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ABSTRACT 

In the radiation problem, because of the lowest order 
mode don’t propagate under whatever condition, to 
determinate the lowest order mode is propagating, 
which is very imported for engineering and 
mathematics applications. Sometimes, it is very 
complicate to obtain the necessary condition to ensure 
that the lowest order mode is propagating. In this case, 
graphically solution is applied. 
In this study, the lowest order mode is propagating in 
dielectric loaded thick-walled parallel plate waveguide, 
which was investigated through graphically solution. 
 

I. INTRODUCTION 
Radiation from open-ended parallel-plate waveguide has 
been subjected to numerous investigations. In the present 
work, we consider the lowest order mode is propagating 
in dielectric filled impedance waveguide junction with a 
thick dielectric half-plane. In the case, where thick half-
plane and inside region of waveguide has a different 
nonmagnetic dielectric material. 
In this context, the problem of radiation from two parallel 
semi-infinite plates of zero thickness has been considered 
[1-3]. In other hands one was investigated the radiation 
from an open waveguide with reactive walls, which is a 
canonical model simulating an impedance loaded horn 
and horn type surface wave launchers [4]. Later, this work 
was generalized [5]. In all of these works, the lowest order 
mode is propagating, which was investigated with 
different methods under different conditions. 
 

II. MATHEMATICAL ANALYSIS 
We consider the radiation of the dominant TE mode wave 
which is incident from the left in the parallel plate region 
formed by two semi-infinite impedance plates defined by 
the impedance half plane 

( ) ( )},,,),0,();,,{(1 ∞∞−∈∈−∞∈= zbayxzyxS and  

( ) ( ) ( ) ( )},,,,0,;,,{2 ∞−∞∈−−∈−∞∈= zabyxzyxS  
respectively, as depicted in Fig. 1. 

 
Figure 1. Geometry of radiation problem 
 
The surface impedances of the horizontal walls by ±= , 

0<x , and  ay ±= , 0<x  are denoted by 011 ZZ η=  
and  022 ZZ η=  respectively, while the impedance of the 
vertical walls x=0, ( )bay ,∈  and 0=x , ( )aby −−∈ ,  is 

033 ZZ η= , with 0Z being the characteristic impedance 
of the free space. 
Here, 0k  is the free space wave number which is assumed 
to have a small positive imaginary part and denoted by  

000 µεω=k  with 0ε  and 0µ  being the dielectric 
permittivity and the magnetic permeability of the free 
space. The lossless case can then be obtained by making  

0)( 0 →ℑ km   at the end of the analysis.  1k  is the wave 

numbers denoted by 011 µεω=k  with 
1

ε  being the 

dielectric permittivity in the regions ,0<x  ),( aay −∈ . 
Incident wave that satisfy the boundary conditions: 
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The configuration is two dimensional and the assumed 
incident field, only three field components namely,  
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are nonzero. 
 0β  in the incident wave equation is the lowest  real root 
of the characteristic equation 
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where 
22

11 )( αα −= kK                                       (2b) 
and 0ξ  is defined by 

   )( 010 βξ K=                                             (2c) 
The square-root function is defined in the complex α-
plane cut along 1k=α  to ∞+= ik1α  and 1k−=α  to  

∞−−= ik1α  such that  11 )0( kK =  . Note that equation 
(2a) admits an infinite of symmetric roots denoted by  

nβ±   satisfying 
( ) ( )1 ,0)( kmmL nn ℑ>ℑ= ββ                  (2d) 

with 
,..2,1,0 )(1 == nK nn βξ                      (2e) 

Equation (2a) has two multiplier which we suppose e
nβ   

satisfying 
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and  o
nβ   satisfying 
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In these two equation, we can write aK1   as  x  ,  2η   as  

2

~
ηi  and  ak1

2

~
η   as  A   for mathematical easiness. Thus 

the equations (2f) and (2g) are converted to 
Axx −=cot                                              (2h) 

and 
Axx =tan                                                 (2i) 

respectively. nβ  can be written as 
( )

2

22
1

a
xak

n
n−=β ,   

,..2,1,0=n The necessary condition to ensure that the 
lowest order mode is propagating in the waveguide one 
can take into account the slopes, -A and A, of the 
equations (2h) and (2i) respectively. 

 
 
Figure 2. Graphically solution of tanx=Ax, cotx=-Ax 
equations. 
 
There are three states for  A  . 
I) If  1>A  : First root of  Axx =tan   is in the 
interval ),0( 2

π∈x . First root of Axx −=cot   is in the 

interval ),( 2 ππ∈x . If 21
π<ak , there is not real root for 

Axx −=cot . There is only one real root is root for  
Axx =tan  in the interval ),0( 2

π∈x  and  .21
π<< akxo

n   
II) If 10 << A : There is not any root for  Axx =tan   in 
the interval  ).,0( 2

π∈x   its first root is belong to the 

interval  ).,( 2
3ππ∈x  Axx −=cot   has first root in the 

interval  ).,( 2 ππ∈x  If π<< akxo
n 1 , first and one real 

root is  e
0β ; else if  2

3
1

π<< akxo
n , there are two real root 

which satisfy  eo
00 ββ <  . 

III) If 0<A : First root of the equations  Axx =tan   and  
Axx −=cot  is in the intervals ),( 2 ππ∈x  and  

),,0( 2
π∈x   respectively. If 21

π<< akxo
n , there is only one 

real root named e
0β  else If π<< akxo

n 1 , there are two 

real roots satisfy eo
00 ββ < . 

To satisfy dominant mode wave propagation in the 
waveguide one must take into account both the conditions  

ak12

~
>η  and 21

π<< akxo
n . In these conditions one can 

obtain dominant mode propagation constant o
0β   which 

belongs to equation (2g). Coefficient 0B  in equation (1b) 
is zero. 
After all, consequently, the incident field expression  

),( yxui   can be written as follows: 
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III. CONCLUSION 
In this study, the lowest order mode is propagating in 
dielectric loaded thick-walled parallel plate waveguide, 
which was investigated through graphically solution. 
Since Verification of the truthness of this solution, 
radiation of the end of waveguide was investigated. 
Existing of the mode is propagating in dielectric loaded 
thick-walled parallel plate waveguide, which was 
observed, for different values of the η2. For the values 
except for the necessary condition to ensure that the 
lowest order mode is propagating in the waveguide, one 
was observed that any mode is propagating. This is 
guarantied that only one and the lowest order mode is 
exist.  
 

 
 
Figure 10. Radiated field amplitude versus the observation 
angle for different values of the η2 
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