
found in [8] and [9].

T-invariants are positive integer solutions of
homogenous equation 4.

AT.x = 0 (4)

T-invariants are especially useful when the solution
of 4 is positive, in such case x corresponds to a cyclic
sequence. By that means T-invariants define invariant
properties regarding firing sequences applicable to a
Petri Net. They are useful to define consistent
components with in a net. When a net is not consistent it
can not be lively and boundedly marked [10].

Computation of invariants is based the solutions of

homogenous equations 3 and 4. Actually equation 4 is
the dual of equation 3. Here after only the solution of P-
invariants will be considered. T-invariants can be
calculated by applying the same computing steps on the
inverse of the incidence matrix A.

PROPOSED ALGORITHMS

First, an algorithm to compute a basis of invariants in
generalized Petri nets that derives invariants with both
positive and negative elements is considered. This
algorithm is based on theorem 4 covered in the previous
section. Then verbal definition of the second algorithm
used to obtain positive and/or semi positive only is
given. This algorithm is applicable only if the condition
defined in theorem 5 holds.

Algorithm 1: Computation of a basis for P - invariants

Input: The mxn dimensional incidence matrix A, m =
P, n = T

Output: The matrix B whose rows form the basis
Step 1: Take the transpose of the incidence matrix A.

Define nxn dimensional identity matrix In.
Step 2: for i = 1 to m;

1. Apply simple row operations on AT. These
row operations shall form the AT matrix an upper
triangular form.

2. Apply the same row operations on the
Identity matrix In.

Step 3: Abstract the last (n-r) rows as matrix B from
identity matrix In which correspond to zero rows on AT.
The rows of B form a basis for P – invariants.

Flow chart of algorithm 1 can be seen in Fig. 1.

Algorithm 2: Computation of a positive basis for P -
invariants

Input: The mxn dimensional incidence matrix A,
m=P, n=T

Output: The matrix B whose rows form the basis
Step 1: Take the transpose of the incidence matrix A.

Define nxn dimensional identity matrix In.
Step 2: for i = 1 to m;

1. Apply additive simple row operations on AT.
These row operations shall form the AT matrix an upper
triangular form.

2. Apply the same additive row operations on
the identity matrix In.

Step 3: Abstract the last (n-r) rows as matrix B from
identity matrix In which correspond to zero rows on AT.
The rows of B form a positive basis for P – invariants.

Is the rest
of column l all

zero?

Matrix

Data

Apply row substitution .
Do the same operation

on the identity matrix .

a[k, l] != 0
Apply row elimination

along the column

NO

NO

YES

l > no of cols
k > no of rows

l > no of cols

Return the induced

matrixes

YES
l++

NO

YES

l++
k++

NO

YES

Figure 1: Algorithm 1 Flow Chart

In order to obtain a basis for T – invariants the same
steps will be applied on the incidence matrix A. This
holds for both algorithms.

The code developed with regard to the algorithms
defined has the following pseudo code structures.

Pseudo Code for Algorithm 1

Input: An incidence matrix a, nxm dimensional
Output: (n-r)xn dimensional basis matrix b
 begin
1. define id /* nxn dimensional identity matrix */

2. while (k < n) and (l < m)
3. if (a(k,l) != 0)
4. for (i = k+1; i < n)
5. RowElimination(a, id);
6. k++, l++;
7. else if (RestofColumnZero(a) == false)
8. ExchangeWithNonZeroRow(a, id);

/* exchange the row with a non zero one */

9. for(i = k+1; i < n)
10. RowElimination(a, id);
11. k++, l++;
12. else if (RestofColumnZero(a) == true)

/* checks if the rest of he column is zero */

13. l++
end

end

The pseudo code for subroutine Row Elimination is
as follows,

Subroutine RowElimination(a, id)

begin
1. if (a(k,l).a(i,l) < 0)
2. a(j,i) ← a(j,i).a(k,l) + a(k,i).a(j, l)
3. id(j,i) ← id(j,i).a(k,l) + id(k,i).a(j, l)
4. else if (a(k, l).a(i,l) > 0)
5. a(j,i) ← a(j,i).a(k,l) - a(k,i).a(j, l)
6. id(j,i) ← id(j,i).a(k,l) - id(k,i).a(j, l)

end if
end

The pseudo code for Algorithm 2 is the same except
at steps 5 and 10, where positive row elimination
subroutine is applied. The subroutine of positive row
elimination is as follows;

Subroutine PositiveRowElimination (a, id)

begin
1. if (a(k,l) > 0)
2. FindFirstNegative (a(k))

/* finds first negative row */

3. EAPR_FirstNegative (a, id)
/* eliminates all positive rows with the first negative one*/

4. EANR_FirstRow (a, id)
/* eliminates all negative rows with the first row */

5. else if (a(k, l) < 0)
6. FindFirstPositive (a(k))

/* find first positive row */

7. EANR_FirstPositive(a, id)
/* eliminate all negative rows with first positive row */

8. EAPR_FirstRow(a, id)
/* eliminate all positive rows with the first row */

end if
end

AN EXAMPLE

The algorithms are applied to the Petri Net in Fig. 2.
The incidence matrix of the net follows.

p
1

p
2

p
3

p
4

t
1

t
2

t3

p
6 p

5

p7

p9 p
8

t
5

t4

t6

t
7t8

t
9

Figure 2: An example Petri Net



































−

−

−−

−

−

−−

−

−

−−

111000000

111000000

011100000

000111000

000111000

000011100

000000111

000000111

100000011

The proposed invariant finding algorithms are
applied. The example Petri Net has 9 places and the rank
of the incidence matrix is 5, so the resultant basis is
comprised of four row vectors. Results of the standard
analysis has both positive and negative elements, where
as results of the positive analysis has only positive
elements.



















−

−

−

101101101

011000000

000011000

000000011

Positive only P – invariant basis;



















101101101

110110110

101110110

101101110

Notice out that there can be found at least one
invariant covered by positive elements.

EXPERIMENTAL RESULTS

A computer program implementing both standard
and positive algorithms was developed. The computer
program was named Petri Net Invariant Analysis
(PNIA). It was developed with C#. PNIA generates
basis’ both for P – invariants and T – invariants.
Invariants of different sized Petri Nets were executed
with PNIA on a computer with Pentium 4 2.4GHz
processor and 512MB memory. Results are listed in
Table 1.

Size of A
(mxn)

P analysis Positive P
analysis

T analysis Positive T
analysis

9x9 4,56E-05 6,58E-05 4,04E-05 6,03E-05

18x18 1,39E-04 3,74E-04 1,48E-04 3,83E-04

36x36 5,38E-04 2,59E-03 5,82E-04 2,63E-03

72x72 2,29E-03 1,84E-02 2,48E-03 1,96E-02

144x144 9,70E-03 1,39E-01 1,06E-02 1,49E-01

216x216 2,20E-02 4,15E-01 2,28E-02 4,45E-01

Table 1: Running time results (in s)

CONCLUSION

In this paper, a new approach to determine invariant
basis of Petri Nets have been presented. Using the bases’
the complete set of P – invariants and T – invariants can
be generated. Both of the proposed algorithms have
computing time complexities of Θ((M+N).N). The
positive invariant analysis is slower because of the more
controls present in its algorithm. When the results from
the previous section are examined the computing time
complexity shows the pattern of Θ((M+N). log N).

Further improvements can be made on the algorithm
to find solutions with more constraints. Here the
constraint was to find positive basis. Other constraints
can be to find a semi positive basis or a minimal basis.
The resultant sets of invariants can be used to find all of
the minimal invariants or any other type of invariant
regarding the goal of the applications.

REFERENCES

[1] J. L. Peterson, Petri Net Theory and the Modeling
of Systems, Prentice-Hall, Inc, Englewood Cliffs,
1981

[2] T. Murata, Petri Nets: Properties, Analysis and
Applications, Proceeding of the IEEE, 1989, Vol.
77, No.4, 541-580

[3] P. Ramachandran, M. Kamath, On Place Invariant
Sets and the Rank of the Incidence Matrix of Petri
Nets, Proc. IEEE Int. Conf. on Systems, Man, and
Cybernetics, San Diego, USA, 1998, pp. 160-165

[4] J. Martinez, M. Silva, A simple and fast algorithm
to obtain all invariants of a generalized Petri Net,
2nd Eu. Ws. on app. and theo. of PN, Bod-honneff,
1981

[5] K. Takano, S. Taoka, M. Yamauchi, T. Watanabe,
T., Two Efficient Methods For Computing Petri
Net Invariants, IEEE Int. Conf. on Sys., Man, and
Cybernetics, Tucson, USA, 2001, Vol. 4, 2717–
2722

[6] A. Bourjij, M. Boutayeb, D. Koenig, T. Cecchin,
On Generating a Basis of Invariants in Petri Nets,
IEEE Int. Conf. on Sys., Man, and Cybernetics,
Comp. Cyber. and Simulation, Orlando, USA,
1997, Vol.3, 2228-2233

[7] T. Tanida, T. Watanabe, K. Onega, A Polynomial-
Time Algorithm For Finding a Semi-Gen. of Petri
Net Invariants, IEEE Int. Sym. on Cir. and Sys.,
Singapore, 1991, Vol. 5, 2838-2841

[8] J. Desel, W. Reising, Place or Transition Petri Nets,
Lectures on Petri Nets I: Basic Models, Advances
in Petri Nets, Springer, 1998, pp. 122-173

[9] J. Desel, Basic Linear Algebraic Techniques for
Place/Transition Nets, Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, Springer,
1998, pp. 257-308

[10] M. Silva, E. Teruel, J. M. Colom, Linear
Algebraic and Linear Programming Tech. for the
Anal. of Place/Trans. Net Sys., Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets,
Springer, 1998, pp.309-373

