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Abstract

In this paper, an efficient approach to the solution of inverse 

scattering problem related to circular hole buried in a wall is 

presented. The approach is based on neural network method 

in which the reconstruction domain is first restricted to a 

narrower one by Electromagnetic Back Propagation Method 

(EBPM), and then classical neural network method is 

applied. Comparisons between the classical and proposed

neural network solution of the problem show that the 

present method can detect the circular crack more 

accurately than classical solution for the same number of 

education set element. Also proposed solution provides 

faster education than classical solution by means of 

restriction. The approach may also be used to accelerate the 

neural network based methods for more complex inverse 

scattering problems.       

1. Introduction

Detection of small cracks or inhomogeneities within a known 

host medium is an important problem since it has a wide range 

of applications in the areas of construction engineering, aero-

nautics, material science, biomedical etc. This problem can be 

considered as a nondestructive testing one since the main aim is 

to determine the location, size and the physical parameters of 

inhomogeneities in a known material by the remote measure-

ments. The concrete structures in civil engineering applications, 

composite materials in airplane and related industries, and an

organ of body in medical sciences are the examples of such host 

media. From the electromagnetic point of view the solution 

strategies for the aforementioned problem can be simply 

classified into two main approaches. In the radar based 

approaches pulses in time domain used in order to obtain the 

information about the inhomogeneity [1], while the second 

approach is based on frequency domain nonlinear integral

equations [2]. Within this framework a neural network based 

method for the determination of the location of circular holes in 

a wall is presented in this study by integral equation based 

formalism. For the sake of simplicity a 2-D formulation is 

investigated and thus the problem is reduced to a scalar one.  

The entire reconstruction domain (the wall) is first restricted to a 

smaller rectangular region by Electromagnetic Back Propagation 

Method (EBPM) which substantially reduces the computational 

cost and increases the efficiency of the neural network method. 

Then the conventional neural network approach is applied for

the solution of the problem. As it is shown by numerical 

examples, this two-step algorithm is very effective and reliable. 

The details of the algorithm and the numerical results are given 

in the following sections. Throughout the paper iwte! time 

convention is used.    

2. Formulation of the Problem

Consider the problem whose generic configuration is given 

in Figure 1, where a lossy dielectric wall with parameters εr=4, 

σ=0.001 and d=0.2 m, stands for the thickness, is placed in free 

space. Within the wall a circular cylindrical hole D, whose cross 

sectional area is denoted by S models the crack. Let us denote z 

component  of  incident, scattered and total electric fields by Ei

ş

Fig. 1. Geometry of the problem

Es, and E, respectively. From these definitions and using 2-D

Green’s theorem with Helmholtz equation in three part space,

one can formulate the problem by the following electric field 

integral equations
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which are also known as data and object equations, respectively.

In (1) and (2) G is the Green’s function of there part space, 
2 2

0 0 0k w * +, is the square of the wave number of free space, 

2 2

0 0 0r rk w iw* * + -+, . is the square of the wave number of the 

wall and primed coordinates is defined over the cross-section of 

the circle D. Equation (1) can be used for calculating the 

scattered field at any point in the whole space, provided that the 

total electric field over crack is known. On the other hand the 

total electric field can be easily obtained by using the object 

equation. In this work this type of integral equations are solved 

by using Method of Moments (MoM) [3] numerically.

    The main aim of the inverse scattering problem considered in 

the present study is to find the location of the crack D by using 

the scattered field measurements performed on a line parallel to 

the wall. For this aim we suggest a two-step algorithm, details 

are given below.
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3. Neural Network Solution of Inverse Scattering 

Problem

Neural network, inspired from human neural system, is 

widely used as a computation tool. Like human’s neural system, 

neural network has simple computation unit called neuron and 

uses it to construct a network. This computation network can be 

used to model every system easily, since it constitutes a

manifold which characterizes input/output relationship of the 

system.

The most critical point of neural network approach is training 

process. To model any system, neural network must learn 

input/output relation of the system in training process. After 

successive training step neural network can be used to solve 

trained system easily. Therefore accuracy of solution heavily 

depends on quality of training process. For modeling complex 

systems neural network require large training set which is 

obtained by sampling the investigated system densely. Therefore

usually training process is time and CPU consuming for 

successive learning [4].

Most of the inverse scattering methods in frequency domain,

equation (1) is used to invert the data. Because of its non-

linearity and compactness of its kernel, inverse scattering 

problems are complex and cannot be solved easily and directly.

According to described advantages, neural networks may be 

used to overcome this difficulty despite of its complex training 

process. This idea has applied to many problems and quite 

satisfactory results have been obtained [4 - 8].

In inverse scattering problems the only known quantity is the 

measured scattered field data. With the aid of this data, physical 

properties of object and indirectly its location is aimed to 

reconstruct. So input of neural network must be scattered field 

data, and outputs are determined by the nature of problem which 

also called a priori information. In our problem cracks are 

modeled with circular cylinders along z-axis and clearly its 

inside is air - filled, so its shape and dielectric properties are 

known. This a priori information provides a simpler inverse 

scattering problem for neural network. Thus only unknown 

parameter about crack is its location and therefore outputs of 

neural network system are coordinates of cracks in 2D Cartesian 

coordinate plane. The neural network model can be seen in 

Figure 2.

         
                                          

Fig. 2. Neural network model for given inverse scattering 

problem for N observation point

To solve the prescribed problem a multi - layer feed forward 

neural network with single hidden layer and sigmoid activation 

function are used. According to Cybenko’s Universal 

Approximation Theorem [9] this type of neural network is 

sufficient to approximate every continuous function which 

defines input/output relationship of any system [10].

Training of phase is realized by example based learning 

process. To achieve this, training set which consists of scattered 

field values for each known crack location in observation points 

are necessary. Training set can be easily constituted from 

solution of (1) by using MoM for known crack locations

numerically. Also this solution is used for construction of test

set. After the construction of training set, Error Back 

Propagation algorithm which uses gradient descent method is 

used to train neural network [10].

4. Electromagnetic Back Propagation Method and Its 

Application to Neural Network Approach

4.1. Electromagnetic Back Propagation Method

Electromagnetic Back Propagation Method (EBPM) is one 

of the fundamental and basic solution approaches for inverse 

scattering problems. It can be used to provide initial value about

dielectric properties of object needed in iterative inverse 

scattering algorithms. As many inverse scattering methods, its 

mathematical foundation is originated from data equation (1).

Let us define a function
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which we called density function whose support determines the 

cross section S. By this definition the data equation can be 

reduced to

2( , ) ( , ; , ) ( , ) ,r
R
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where R denotes the reconstruction domain. As we also

mentioned in previous sections, in inverse scattering problems 

scattering fields and Green’s function of corresponding space is 

known. MoM is used to solve (4) to obtain the density function 

over reconstruction domain. By definition, this function should 

be zero everywhere in R except the cross section S of crack. 

Note that the equation (4) is an ill – posed one by nature and 

only an approximation of F can be obtained by applying a 

regularization scheme. This is done here by classical Tikhonov 

Regularization [11].

Although the support of density function determines the 

cross section of crack theoretically only a rough approximation 

can be extracted from the regularized solution and therefore an 

approximate region can be determined by observing the 

variation of F. As a result, the reconstruction domain for neural 

network approach can be restricted to a narrower one which 

reduces the computational cost of the algorithm substantially. 

Furthermore it is observed that the accuracy of the results can be 

enhanced by this preprocess. This result of EMPM motivates us 

to proposed new method on neural network solution of inverse 

scattering problem. 

4.2. Application of Electromagnetic Back Propagation 

Method to Neural Network Approach

As mentioned before training process is the most important 

step for neural network. Because of the training process, neural 

network establishes a relationship between input and output of

system. Quality of this relationship determines the interpolation
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ability of neural network in output space and accuracy of 

nonlinear system function approximation. For working of neural 

network with low order error, training set samples for the given 

problem also sample nonlinear system functions densely. This 

increases the number of element in training set. For example,

consider a big reconstruction domain, in order to establish

successive relationship between input and output, reconstruction 

domain is sampled smoothly which cause more training points

relative to smaller one. 

To overcome complexity of training process we proposed a 

method which is application of EBPM to neural network                         

approach. We know from previous section that EBPM can be 

used to acquire coarse information about the location of crack.

In proposed method first EBPM is applied to scattered field 

data. After application of EBPM a region which includes the

crack can be determined easily. This coarse location information 

is used to restrict reconstruction domain of inverse scattering 

problem. Neural network is trained over restricted re-

construction domain, than scattered field is applied to neural 

network and output is determined. The Most important 

advantage of this method is restriction of reconstruction domain

around cracks. With the aid of this preprocess, neural network 

learns smaller area than the original one, namely the wall itself. 

It is expected that this proposed method provide shorter training 

time and simplify the training process also for neural network 

solution.    

Fig. 3. Geometry of scattered field measurement

5. Numerical Results

In this section the numerical results related to wall imaging 

problem whose configuration is shown in Figure 3 will be given. 

The main aim here is to compare the efficiency of proposed and 

classical neural network solutions. Before this comparison, it is 

investigated that how EBPM gives a location information about 

location of crack. Within this context a measurement set up 

given in Figure 3 is considered where the scattered field is 

assumed to be measured at 60 equally spaced observation 

points, 0.3m far away from wall along 3m in x coordinate. 

Crack is searched in a reconstruction domain having the 

dimensions 1x0.2 m2. In all numerical examples the

illuminations are carried out by using monochromatic electrical 

line source whose operating frequency is 500 MHz located at 

y=0.3m  along z axis.

Crack is modeled as a circular cylinder whose radius is
15

/

where λ is wavelength in wall. For simulating noisy case a 

random term 2 dirsn E e 0
"

is added to each scattered field data 

sE at measurement points where n
"

is the noise level and 
dr a

random number between 0 and 1.

Capability of determining approximate crack location via 

EBPM can be seen in Figure 4 and 5. In Figure 4, the amplitude 

of the density function is plotted for noise free case. As can be 

seen from Figure 4, the location of crack in x direction can be

clearly determined in the region (0.2 – 0.3) by observing the 

density function in reconstruction domain. The variation of the 

Fig. 4. Dielectric profile of reconstruction domain via EBPM; 1 

cm crack located at (0.2, -0.03); noise free

h

Fig. 5. Dielectric profile of reconstruction domain via EBPM; 1 

cm crack located at (0.2, -0.03); 10% noise level

amplitude of density function for the same configuration with 

10% noisy data is shown in Figure 5. It is obvious from the 

figure that again a satisfactory approximation for the location of 

crack is determined in the interval (0.2 – 0.3) in x direction for 

the noisy case. It can be seen from these results that EBPM can 

be efficiently used to restrict reconstruction domain for neural 

network solution.

To compare proposed and classical neural network method, 

in given measurement geometry equally spaced 20 scattered 

fields is chosen from 60 measured scattered field data and this 

20 values are used as input of neural network along x dimension 

of reconstruction domain. Since the measured scattered field 

has real and complex parts, 40x20x2 network used to solve 

inverse scattering problem. In order to compare the classical 

neural network and presented one the problem is solved by the 

parameters; 100 training point and 20 test point. For perfor-

mance analysis, neural network run 15 times with same test set 

to acquire static behavior of network. All given values are mean 

of 15 results of neural network for both proposed and classical 

solution.

For comparison of proposed and classical neural network 

solution of inverse scattering problem, defined problem is 

trained for same number of element and tested for 20 random

points over reconstruction domain. Output of classical neural

network for test  set  is  given  in  Figure 6.   The results of the

presented method for the given test set are shown in Figure 7
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Fig. 6. Classical neural network solution of given problem for 

20 test element; circles original location, stars neural network 

solution; noise free

which has maximum mean error among 15 repetitions. By 

comparing Figure 6 and 7 we can easily state that proposed 

neural network gives higher accuracy than classical neural 

network solution for determining center of crack. More accurate 

result of proposed neural network solutions only originates from 

usage of EBPM before direct application of neural network 

method. Although 100 training elements are not sufficient to 

sample original reconstruction domain accurately, this number 

of training points is more sufficient for narrower reconstruction 

domain around each test points. It is also worth to mention that 

in classical neural network approach corner regions may not be 

learned very well, which can be seen from Figure 6, because of 

small number of training points in this region. Conversely in 

proposed neural network solution reconstruction domain is 

restricted around each crack, and therefore one does not need to 

apply a sampling strategy.

To be able to give a quantitative comparison we also give a 

detailed error analysis. To do this absolute error analysis can be

conducted by subtracting original crack location from both 

Table 1. Comparison of proposed and classical neural network 

solution numerically; noise free

Fig. 7. Proposed neural network solution of given problem for 

20 test element; circles original location, stars neural network 

solution; noise free

neural network solutions in x and y coordinates. For noise free

case this comparison can be seen in Table 1. It is clearly 

observed that mean absolute error of EBPM based neural 

network solution along 15 run of neural network with same test

points give approximately 23 times smaller than classical 

solution in x coordinates and 10 times in y coordinates. Because 

of rectangular geometry of reconstruction domain, absolute error 

efficiency of proposed method in x and y coordinates are 

different. Variation interval (domain) of y coordinates is smaller 

than x coordinates, so y coordinates can be learned more 

successfully relative to x coordinates. Besides in Table 1, it can 

be seen that even worst absolute error situation for proposed 

method along 15 repetitions is approximately 5 – 7 times better

than the best case of classical neural network solution. In 

addition to error analysis training times are compared for both 

methods. In Table 1, it is observed that training of proposed 

method is faster than classical neural network solution. Because; 

in proposed method training is performed in restricted 

reconstruction domain which provides close correlation between 

training points as well as narrower domain which will be 

learned. Therefore neural network can easily and rapidly 

establish a relationship between input/output.

To see behavior of proposed method and compare it with

classical solution in noisy case, a similar analysis can be 

conducted; results are given in Table 2. In this analysis 1% noise 

level is used since the neural network is not robust against noise.  

Since it can be seen from Figure 5 that EBPM is not so sensitive 

to 10% noise level, the nature of neural network for this con-

figuration is responsible for the noise sensitivity.  Again similar 

results are observed for noisy case in the sense of error analysis

of same reason explained before.      

6. Conclusions

In this paper an efficient neural network method is proposed 

for the solution of the inverse scattering problems related to 

detection of circular holes in a wall. The fundamental principle

of EBPM based neural network approach is the restriction of 

reconstruction domain to a narrower one. Proposed method is

compared with classical solution for crack detection in wall 

problem.

EBPM Classical

Mean Absolute 

Error in X
0.0022 m 0.0504 m

Mean Absolute 

Error in Y
0.0023 m 0.0241 m

Worst Case

Absolute 

Error in X
0.0037m 0.0741 m

Absolute 

Error in Y
0.0031 m 0.0314 m

Best Case

Absolute  

error in X
0.0015 m 0.0282 m

Absolute  

Error in Y
0.0018 m 0.0168 m

Mean Training 

Time
2.36 sec 10.9 sec
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Table 2. Comparison of proposed and classical neural network 

solution numerically; 1% noise level

EBPM Classical

Mean Absolute 

Error in X
0.0541 m 0.2364 m

Mean Absolute 

Error in Y
0.0464 m 0.0621 m

Worst Case

Absolute 

Error in X
0.0591 m 0.2589 m

Absolute 

Error in Y
0.0571 m 0.0743 m

Best Case

Absolute 

Error in X
0.0475 m 0.1974 m

Absolute 

Error in Y
0.0372 m 0.0496 m

Mean Training 

Time
3.07 sec 7.88 sec

It is shown by numerical examples that proposed method not

only gives more accurate result but also provides fast training 

process with same number of training element for both noisy 

and noise free cases. These are main advantages of proposed 

method over neural network solution of inverse scattering 

problems. Since proposed method simplifies complex training 

process of neural network for inverse scattering problems, more 

complex inverse scattering problems can be solved easily and 

rapidly by the use of this two-step method. The future studies 

will be devoted to application of the proposed method to more 

complex problems including 3-D structures.
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