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ABSTRACT 
 In this paper a new design methodology 
for a wide range of non-linear control 
systems via the so-called generalized back-
stepping(GBS) technique is proposed. The 
new proposed criterion can be 
implemented to tracking problem as well 
as stability of non-linear autonomous 
control systems. This model that can be 
called "feedback state of non-linear control 
systems" may cover most of the non-linear 
control systems. By using the suggested 
model, unstable state of stabled system as 
well as tracking problem can be derived. 
Case study and simulation results show the 
effectiveness of the proposed technique.   

1. Introduction 
Lyapunov theory is a well-known proper 
mean for linear and non-linear systems 
analysis. The major problem of that theory, 
which can be pointed, especially for non-
linear systems is to derive a function such 
that it should satisfy the Lyapunov 
conditions. If such a function is derived, 
system stability can be guaranteed, while in 
this regard the designer's experiences are 
also desired.  Although regarding this issue, 
there are several proposed methods 
available while each individual may face 
with some particular constraints. Some 
general methods to determine the Lyapunov 
functions are: 
1- Method of linearization around the 
operating point; where the major issue for 
this technique is eliminating the non-linear 
dynamics of system as well as procuring 
local stability.  

2- Crossofskey method; where in the case of 
large number of system states, solving the 
related equations and determining of conditions 
can be a tough job.  
3- Generalized Crosophskey method; where in 
this method determining of conditions are easy 
job, while computational works are so high. 
4- Variable gradient method; while in this 
method solving the equations is not so easy; 
whereas the results are similar to the method of 
linearization.  
Regarding to the above issues; our attempts is 
ended to a simple proposed technique the so-called 
back-stepping methodology. This technique is a 
backward technique that can help one to find the 
Lyapunov functions. One of the advantages of this 
method is to prevent eliminating nonlinear 
dynamics of the system. In fact, back-stepping 
method is a modification from state feedback of 
linear systems to non-linear systems by using 
Lyapunov theories. It seems that the origin of 
back-stepping theory is not precisely recognized, 
while some concurrent analyses with regards to 
this method has been done. The most important 
study from the literature can be addressed to some 
research papers of the 1980 decade. It is important 
to mention that the researches of Kokotowich and 
his colleagues have introduced this issue [1]. In 
1991 Kokotowich et. al.  presented this idea 
through his published paper [2]. Kanlacupulos 
proposed a mathematical for designing a non-
linear controller using back-stepping technique [3]. 
Follow to these researches some years later, 
researchers such as Christic [4], Freeman [5] and 
Spultcher [6] published several research paper 
with regards to this subject. Also Kokotowich in 
1999 at international IFAC symposium reviewed 
the progresses of back-stepping technique during 
1990 decade [7]. In the following this method will 
be discussed id details. 
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2. Back-Stepping Technique 
This method can be applied to some particular 
models of non-linear systems, the so-called 
explicit feedback systems. These systems can be 
presented using the following mathematical 
relationships: 
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In [8] by using (1) in order to derive the 
Lyapunov functions as well as a control signal 
u, a backward algorithm is implemented. In that 
algorithm at first stage by assuming Lyapunov 
functions as )( 1zV  and control signal as 2z  for 
first term, Lyapunov function and control signal 
for two other states 1z 2z و can be derived. In 

next stage 3z  is introduced as control signal, 
while it can be calculated based upon the 
previous stated and Lyapunov function will be 
derived. These calculation sequences will be 
continuing until the final stage, reaching to 
Lyapunov function of whole system as well as 
control signal u.  
Back-stepping technique has some weakness as 
the following: 
• It has restrictions, while is only applicable for 
particular non-linear systems that obey 
equations (1). 
• Using this method for n states system n-1 
backward iteration is needed to be done, where 
lots of computational jobs are required.  
In next part a generalized back-stepping 
technique will be discussed, where Lyapunov 
function as well as control signal will be derived 
in one stage. 

3. GBS Technique 
A specific class of autonomous non-linear 
systems and continues of k  order can be 
modeled as: 
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Where :     1
121

−
− ℜ∈= n

nxxxX ],...,,[  ,   
ℜ∈η .  Most of non-linear control systems 

either can be presented by Eq. (2) ( e.g. auto-
piloting system) or they can be converted to this 
model easily (e.g. Lorentz equations). 
Now by using mathematical model (2), for 
determining Lyapunov function and control 
signal the following theorem will be developed. 

Theorem: assume that a non-linear control 
system is presented by Eq. (2). Then a scalar 
function )(XV is defined as: 
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For the system of Eq. (2), a scalar 
function ),,,( 121 −Φ= ni xxx Lη ,

121 −= ni ,,, L , will be defined such that 
0)0( =Φ i and the function )(XV of Eq. (3) be 

positive definite, while its derivative also be 
negative definite. The stabilizer control signal 
and Lyapunov of whole system can be shown 
by the following mathematical formula: 
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Where : 
T

n
T

n gggGfffF ],,,[,],,,[ 121121 −− == LL .   It 
can be mentioned that stability of controlled 
system is of the globally asymptotic stability 
(GAS) type. 

 
Proof: Eq. (2)can be expended to the following: 
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Regarding the above assumption in which 
)(XV is positive definite it can be written: 
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Then, we can have )()( XWXV −≤⇒ & . 
Where )(XW is a positive definite function. 

By substituting uXgXfu ),(),( 000 ηη+=  and adding/ 
subtracting )()( XXg ii Φ  to the i-th column of 
Eq. (6) it can be derived: 
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Now it can be rewritten such that: 
)()( 0 XuzXz iiii Φ−=⇒Φ−= &&η          (9) 
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And then Eq. (8) can be shown by: 
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In fact, it is known that all  iz  have  (n-1) terms, 
where all iλ can be assumed of (n-1) terms as 
well: 

1,,2,1, −=Φ−= niu ioi L&λ   (12) 
And then :  

iiz λ=&  1,,2,1, −= ni L                (13) 
 
  Now it is proven that the following relationship 
can be a Lyapunov function of system. (2): 
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It can be seen that the defined function of Eq. 
(14) is a positive definite function. It is needed 
to check the first derivative of the function 
where it is negative definite. It is done in the 
following: 
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 In order ),( ηXVt
& be negative definite,  iλ  can 

be assumed as: 
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Then it can be pointed out: 
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Eq. (17) satisfies that ),( ηXVt
& is negative 

definite, which confirm the Eq. (14) is a 
Lyapunov function for system Eq. (2). For the 
control signal 0u  that stabilizes the system, by 
using equations (8), (10), (11), it can be written 
as: 
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And finally by substituting   
),(

),(
η
η

Xg
Xfu

u
0

00 −
=   

the control signal can be derived based upon Eq. 
(4). 
Since the region of being positive and negative 
definite of ),( ηXVt

& is the whole state region 

and ),( ηXVt is radially unbounded, then GBA 
will be guaranteed.  

4. Simulation Results & Analysis 
The following system is selected to study and 
analyze the proposed method: 
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Equation (19) is a practical example of Eq. (2).  
As figures (1),(2) and (3) show the states of the 
system are unstable and after a short period of 
time they converge to infinite. 
 

 

0 5 10 15 20 25 30 0

0.2

0.4

0.6

0.8

1

Time (Sec) 

X1

 
Figure 1- Variations of X1 Before Stabilization 
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Figure 2- Variations of X2 Before Stabilization  
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Figure 3- Variations of η  Before Stabilization 
 
By comparing Eq. (19) and Eq. (2) of the 
system it can be written as: 
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It can be resulted from Eq. (20) that the system 
with Eq. (19) is different from Eq. (2). Then it 
can be said that by using back-stepping method, 
stabilizing as well as tracking issues of system 
Eq. (19) is not achievable.  In the next section, it 
can be shown that stabilizing and tracking issues 
of system Eq. (19) will be solved by applying 
the proposed method in this paper. 

4.1- Stabilizing of System States 
),( 211 xxΦ ),( و  212 xxΦ are defined as: 
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By applying a control signal, u, to the system, 
figures (4), (5) & (6) are resulted. 
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Figure 4- Variations of X1 After Stabilization 
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Figure 5- Variations of X2 After Stabilization 
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Figure 6- Variations of η  After Stabilization  
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Figure 7- Control Signal u for System Stabilization 

 
As it can be seen from figures (4),(5) and (6) for 
all states the system is stable and reaches to 
equilibrium point. Figure (7) shows the desired 
control signal for system stabilization. 

4.2 – Tracking Problem 
Now it is assumed a step input is applied to the 
system Eq. (19), where the output of the system 
is x1 : )(trx −= 1µ    (24) 
By substituting Eq. (24) system Eq. (19) is 
converted to the following: 
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By  considering the condition of the mentioned 
theorem it can be shown that: 
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The simulation results are given in figures (8) 
and (9). As it is seen from these figures the 
output will follow the system input fairly. 
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Figure 8- Response to Step Input 
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Figure 9- Control Signal u for Tracking 

5. Conclusions 
In this paper a new proposed technique that is 
generalized back-stepping method is presented. 
This method can be applied to non-linear 
control systems properly. By considering the 
simulation results, it is seen that both 
stabilization as well as input tracking will be 
achieved in an acceptable manner. It is 
mentioned that most of non-linear systems can 
be modeled using these system equations. The 
presented model in this paper is a proper 
methodology to control a wide range of non-
linear systems. In fact, generalized back-
stepping method can help one to stabilize those 
unstable states of a system. The results also 
show the effectiveness of the proposed 
technique in an acceptable fashion.  
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