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ABSTRACT 
In this paper, it is shown that FFT algorithms using 
floating point numbers can be implemented on an 
FPGA.  A custom VHDL library so called Fp_Lib is 
formed for general purpose computer arithmetic 
FPGA implementations. This library includes 
addition, subtraction, multiplication and division 
modules based on 32 bit single precision IEEE 754 
format. The algorithms are implemented on Xilinx 
Spartan-2 evaluation board, while FFT algorithms are 
realized on Xilinx’s Virtex 2 FPGA (XUP-V2Pro 
Board). 0.6 µs, and 0.72 µs speeds were obtained for 
implementing the FFT and IFFT algorithms, 
respectively.  The study is also compared with a 
similar one in the literature from structural and 
performance point of view.  
 

1. INTRODUCTION 
Fast Fourier Transform (FFT) plays an important role in 
many signal and image processing, data analyzing for 
vibration sensors, frequency measurement of earthquakes, 
and telecommunication systems such as WiMax 
technology which presents both wide bandwidth and 
wireless solutions[1-2].    
 
In real time applications, it is necessary to obtain and 
process the input data as fast as possible to be able to 
reach the result almost simultaneously. Although ASIC 
solutions always offer fastest and low power solutions for 
real time applications, they are unique designs for a 
specific application. Therefore redesign process of an 
ASIC for a new application requires much more money 
and time when comparing with field programmable chips.   
 
FPGA solutions also provide flexible design, low cost, 
and faster time-to-market features besides allowing 
parallel process implementations [4].  Due to parallel 
processing property, they are much faster than traditional 
microprocessor based solutions [5].   
 

Floating point numbers have ability to represent a good 
approximation and dynamic range representations of the 
real numbers, so that floating point algorithms are 
frequently used in modern applications, which require 
millions of calculations per second, such as image 
processing and speech recognition.[3]  
 
In this study, firstly, the realized algorithms of the 
necessary arithmetic operations used in FFT 
implementation are presented. Next, these design blocks 
are used to realize the mathematical expression of the 
FFT. Finally, the study is compared with the similar ones 
in the literature from structural and performance point of 
view. 
 

2. FLOATING POINT ARITHMETIC 
ALGORITHMS 

Many technological systems prefer floating point 
arithmetic due to having capacity of dynamic and precise 
representation for numbers [7].  FPGA usage for the 
implementation of Floating Point Number 
implementations rather than microprocessor based 
structures will be the best choice due to parallel 
processing capability, re-programmability, and higher 
speed.  In spite of their advantage, floating point 
operators consumes large amount of resources and more 
time even for an ordinary (low resolution) 
implementation [6]. 

 
2.1. Floating point addition and subtraction 
Figure 1 shows the design flow chart of the floating point 
addition and subtraction algorithm implemented. These 
algorithms are similar to the ones realized in many 
processors. Let F1 and F2 represent two floating point 
numbers; Ftop represents the addition of both number; and 
Fminus =F1-F2. Fminus can be re-written as Fminus= F1+(-F2).  
The subtraction process is converted to addition form by 
inversing the sign bit of F2. For this reason, only addition 
algorithm is elaborated here. Addition and subtraction 
algorithms are realized in three steps. Fi represents the 



number; Si is the sign, ei is exponent and fi is the fraction 
part of any number. Lets define the inputs as F1=(s1,e1 ,f1) 
and F2=(s2,e2 ,f2). The result is represented as 
Fans=(sans,eans ,fans)= F1+F2 or F1 +(- F2) 
 
The algorithm steps are as follows: 
1. Step: 
If absolute value of F1 is smaller than   F2, F1 and F2 are 
interchanged. The right shift amount of f2 is calculated by 
subtracting e1 from e2.  “1” is added to the bits after the 
sign bit (1.f1) ve (1.f2).  
2. Step: 
(1.f1) is shifted to the right by the amount of (e1- e2). If 
the sign bits are equal, then (1. f1) and (1. f2) are added, if 
not (1.f2 ) is subtracted from (1.f1). The sign of the 
resulting number sans is the sign of the bigger f number.    
3. Step: 
fans is shifted to the left until the first bit becomes “1”, and  
amount of the shift is calculated. eans is obtained by 
subtracting the amount of shift from e1. 
 

 
Figure 1. 32-bit floating point adding and subtracting 
algorithm implemented on an FPGA  
 
2.2 Floating point multiplication 
 Floating point multiplication shown in Figure 2 is similar 
to the integer multiplication. Therefore FP multiplication 
is easier than FP adding or subtracting algorithms here. It 
is realized in three steps as well.  
To make it easy, the algorithm never tests the illegal 
numbers or negative zero cases. The inputs are same as 
before, F1=( s1, e1, f1) and F2=( s2, e2, f2).. The result will 

be Fans = ( sans, eans, fans)= F1* F2. The algorithm steps will 
be as follows:  
1. Step: 
Exponent parts, e1 and e2 are added; the resulting number 
is appointed as eans. “1” is added to the beginnings of f1 
and f2, yielding (1.f1) and (1.f2).  
2. Step: 
(1.f1) and (1.f2) are multiplied and the first 23 MSB bits 
out of the resulting 45 bits is appointed as the final result, 
fans . The sign bit of the final number, sans is obtained by 
EXOR’ing the two numbers. 
3. Step: 
fans is shifted to the left until the first bit becomes “1”, and  
amount of the shift is calculated. eans is obtained by 
adding the amount of shift from e1. 
 
 

 
Figure 2. The algorithm flow chart of the 32-bit floating 
point multiplication implemented on FPGA 
 
2.3. Floating point division 
Assume F1 and F2 are two floating point numbers, and fans 
is the division of them. To make it ease, negative zero 
and illegal numbers are neglected here as well.  The 
inputs are represented as: 
F1=( s1, e1, f1) and F2=( s2, e2, f2). si is for sign bit ,ei is 
for exponent bits, fi is for fraction part of the FP number, 
Fi. The result becomes:  
Fans =( sans, eans, fans)= F1/F2. The algorithm shown in 
Figure 3 can be explained as follows:  
1. Step: 
The exponent parts are subtracted from each other, and 
“1” is added to the beginnings of the fraction parts, 
yielding (1.f1) and (1.f2). 
2. Step: 
(1.f1) bits are shifted to the right by the amount of (e1 -e2). 
If s1 is equal to s2,   (1.f1) and (1.f2) are added. If not, 
(1.f1) is subtracted from (1.f2).  



 

 
Figure 3. The algorithm flow chart of the division 
implemented on FPGA  
 
3. Step: 
fans is shifted to the left until the first bit becomes “1”, and 
the amount of the shift is calculated. The sign bits of F1 
and F2 are EXORed, and is appointed as sans. 
 

3. FPGA IMPLEMENTATIONS OF FLOATING 
POINT ALGORITHMS 

 In this section, VHDL codes are not given, yet the results 
of hardware applications of the algorithms mentioned 
above are presented. Digilentic Evalution Board is used 
for the demonstration. This board includes Xilinx 
Spartan-2 having 2352 slices and 14 RAM block with 50 
MHz clock speed [8].  
 
A custom VHDL library so called fp_lib is formed for the 
hardware applications. The fp_lib has two different 
algorithms as listed in Table-1. The adding and 
subtracting algorithm results are summarized in Table-2.  
 
Table-1. Summary of custom arithmetic VHDL algorithm 
HDL 
Design 

Description 

Fp_lib IEEE 32-bit single precision floating point 
library 

Fp_mul IEEE 32-bit single precision floating point 
pipelined parallel multiplier 

Fp_add IEEE 32-bit single precision floating point 
pipelined parallel adder/substractor 

 
 

Table-2. 32 bits Floating Point adding/subtracting  and 
multiplication algorithms results on selected FPGAs 

 Add., Sub.  Multiplication  
Selected Device: Spartan-2 % Spartan-2 % 
Number Of 
Slices: 

387 out of 
2352 

13 326 out of  
2352 

13  

Number Of Slice 
Flip Flops: 

106 out of 
4704 

2 65 out of  4704 1 

Number Of 4 
Inputs LUTs 

903 out of 
4704 

15 642 out of  
4704 

13 

Number Of 
Bonded IOBs 

103 out of 
146 

70 103 out of 146 70 

 
 

4. FAST FOURIER AND INVERSE FOURIER 
TRANSFORM METHODS  

 
4.1. Fast Fourier Transform (FFT) 
 
Discrete Time Fourier transform provides frequency 
domain representation for a signal. FFT is an important 
algorithm to calculate Discrete Fourier Transform (DFT). 
Discrete Fourier transform of a signal is directly 

calculated from: X[k]= .][
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FFT provides a fast calculation strategy by using 
symmetry and periodicity properties of the phase factor to 
calculate DFT. As a calculation method, decimation in 
time is used. This means a remarkable savings over direct 
computation of the DFT. 
 
4.2. Decimation in time 
 
N – Radix DFT is defined as: 
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Decimation in time algorithm rearranges the discrete 
Fourier transform (DFT) equation into two parts: a sum 
over the even-numbered discrete-time indices 
n=[0,2,4,…,N−2] and a sum over the odd-numbered 
indices n=[1,3,5,…,N−1]. These samples are used to 
calculate Radix-2 DFT.  
 
These transformations are combined according to 
Equations (4.1) and (4.2), which lead to the calculation of 
upper level DFT.   When sample indexes are handled in 
binary format, firstly the index bits are reversed before 
grouping them in pair as shown below. Next, these pairs 
are inserted into DFT process. Let’s assume the input as:  
x[n]=[1 3 0 2], then 
 



 In-order index                           Bit reversed  index 
Decimal Binary                       Binary         Decimal 
  0             00                               00                0 
  1             01                               10                2 
  2             10                               01                1 
  3             11                               11                3  

 
xt[n]=[1 0]   xc[n]=[3 2]. By using the DFT definition of 
these samples, Fourier transformations are obtained as: 
Xt[n]=[1 1] and Xc[n]=[5 1].  
      
On the next step, DFT with N=4 of x[n] having 4 samples 
are obtained by referring the symmetry and periodicity 
nature of the phase factor. As a result, the following 
equations are obtained [9]. 
X[k]= tX [k]+ k

NW cX [k]                          (4.1) 

X[k+N/2]= tX [k] - k
NW cX [k]                   (4.2)   

In this case,   X[k]=[6  1-j  -4  1+j] is calculated. 
     
As a result, this simple reorganization and reuse has 
reduced the total computation by almost a factor of two 
over direct DFT computation [9].  
 
4.3. Inverse FFT  
The inverse Fourier transform maps the signal back from 
the frequency domain into the time domain. Recall that 
the equations for  an  8-point  DFT and Inverse FFT are 
as follows: 
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4.4. FFT Implementation Process  
32-bit inputs which have both imaginary and reel parts 
together with phase factor values calculated using 
MATLAB are loaded into the registers in the fft.vhd 
module as shown in Figure 4.   

 
Figure 4. Architectural model of FFT implemented on 
FPGA  
 
These inputs placed into the registers are firstly separated 
as odd ones and even ones to be used in decimation 
process. Next, these data are then sent   to the addition 
module, where their sum and difference values are 
calculated to obtain their 2-point DFTs. Thirdly, the 
processed data are serially sent to the multiplication and 
addition modules by using a counter in a timely manner. 
By referring to the equation:  X[k]= tX [k]+ k

NW cX [k] 

cX [k] data and the phase factor are multiplied, and the 

result is added to tX [k] data. The obtained final result is 
latched into the output registers in fft.vhd module. The 
package module is used to introduce the sub- modules to 
the main program. Table-3 summarizes the hardware 
synthesis results on Xilinx Virtex II-Pro evaluation board. 
The experimental set up photo is shown in Figure 5.  
 

Table-3. FFT synthesis results on the FPGA 
  Selected Device : Virtex II-Pro % 
Number Of Slices: 1989  out of  

13696     
14% 

Number Of Slice Flip 
Flops: 

896  out of  27392    3% 

Number Of 4-Input LUTs 3627  out of  
27392     

13% 

Number Of Bonded IOBs 33  out of    556      5% 
Number of MULT18x18s 16  out of    136     11% 
Number of GLCKs 1  out of     16      6% 

 
CONCLUSION 

This paper shows that floating point algorithms can be 
implemented on an FPGA. Processing steps of the 
required algorithms are explained in detail. As an 
example of the algorithms, application of FFT and 
inverse FFT methods are examined. For the 
representation of digital numbers, IEEE 754 single 
precision floating point number format was used, and the 
algorithms are realized based on this format. 
 
This situation inevitably brings about large amount of 
FPGA resource usage. Hence, some parts of the 
algorithms have to be embedded in to the FPGA in serial 



(sequential) nature. This situation means sacrificing the 
fully parallel usage advantage of FPGAs. Despite its 
mandatory serial nature, better performance has still been 
observed when compared to its traditional processor 
based solutions. Real time working was almost 
succeeded. 0.6 µs, and 0.72 µs speeds were obtained for 
implementing the FFT and IFFT algorithms, respectively. 
In traditional processor solutions, this rate goes up to 
millisecond levels.  
 

 
Figure 5. The Virtex-II Pro experimental setup 
 
A similar study has been found from the literature, 
Haibing et. al [10]. Table 4 compares two designs. 
 

Table-4  Comparison Table 
 Architecture Selected 

Device 
Source Usage 
Logic 
Elements, 
LUTs 

Performance 

Haibing 
et. al 
(2006) 

Hybrid 
Design 
DSP+FPGA 
LUT Based 
Division 
Algorithm 

Altera 
Cyclone 

Adder=883 
Multiplication 
=995 
Division 
=1505 

40 ns for 
adder, 
multiplier, and 
division 
(Faster due to 
LUT usage for 
division 
algorithm) 

Proposed Full FPGA 
solution 
Subtractive 
Based 
Division 
Algorithm 

Xilinx  
Spartan2 
and 
Virtex-
Pro II 

Adder=903 
Multiplication 
=642  
FFT=3627 
 

Adder=50ns 
Multiply=50ns 
Div.=150ns 
FFT=600nsec 
IFFT=720nsec 

 
Moreover, in this study, the earlier VHDL library for 
implementing FFT algorithm [11], [12] has been 
modified. For this purpose, addition, subtraction, 
multiplication and division algorithms in the former 
library have been re-designed. Improvement on the 
source usage can easily be seen when compared to the 
ones declared in [11],[12]. In fact, faster Floating Point 
algorithms can be found in the literature. However, these 
algorithms consume much more hardware resources. 
Therefore, optimization of the source usage was the 
primary aim of this study.   
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