
A Novel Keypoint Based Forgery Detection Method Based on Local Phase
Quantization and SIFT

Beste Ustubioglu1, Gul Muzaffer1, Guzin Ulutas1, Vasif Nabiyev1and Mustafa Ulutas 1

1Departmant of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey

bgencturk@ktu.edu.tr, gulmuzaffer@ktu.edu.tr, guzin@ieee.org, vasif@ktu.edu.tr, ulutas@ieee.org

Abstract

Increase on the availability of the image editing software
makes digital image forgery serious problem. Researchers
proposed methods to cope with image authentication in
recent years. We proposed a novel keypoint based passive
image authentication technique to determine the copy move
forgery. The method extracts the structural texture
information from the test image by using LPQ (Local Phase
Quantization) operator to make the keypoint extraction
techniques more successful. SIFT is used extract the
keypoints from texture image. Forged regions are detected
by matching the keypoints. The method also improves the
keypoint based passive image authentication mechanism by
extraction texture information before keypoint extraction.
Experimental results show that, the method detects forged
regions on the images even if the forged image has
undergone some attacks (Gaussian blurring/Additive White
Gaussian Noise) and jpeg compression).

1. Introduction

Digital media such as images or videos become widespread

by means of the low cost digital cameras and cell phones in
nowadays. Images or videos are widely used in many areas,
such as medical imaging, journalism, criminal and forensic
investigations. However, digital images can be easily modified
without leaving visible clues due to the sophisticated editing
software (for example, Photoshop, 3D Max, GIMP). Thus,
approving the fidelity of digital media is a challenging problem.
Researchers suggest techniques to examine the originality of
digital images or videos. Techniques reported in the literature
can be roughly divided active and passive methods.

Active methods such as digital watermarking or digital
signatures require additional information to be transmitted and
they also need key management procedures. On the contrary,
passive methods can authenticate an image without any
additional information or specialized hardware. The advantages
of the passive methods make them popular to researchers in
recent years.

Copy move forgery is one of the most popular forgery
techniques since even a beginner can make this forgery by freely
available image editing tools. A part of an image is copied and
pasted into another region in the same image to hide some of the
objects or emphasize a particular object in the image. But
detecting the same regions is very difficult, because the copied
regions usually are processed by some operations such as
blurring, noise addition, compression and geometrical distortion.
Thus, forgery detection method should detect the replicated
regions, even if they are slightly different from each other.

Original image and example of copy move forgery image given
in Fig. 1 (a) and (b) respectively.

(a) (b)

Fig. 1. (a) Original image (b) Forged image

Passive image authentication methods in the literature can be

divided into two groups: Block based and Keypoint based
methods. Fridrich et al.s work is the first attempt in the literature
to detect the copy move forgery operation [1]. Their method is
block based and not robust to against some post processing
operations such as scaling, translation and rotation. After this
work, Popescu et al. used PCA to extract feature vectors from
the blocks [2]. Their work decreased the dimension of feature
vector utilizing the characteristic of PCA. The method is more
robust to additive noise. But their method has also a drawback:
it cannot detect forgery if copied region is rotated before it is
pasted. Bayram et al. suggested using Fourier-Mellin Transform
(FMT) to create the feature vectors [3].

After this works, keypoint based methods were proposed to
overcome the rate complexity of block based method. Huang
proposed the algorithm based on SIFT (Scale Invariant Feature
Transform) [4], and subsequently, Amerini et al improved the
SIFT approach by adding the use of hierarchical clustering on
the SIFT key points [5]. Their method is robust to rotation and
scaling but cannot detect forgery by smooth surfaces.

Block and keypoint based techniques do not work properly if
one copies a smooth region of the image and pastes it on another
region to hide a clue as a forgery. Since block based methods
divide input image into overlapping blocks and use threshold to
judge similarity among group of blocks, large number of similar
group of blocks (eg. two groups of blocks corresponding to sky
in the image) must be ignored to deal with false negatives.
Therefore, these methods cannot detect forgery if forged region
is smooth or have no texture. Likewise, keypoint based
authentication methods cannot detect smooth forged regions
because keypoint extraction algorithms extract keypoints from
complex regions.

We proposed a method based on LPQ and SIFT. Our method
extracts structural texture information from the forged image as

185

the first step to use keypoint extraction methods on them.
Seemingly smooth regions of images also have a texture (due to
sensor and/or quantization noise) and the proposed method
reveals the structure of these regions by using the Local Phase
Quantization (LPQ) operator. Thus, keypoint extraction
algorithms can obtain keypoints from the textural information of
the image. Copy-paste regions are detected by matching the
keypoints. Experimental results show that the method gives
higher detection ratios, especially smooth surfaces, compared to
SIFT based works in the literature [5]. The rest of the paper is
organized as follows. Section 2 gives proposed work with a brief
introduction to LPQ and SIFT approach. The experimental
results and conclusions are given in Section 3 and Section 4
respectively.

2. Proposed Work

The proposed method consists of three stages: (i) extraction

of the texture information from image using LPQ, (ii) detection
of the SIFT keypoints from the LPQ image and (iii) matching
the keypoints to detect tampered regions. The details of the
method are given in the subsections below.

2.1. Image Texture Feature Extraction using LPQ

Proposed method reveals the structural texture information

from the forged image by using the LPQ operator. Thus, SIFT
can obtain keypoints from the textural information of the image.

The Local Phase Quantization (LPQ) operator was originally
proposed by Ojansivu and Heikkila as a texture descriptor [6].
LPQ is proposed as a spatial blurring based on quantized phase
information of the Discrete Fourier Transform (DFT).

The blurring in spatial domain is represented by a
convolution between the image intensity and a point spread
function(PSF).In frequency domain this equal to G=F*H where
G, F and H are the discrete Fourier transforms (DFT) of the
blurred image, original image, and the PSF in order of.
Additionally taking into account only the phase of the
spectrum the relation become a sum���G(u) =�F(u) +�H(u) .
It is assume that the blur PSF h(x) is centrally symmetric, so
h(x)=h(-x), its Fourier transform is all time real-valued, and as a
result its phase is just a two-valued function, given by �H(u)
�������. The shape of H for regular PSF make that at least the
low frequency values of H are positive. At these
frequencies, ��H= 0 subject to , ��F to be a blur invariant
property.

In LPQ, the phase is analyzed in local neighbourhoods Nx for
each pixel position x of the image f(x). The local frequency
characteristics can be obtained using selective frequency filters.
The lower frequency resolution depict higher spatial resolution.
The low frequency phase angles are indicated to be invariant to
centrally symmetric blur. These local spectra are figured out
using a short term Fourier transform (STFT) defined by

 F(u,x)=	 f
x-y�e-j2�uTy

y�Nx (1)

 We set m value to 9. Where x��x1,x2,… xN, compose of simply
1-D convolution for the rows and columns respectively. The
local Fourier coefficients are computed at four angles [0, �/2, �,
3�/2] equal to 2-D frequencies u1 = [a,0]T, u2 = [0,a]T ,u3
=[a,a]T, and u4 =[a,-a]

T
where a = 1/m, (m is window size) is a

small enough scalar to satisfy H(ui) > 0. We set m value to 9.

The local Fourier coefficients are computed at four angles [0,
�/2, �, 3�/2] corresponding to 2-D frequencies u1 = [a,0]T, u2
= [0,a]T ,u3 =[a,a]T and u4 =[a,-a]

T
where a = 1/m, (m is

window size) is a sufficiently small scalar to satisfy H(ui) > 0.
For each pixel position this results in a vector:

Fx
c=[��F(u1,x),F(u2,x),F(u3x),F(u4,x)] (2)

 Fx= [Re {F(x), Im{F(x)}]T (3)

where Re{·} return real parts of a complex number and Im{·}
return imaginary parts of a complex number.
Then, Gx is computed for pixel and the resulting vectors are
quantized using a simple scalar quantizer:

 1 if gj ��0
�� � (4)
 0 otherwise

where gj� is the jth component of the vector G(x)
= [Re {F(x), Im{F(x)}] . Finally, the label image fLPQ�x�� is
resulted eight binary coefficients ����� are represented as
integer values between 0-255 using binary coding:

 fLPQ�x� � 	 �������

��� (5)

The diagram of the computing LPQ as can be seen in Fig 2. We
used LPQ to extract LPQ(texture) image. Fig. 3 shows the LPQ
image of Fig. 1. (b).

Fig. 2. A summary of LPQ method

Fig. 3. LPQ image

2.2. Detection SIFT Keypoints from the LPQ Image

The proposed method extracts keypoints from the LPQ image
using Scale Invariant Feature Transform proposed by Lowe et
al. in 2004 [7]. Scale-space extrema detection, keypoint

186

localization, orientation assignment and determination of the
keypoint descriptors are the steps of the SIFT. First, scale space
is constructed to detect the local interest points called keypoints.
Potential keypoints are searched over all scales. Variable scale
Gaussian function G(x,y,�) convolved with an input image I(x,y)
to construct the scale space function. Scale space of an image
L(x,y,�) is calculated as in (6).

L(x,y,�)= G(x,y,�)* I(x,y) (6)

The difference between two nearby scaled images separated

by a multiplicative factor k, is convolved with the image I(x,y)
as in (7) to extract stable keypoint location.

D(x,y,�)= L(x,y,k�)-L(x,y,�) (7)

Keypoint localization is the next step during the algorithm.

Each point in D is compared with its 8 neighboring pixels and 9
pixels in neighboring scales. If the center value is the minimum
or maximum, this point is an extrema and it is a potential
keypoint. Each keypoint is assigned to an orientation to achieve
rotation invariance. A neighborhood of each keypoint is taken
according to scale to judge the orientation. Gradient magnitude
and direction is calculated in that neighborhood.

Keypoint descriptors are created as the last step. A 16×16
pixel neighborhood around the keypoint is taken and this region
is divided into 4×4 pixel subblocks. 8-bin orientation histogram
is constructed for each subblock. 128 bin values are obtained
from all subblocks and they are represented as a vector to form
keypoint descriptor.

Fig 4. (a) and (b) shows extracted keypoints from of Fig. 1.
(b) and from Fig. 3 respectively. SIFT cannot find keypoints on
the wall since the wall has smooth surfaces as can be seen Fig.
4. (a). However, SIFT extracts a lot of keypoints from the
texture image of the same image as given Fig. 4 (b). Structural
texture information causes the increase on the number of
keypoints and matched keypoints as shown in the results.Thus,
our methos extract texture information from the image before
keypoint extraction.

(a) (b)

Fig. 4. SIFT keypoints extracted from (a) forged image (b)

texture image

2.3. Matching the Keypoints

The proposed method uses the approach defined in [5] to
judge similar keypoints. Keypoint matching algorithm defined
by Amerini et al. is applied for a keypoint descriptor as
explained below.

1. Dot products are calculated between current keypoint
descriptor and the others, {d1��dn}.

2. Dot product angles are computed by inverse cosine, and
then sorted and dot product values and their corresponding
indexes are stored.

3. The ratio of two neighbors, (di, d(i+1)), is compared with
a predefined threshold t until the ratio is greater than t. Assume
that the procedure stops at kth index, keypoints corresponding to
{di �� d(i+k)} are considered as match for the current keypoint.
We set t value to 0.6.

The procedure defined above is applied to all keypoints.
Matched keypoints designate forged regions and provide
information about the authenticity of the image.

3. Experimental Results

This section gives the detailed analysis to show the

effectiveness of the method. The forged images were created by
an open source image editing software, GIMP, using images of
size 640x420 pixels and 1200x800 pixels from Google image
search. Border smoothing is also applied to all forged images
during forgery to hide the clues on the peripheral of the covered
area. Forgery detection capability of the proposed method for a
N×M test image is evaluated using a metric called by Detection
Ratio (DR) given in (8). DR is the ratio of matched keypoints
inside tampered regions, �� , to the total number of pixels, F,
that reside on those regions. Independence from image size is
ensured by multiplying these metric by NM�100. Higher DRs
correspond to better accuracy in detecting forged regions.

 �� � �� !�!"

#$
�%% (8)

The first experiment, two different types of attacks are

applied on the image to create the forged versions: Simple and
multiple attacks. Fig. 5(b) is an example of a simple attack. A
region with a bird on the image given in Fig. 5(a) is covered by
another smooth region from the same image to create the forged
image given in Fig. 5(b). Fig. 5(c) shows that SIFT [5] detects 2
keypoints on the forged regions since the region is covered by
smooth region and any of them is matched. However, the
proposed method finds 11600 keypoints on the forged image
and matches 412 of them as can be seen in Fig. 5(d). The
proposed method reveals the forged region with more matched
keypoints. When the forgery operation hides a portion of the
image with a smooth region, other SIFT do not find any
keypoints in forged regions.

Multiple attack is used to create more than one forged
regions on the image. Butterfly region on the image given in
Fig. 6(a) is copied and pasted on the other two regions on the
same image as indicated by the red arrows to create the forged
one given in Fig. 6(b). The total matched keypoints and
keypoints for proposed method and SIFT [5] are (858, 359) and
(15922, 2520) respectively as given in Fig. 6(c) and 6(d). The
proposed method finds more keypoints on the forged regions
even if the the copied region is complex region compared with
SIFT.

(a) (b)

187

(c) (d)

Fig. 5. (a) Original image (b) Forged image

(c) The result of SIFT method (Total keypoints: 2 Matched
keypoints: 0)(d) The result of proposed method(Total keypoints:

11600 Matched keypoints: 412)

Blurring operation is used in the second experiment to blur
the forged image. The red circle pattern given in Fig. 7(a) is
duplicated to create forged image, Fig 7(b). The forged image is
blurred by a Gaussian filter with
parameters �&'()*&+�+',-� & � .�/ � .� . Proposed method
and SIFT [5] detect 5153, 1163 total number of keypoints
respectively. The matched keypoints are seen in Fig. 7(c), 7(d)
as 1789,637 respectively. The proposed method has higher
accuracy compared to SIFT even though with larger blurring
radius.

(a) (b)

(c) (d)

Fig. 6. (a) Original image (b) Forged image

(c) The result of SIFT method (Total keypoints: 2520 Matched
keypoints: 359)(d) The result of proposed method(Total

keypoints: 15922 Matched keypoints: 852)

50 test images of size 640x420 pixels are blurred using the
following parameters: � = 5, � = 7 and � = 9 for 5x5, 7x7 and
9x9 kernels. Figure 8 gives the average detection ratios of the
methods. The results are also compared with SIFT [5] as can be
seen in Fig 8. The proposed method has higher DR compared to
SIFT.

(a) (b)

(c) (d)

Fig. 7. (a) Original image (b) Forged image

(c) The result of SIFT method (Total keypoints: 1163 Matched
keypoints: 637)(d) The result of proposed method (Total

keypoints: 5153 Matched keypoints: 1789)

Another experiment is realized to show the effectiveness of
the method under Additive White Gaussian Noise operation. For
this purpose, 30 dB 45 dB and 60 dB signals are used to hide the
clues of the forgery operations on the 50 forged images. Fig. 9
shows average DR of the method and SIFT. The method yields
higher average DR compared to SIFT as shown in the bar chart.

Fig. 8. Comparison test results for Gaussian Blurring

In the last experiment, 40 tampered images of size 1200x800
pixels were distorted by JPEG compression with different
quality factors QF=90, 80 and 70. Fig. 10 indicates that the
proposed method yields higher average DR compared to SIFT
for jpeg compression.

Fig. 9. Comparison test results for AWGN

0

10

20

30

40

[5 5] 5 [7 7] 7 [9 9] 9

DR

Proposed SIFT [5]

0
10
20
30
40

30 dB 45 dB 60 dB

DR

PROPOSED SIFT [5]

188

Fig. 10. Comparison test results for JPEG compression

4. Conclusions

A novel keypoint-based image authentication scheme is
proposed for copy move forgery detection in this work. Since
keypoint based techniques make use of structural information
such as image texture, they cannot detect forgery on the smooth
regions. The proposed method is based on keypoint selection
and uses LPQ before SIFT to emphasize texture information.
LPQ extracts texture information from images with seemingly
smooth regions. Thus, keypoint extraction algorithms are
applicable on the structural information and extract keypoints
from the structural information of the smooth regions. Thus, one
of the most important disadvantages of the keypoint based
passive authentication mechanisms reported in the literature is
eliminated by the proposed method.

5. References

 [1] J. Fridrich, “Detection of copy-move forgery in digital

images”, Digital Forensic Research Workshop, Cleveland,
OH, pp. 19–23, 2003.

[2] A. C. Popescu, H. Farid, “Exposing digital forgeries by
detecting duplicated image regions”, Tech. Rep. TR2004-
515, Department of Computer Science, Dartmouth College,
2004.

[3] S. Bayram, H. Sencar, N. Memon, “An efficient and robust
method for detecting copy-move forgery”, IEEE
International Conference on Acoustics, Speech and Signal
Processing, 2009.

[4] H. Huang, W. Guo, and Y. Zhang, “Detection of Copy-
Move Forgery in Digital Images Using SIFT Algorithm,” in
Proceedings of IEEE Pacific-Asia Workshop on
Computational Intelligence and Industrial Application, Vol.
2, 2008, pp. 272-276.

[5] I. Amerini, L. Ballan, R. Caldelli et al “A SIFT-based
forensic method for copy–move attack detection and
transformation recovery”. IEEE Trans Inf Forensic Secur
6:1099–1110. doi:10.1109/TIFS.2011.2129512.

[6] J. H. Ville Ojansivu, “Blur Insensitive Texture
Classification Using Local Phase Quantization”, Image and
Signal Processing, pp. Volume 5099, 2008, pp 236-243,
2008.

[7] G. Lowe SIFT - The Scale Invariant Feature Transform. Int
J. 2004;2:91–110.

0

10

20

30

40

QF 70 QF 80 QF 90

DR

PROPOSED SIFT [5]

189

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

