
FPGA IMPLEMENTATION OF FFT ALGORITHMS USING FLOATING
POINT NUMBERS

Hilal Kaptan1 Ali Tangel1 Suhap Sahin2

1
Kocaeli University, College of Engineering, Department of Electronics and Communication Engineering,

Veziroglu Yerleskesi, 41040, Izmit, Turkey
2

 Kocaeli University, College of Engineering, Department of Computer Engineering,
Veziroglu Yerleskesi, 41040, Izmit, Turkey

1
 e-posta: hilalkaptan@gmail.com

2
e-posta: suhapsahin@kou.edu.tr

1
e-posta: atangel@kou.edu.tr

Keywords: FPGA, Fast Fourier Transform, Floating Point Arithmetic, DSP

ABSTRACT
In this paper, it is shown that FFT algorithms using
floating point numbers can be implemented on an
FPGA. A custom VHDL library so called Fp_Lib is
formed for general purpose computer arithmetic
FPGA implementations. This library includes
addition, subtraction, multiplication and division
modules based on 32 bit single precision IEEE 754
format. The algorithms are implemented on Xilinx
Spartan-2 evaluation board, while FFT algorithms are
realized on Xilinx’s Virtex 2 FPGA (XUP-V2Pro
Board). 0.6 µs, and 0.72 µs speeds were obtained for
implementing the FFT and IFFT algorithms,
respectively. The study is also compared with a
similar one in the literature from structural and
performance point of view.

1. INTRODUCTION
Fast Fourier Transform (FFT) plays an important role in
many signal and image processing, data analyzing for
vibration sensors, frequency measurement of earthquakes,
and telecommunication systems such as WiMax
technology which presents both wide bandwidth and
wireless solutions[1-2].

In real time applications, it is necessary to obtain and
process the input data as fast as possible to be able to
reach the result almost simultaneously. Although ASIC
solutions always offer fastest and low power solutions for
real time applications, they are unique designs for a
specific application. Therefore redesign process of an
ASIC for a new application requires much more money
and time when comparing with field programmable chips.

FPGA solutions also provide flexible design, low cost,
and faster time-to-market features besides allowing
parallel process implementations [4]. Due to parallel
processing property, they are much faster than traditional
microprocessor based solutions [5].

Floating point numbers have ability to represent a good
approximation and dynamic range representations of the
real numbers, so that floating point algorithms are
frequently used in modern applications, which require
millions of calculations per second, such as image
processing and speech recognition.[3]

In this study, firstly, the realized algorithms of the
necessary arithmetic operations used in FFT
implementation are presented. Next, these design blocks
are used to realize the mathematical expression of the
FFT. Finally, the study is compared with the similar ones
in the literature from structural and performance point of
view.

2. FLOATING POINT ARITHMETIC
ALGORITHMS

Many technological systems prefer floating point
arithmetic due to having capacity of dynamic and precise
representation for numbers [7]. FPGA usage for the
implementation of Floating Point Number
implementations rather than microprocessor based
structures will be the best choice due to parallel
processing capability, re-programmability, and higher
speed. In spite of their advantage, floating point
operators consumes large amount of resources and more
time even for an ordinary (low resolution)
implementation [6].

2.1. Floating point addition and subtraction
Figure 1 shows the design flow chart of the floating point
addition and subtraction algorithm implemented. These
algorithms are similar to the ones realized in many
processors. Let F1 and F2 represent two floating point
numbers; Ftop represents the addition of both number; and
Fminus =F1-F2. Fminus can be re-written as Fminus= F1+(-F2).
The subtraction process is converted to addition form by
inversing the sign bit of F2. For this reason, only addition
algorithm is elaborated here. Addition and subtraction
algorithms are realized in three steps. Fi represents the

number; Si is the sign, ei is exponent and fi is the fraction
part of any number. Lets define the inputs as F1=(s1,e1 ,f1)
and F2=(s2,e2 ,f2). The result is represented as
Fans=(sans,eans ,fans)= F1+F2 or F1 +(- F2)

The algorithm steps are as follows:
1. Step:
If absolute value of F1 is smaller than F2, F1 and F2 are
interchanged. The right shift amount of f2 is calculated by
subtracting e1 from e2. “1” is added to the bits after the
sign bit (1.f1) ve (1.f2).
2. Step:
(1.f1) is shifted to the right by the amount of (e1- e2). If
the sign bits are equal, then (1. f1) and (1. f2) are added, if
not (1.f2) is subtracted from (1.f1). The sign of the
resulting number sans is the sign of the bigger f number.
3. Step:
fans is shifted to the left until the first bit becomes “1”, and
amount of the shift is calculated. eans is obtained by
subtracting the amount of shift from e1.

Figure 1. 32-bit floating point adding and subtracting
algorithm implemented on an FPGA

2.2 Floating point multiplication
 Floating point multiplication shown in Figure 2 is similar
to the integer multiplication. Therefore FP multiplication
is easier than FP adding or subtracting algorithms here. It
is realized in three steps as well.
To make it easy, the algorithm never tests the illegal
numbers or negative zero cases. The inputs are same as
before, F1=(s1, e1, f1) and F2=(s2, e2, f2).. The result will

be Fans = (sans, eans, fans)= F1* F2. The algorithm steps will
be as follows:
1. Step:
Exponent parts, e1 and e2 are added; the resulting number
is appointed as eans. “1” is added to the beginnings of f1
and f2, yielding (1.f1) and (1.f2).
2. Step:
(1.f1) and (1.f2) are multiplied and the first 23 MSB bits
out of the resulting 45 bits is appointed as the final result,
fans . The sign bit of the final number, sans is obtained by
EXOR’ing the two numbers.
3. Step:
fans is shifted to the left until the first bit becomes “1”, and
amount of the shift is calculated. eans is obtained by
adding the amount of shift from e1.

Figure 2. The algorithm flow chart of the 32-bit floating
point multiplication implemented on FPGA

2.3. Floating point division
Assume F1 and F2 are two floating point numbers, and fans
is the division of them. To make it ease, negative zero
and illegal numbers are neglected here as well. The
inputs are represented as:
F1=(s1, e1, f1) and F2=(s2, e2, f2). si is for sign bit ,ei is
for exponent bits, fi is for fraction part of the FP number,
Fi. The result becomes:
Fans =(sans, eans, fans)= F1/F2. The algorithm shown in
Figure 3 can be explained as follows:
1. Step:
The exponent parts are subtracted from each other, and
“1” is added to the beginnings of the fraction parts,
yielding (1.f1) and (1.f2).
2. Step:
(1.f1) bits are shifted to the right by the amount of (e1 -e2).
If s1 is equal to s2, (1.f1) and (1.f2) are added. If not,
(1.f1) is subtracted from (1.f2).

Figure 3. The algorithm flow chart of the division
implemented on FPGA

3. Step:
fans is shifted to the left until the first bit becomes “1”, and
the amount of the shift is calculated. The sign bits of F1
and F2 are EXORed, and is appointed as sans.

3. FPGA IMPLEMENTATIONS OF FLOATING
POINT ALGORITHMS

 In this section, VHDL codes are not given, yet the results
of hardware applications of the algorithms mentioned
above are presented. Digilentic Evalution Board is used
for the demonstration. This board includes Xilinx
Spartan-2 having 2352 slices and 14 RAM block with 50
MHz clock speed [8].

A custom VHDL library so called fp_lib is formed for the
hardware applications. The fp_lib has two different
algorithms as listed in Table-1. The adding and
subtracting algorithm results are summarized in Table-2.

Table-1. Summary of custom arithmetic VHDL algorithm
HDL
Design

Description

Fp_lib IEEE 32-bit single precision floating point
library

Fp_mul IEEE 32-bit single precision floating point
pipelined parallel multiplier

Fp_add IEEE 32-bit single precision floating point
pipelined parallel adder/substractor

Table-2. 32 bits Floating Point adding/subtracting and
multiplication algorithms results on selected FPGAs

 Add., Sub. Multiplication
Selected Device: Spartan-2 % Spartan-2 %
Number Of
Slices:

387 out of
2352

13 326 out of
2352

13

Number Of Slice
Flip Flops:

106 out of
4704

2 65 out of 4704 1

Number Of 4
Inputs LUTs

903 out of
4704

15 642 out of
4704

13

Number Of
Bonded IOBs

103 out of
146

70 103 out of 146 70

4. FAST FOURIER AND INVERSE FOURIER
TRANSFORM METHODS

4.1. Fast Fourier Transform (FFT)

Discrete Time Fourier transform provides frequency
domain representation for a signal. FFT is an important
algorithm to calculate Discrete Fourier Transform (DFT).
Discrete Fourier transform of a signal is directly

calculated from: X[k]= .][
1

0

)/2(∑
−

=

Π−
N

n

knNjenX

k=0,1,….,N-1 (4.1)
Here, the phase factor is defined by:)/2(nj

N eW Π−=
FFT provides a fast calculation strategy by using
symmetry and periodicity properties of the phase factor to
calculate DFT. As a calculation method, decimation in
time is used. This means a remarkable savings over direct
computation of the DFT.

4.2. Decimation in time

N – Radix DFT is defined as:

∑
−

=

=
1

0
][][

N

n
nxkX kn

NW , k=0,1,…,N-1

Decimation in time algorithm rearranges the discrete
Fourier transform (DFT) equation into two parts: a sum
over the even-numbered discrete-time indices
n=[0,2,4,…,N−2] and a sum over the odd-numbered
indices n=[1,3,5,…,N−1]. These samples are used to
calculate Radix-2 DFT.

These transformations are combined according to
Equations (4.1) and (4.2), which lead to the calculation of
upper level DFT. When sample indexes are handled in
binary format, firstly the index bits are reversed before
grouping them in pair as shown below. Next, these pairs
are inserted into DFT process. Let’s assume the input as:
x[n]=[1 3 0 2], then

 In-order index Bit reversed index
Decimal Binary Binary Decimal
 0 00 00 0
 1 01 10 2
 2 10 01 1
 3 11 11 3

xt[n]=[1 0] xc[n]=[3 2]. By using the DFT definition of
these samples, Fourier transformations are obtained as:
Xt[n]=[1 1] and Xc[n]=[5 1].

On the next step, DFT with N=4 of x[n] having 4 samples
are obtained by referring the symmetry and periodicity
nature of the phase factor. As a result, the following
equations are obtained [9].
X[k]= tX [k]+ k

NW cX [k] (4.1)

X[k+N/2]= tX [k] - k
NW cX [k] (4.2)

In this case, X[k]=[6 1-j -4 1+j] is calculated.

As a result, this simple reorganization and reuse has
reduced the total computation by almost a factor of two
over direct DFT computation [9].

4.3. Inverse FFT
The inverse Fourier transform maps the signal back from
the frequency domain into the time domain. Recall that
the equations for an 8-point DFT and Inverse FFT are
as follows:

 [] [4][]
2t

X k X kX k + +
=

[] [4][]
2ç k

N

X k X kX k
W
− +

= , k= 0,1,2,3

[] [2][]
2

t t
tt

X k X kX k + +
=

/ 2

[] [2][]
2

t t
tç k

N

X k X kX k
W
− +

= , k= 0,1,2,3

[] [2]
[]

2
ç ç

çt

X k X k
X k

+ +
=

/ 2

[] [2]
[]

2
ç ç

çç k

N

X k X k
X k

W
− +

=

4.4. FFT Implementation Process
32-bit inputs which have both imaginary and reel parts
together with phase factor values calculated using
MATLAB are loaded into the registers in the fft.vhd
module as shown in Figure 4.

Figure 4. Architectural model of FFT implemented on
FPGA

These inputs placed into the registers are firstly separated
as odd ones and even ones to be used in decimation
process. Next, these data are then sent to the addition
module, where their sum and difference values are
calculated to obtain their 2-point DFTs. Thirdly, the
processed data are serially sent to the multiplication and
addition modules by using a counter in a timely manner.
By referring to the equation: X[k]= tX [k]+ k

NW cX [k]

cX [k] data and the phase factor are multiplied, and the

result is added to tX [k] data. The obtained final result is
latched into the output registers in fft.vhd module. The
package module is used to introduce the sub- modules to
the main program. Table-3 summarizes the hardware
synthesis results on Xilinx Virtex II-Pro evaluation board.
The experimental set up photo is shown in Figure 5.

Table-3. FFT synthesis results on the FPGA
 Selected Device : Virtex II-Pro %
Number Of Slices: 1989 out of

13696
14%

Number Of Slice Flip
Flops:

896 out of 27392 3%

Number Of 4-Input LUTs 3627 out of
27392

13%

Number Of Bonded IOBs 33 out of 556 5%
Number of MULT18x18s 16 out of 136 11%
Number of GLCKs 1 out of 16 6%

CONCLUSION

This paper shows that floating point algorithms can be
implemented on an FPGA. Processing steps of the
required algorithms are explained in detail. As an
example of the algorithms, application of FFT and
inverse FFT methods are examined. For the
representation of digital numbers, IEEE 754 single
precision floating point number format was used, and the
algorithms are realized based on this format.

This situation inevitably brings about large amount of
FPGA resource usage. Hence, some parts of the
algorithms have to be embedded in to the FPGA in serial

(sequential) nature. This situation means sacrificing the
fully parallel usage advantage of FPGAs. Despite its
mandatory serial nature, better performance has still been
observed when compared to its traditional processor
based solutions. Real time working was almost
succeeded. 0.6 µs, and 0.72 µs speeds were obtained for
implementing the FFT and IFFT algorithms, respectively.
In traditional processor solutions, this rate goes up to
millisecond levels.

Figure 5. The Virtex-II Pro experimental setup

A similar study has been found from the literature,
Haibing et. al [10]. Table 4 compares two designs.

Table-4 Comparison Table
 Architecture Selected

Device
Source Usage
Logic
Elements,
LUTs

Performance

Haibing
et. al
(2006)

Hybrid
Design
DSP+FPGA
LUT Based
Division
Algorithm

Altera
Cyclone

Adder=883
Multiplication
=995
Division
=1505

40 ns for
adder,
multiplier, and
division
(Faster due to
LUT usage for
division
algorithm)

Proposed Full FPGA
solution
Subtractive
Based
Division
Algorithm

Xilinx
Spartan2
and
Virtex-
Pro II

Adder=903
Multiplication
=642
FFT=3627

Adder=50ns
Multiply=50ns
Div.=150ns
FFT=600nsec
IFFT=720nsec

Moreover, in this study, the earlier VHDL library for
implementing FFT algorithm [11], [12] has been
modified. For this purpose, addition, subtraction,
multiplication and division algorithms in the former
library have been re-designed. Improvement on the
source usage can easily be seen when compared to the
ones declared in [11],[12]. In fact, faster Floating Point
algorithms can be found in the literature. However, these
algorithms consume much more hardware resources.
Therefore, optimization of the source usage was the
primary aim of this study.

 REFERENCES
[1] E. O. Brigham, The fast Fourier transform and its
applications, Prentice Hall, 1988.
[2] J. G. Pmakis, Digital signal processing: principles,
algorithms, and applications., Prentice-Hall Intemational, 1996.
[3] W. B. Ligon, S. McMillan, G. Mpnn, F. Stivers, and K. D.
Underwood “A Re-evelation of the Practicality of Floating
Point Operations on FPGAs”, Proceedings, IEEE Symposium
on Field-Programmable Custom Computing Machines, pp. 206-
215, Napa, CA, Apr. 1998. (ICANN'99).
[4] J. Zhu, B. K. Gunther, “Towards an FPGA Based
Reconfigurable Computing Environment for Neural Network
Implementations”, Proceedings of the Ninth International
Conference on Artificial Neural Networks,1999.
[5] M. Poliac, J. Zanetti, D. Salerno., “Performance
Mesuraments of Seismocardiogram Interpretation Using Neural
Networks”, Computer in Cardiology, IEEE Computer Society,
pp 573-576, 1993.
[6] S. Şahin, A. Kavak., “Implementation of Floating Point
Arithmetic Using an FPGA”, Mathematical Methods in
Engineering. Editors K.TAS, J.A.T.Machado and D.Baleanu,
Springer Book, 2007.
[7] B. Fagin and C. Renard, “Field Programmable Gate Arrays
and Floating Point Arithmetic,” IEEE Transactions on VLSI,
Vol. 2, No. 3, pp. 365-367, September 1994.
[8] Xilinx Inc., The Programmable Logic Data Book, San
Jose, California, 1993.
[9] S. Erturk , İşaret İşleme, Birsen yayınevi, 2005.
[10] H. Hu, T. Jin, X. Zhang, Z. Lu, Z. Qian, ” A Floating-point
Coprocessor Configured by a FPGA in a Digital Platform Based
on Fixed-point DSP for Power Electronics”, IEEE IPEMC’2006
[11] I. Az, S. Sahin, C. Karakuzu, M. A. Cavuslu,
“Implementation of FFT and IFFT Algorithms in FPGA”,
ISEECE-2006, pp.7-10
[12] M. A. Cavuslu, S. Dikmese, S. Sahin, K. Kucuk, A. Kavak
“Akıllı anten algoritmalarının IEEE 754 Kayan Sayı Formatı ile
FPGA Tabanlı Gerçeklenmesi ve Performans Analizi”,
III.URSI-Türkiye’2006, pp.610-612.

