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Abstract
This paper deals with the algorithms for the reduction of the controllability and observability Gram-
mians to block - diagonal forms. The proposed algorithms permit us to avoid the computation of the

singular values when solving the problem of reduction of the order of a controllable dynamical system.
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1. Introduction

Linear system transformations, which diagonalize the controllability and observability Grammians, are
effectively used for the reduction of the order of a linear system (see, e.g., {1-3]). For this reason many
attempts have been made to improve the procedures related with this kind of transformations [4]. Relying
upon the methods of [5,6], an algorithm is presented below for the construction of the transformation which
reduces above-mentioned Grammians to block-diagonal forms and, unlike the traditional ways, does not
require determination of singular values. The algorithm used in the paper is summarized in the Appendix.

2. Linear Controllable System Transformations [1-3]

We first state the essence of the problem. The motion of a controllable system is described in the state space

as:

& = Az + Bu,
(1)
y = Cu,

where zeR"™,ueR™,yeR® are respectively the vectors of, internal coordinates, controlling inputs and observ-
able coordinates. Matrices A, B and C (of corresponding dimensions) do not depend on time. The pairs (A,
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B), (C, A) are assumed to be controllable and observable, and the matrix A is stable, i.e. Re A(4) < 0.
Controllability and observability Grammians W, and W, satisfy the Lyapunov equations

AW, + W, AT + BBT = 0,

(2)
ATWy +WoA+CTC = 0,

where T denotes transposition. If we linearly transform system (1) (i.e. passing to new coordinates %), by
taking z = T'Z, where n X n matrix T € R is invertible, the matrices in (2) will have the following forms:

A=T"'AT, B=T"'B, C=CT,
()

W, = T'W,T°T, Wo=TTW,T,

il

where index -T denotes inversion and transposition: i.e.7~T = (TT)~!. Expanding W, into Cholesky
factors

W, = WwWwT (4)

and introducing the orthogonal matrix Q, which diagonalizes WT W, W , i.e.

QTWTW,WQ = ¥2 = diag{o?,02,...,0%},

(5)
012022 ..20,20
we can define the family of transformations T3 as follows:
T, = WQE™* (6)

It is noted in [1,4] that the more interesting cases are the transformations with k=0, k=0.5, k=1. In the
first case (k=0) system is normalized with respect to inputs (input-normal), Grammians are W = I, (from
now on I is a unit matrix) and Wy = X2. In the second case of k=0.5, i.e., in the case of balancing
transformation (internally balanced), we have W, = Wy = . And, finally, for k=1 the system is
normalized with respect to outputs (output-normal), with W, = %2 W, = I. These transformations
may be used for the reduction of the order of the system. In fact, let k=0.5, assume that o4 > 6441. Since
W, =W, =X, first ¢ (g < n) components of the vector  are much better controllable and observable.
Dividing matrices of (3) and (5) into blocks in accordance with the division of vector Z into two components
z¥ = [zF,z%], %1 € RY, T, € R"9, we obtain:

o A ] §=l31 } C=[aicl, z=[zl : ] )

Asy  Aa B, 0 X

Here block Aj; is of dimension ¢ x g, and so on. (Aj1,B,C1) is the most controllable and observable
subsystem of the system (A,B,C), and therefore it may be used as a lower order system, approximating (A,
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B, C). In frequency domain the following inequality is given for the error of this approximation (see, e.g.,

12,3]):

| CGwI — A 'B - Ci(jwl — A11) "By |0 < 2trXy, (8)

where || 2(jw) |loo= suPwcrT{z(jw)}, with & being the maximal singular value, and tr is the trace of
matrix. Note that the condition o, > 0441, generally speaking, is not the only possible way to demonstrate
the leading role of the system (A1, B1,Ci). It is known (see, e.g., [1,7]) that it is possible to state this
property in terms of traces of the matrices ¥2,%2. Namely, subsystem (A11,B1,Ch) is considered to be

dominant, if

, tr¥i try.2
T ws? T e WITWeWw'
i.e. if the part of the trace of matrix WTW,W , corresponding to the trace of matrix ¥2, is small. In [7]
there is also another justification of the dominant role of the subsystem.
In view of the aforesaid, there is some freedom in the determination of the dominant subsystem in
order to simplify the computation procedures. So, from now on we shall assume that the dominant role of
the subsystem (A;1,Bi,C1) is determined by sufficiently small quantity vy such that

1>p

o2 > ytrWTWoW > o2 ;.

Evidently choice of v determines the value of index r, dimension of the subsystem (A11,B1,C1).
This determination of the leading role of subsystem (Aj1,Bi,C;) enables us to avoid the procedure of the
diagonalization of (5) when seeking the transformation, with the help of which the reduction process is
simplified. This also permits us to seek transformations which do not diagonalize the Grammians W, and
Wp, but reduce these matrices to block-diagonal forms. '

3. Construction of the Transformation, Reducing the Matrix
WTW,W to the Block-diagonal Form

In order to construct the transformations which reduce the Grammians to block-diagonal forms, we begin
with the calculation of the transformation 7, reducing the matrix WTW,W to a block diagonal form with
the upper diagonal block consisting of the eigenvalues 02,02,...,0%. For this purpose the algorithm of [5]
may be used.

I. Taking the quantity ~, set v = ytrWTWoW.

II. Define signU, as the signum function of the matrix U, = WTW,W — vI and the corresponding
projectors signtU = 1/2(I + signU,), and sign~U = 1/2(I — signU,) (see, Appendix A). Note, that
tr(signtU,) = r, and tr(sign~U,) =n—r.

III. Construct an n x r matrix S, with the r linearly independent columns of the matrix signtU, .
Similarly, construct an n x (n —r) matrix S_ by the n — r linearly independent columns of the matrix
sign~ U, .

VI. We determine the transformation 7, which reduces the matrix U, to a block-diagonal form, as:

U, 0

T = [S+aS—]a T_IUUT = 0 U,_
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Size of the blocks U, and U,— are 7 x r and (n —r) x (n — r) respectively, and the eigenvalues are

2 2 2
01,0%...,07 and 0,41,0742, ..., 0.

4. The Relationship Between Matrices 7 and Q

We divide the matrix Q of (5) into the blocks @, and Q,, with dimensions 7 xr and 7 x (n—r) respectively,

ie. @ =[Q1,Q2]. We now show that S, = Q;H; and S_ = Q2 H;, for some invertible matrices Hy, H,.
In fact, from (5) we have

2yl 0
U, = ! T,
Q[O E%—I/I:IQ

Since the diagonal elements of the matrix ¥? — v are positive, while those of the matrix ¥2 — vI are
negative, we have

signU, =Q[g (iI ]QT.

Analogously

signtU, = Q:QY, sign~U, = Q:Q7 (9
On the other hand, we can permute columns of the matrix signU, (by multiplying it from right by the
permutation matrix II) in such a way that first » columns of the transformed matrix will form the matrix
S . The remaining columns will be the linear combination of the first , and consequently, the new matrix
will be expressible as the product of matrix S; and some other matrix R. Thus,

[sign*U,JII=[Sy N]=@:QTIl, N=S,R.

Since QTQ, = I, we have

[Hi HR=QTH, H, =qfs,.
Matrix QTTI has full rank, so H; is invertible. Multiplying last relation by @ from left and comparing with
the previous relation, we find that S, = Q;H;. By similar reasoning we also find that S_ = Qo H,, where
H; is invertible. Generally speaking, the invertibility of H; and H, follows from reference [5], because in
our case U, is diagonalized by Q. Thus
T=QH, H =diag{H,,H>}. (10)
Using the transformation 7, we construct a matrix that reduces Wy and W, to a block-diagonal form. This
matrix is
T=Wr=WQH. (11)

In fact, from (3) we have

185



ALIEV,LARIN: On the Computation...

W, = 7 'W,r T = diag{Hy "H; ", Hy "H; "}, 12
W = TIWoT = diag{HfZ%Hl,nggHZ}' (18)

By varying the matrix H in (11), we can obtain various transformations, which provide the blocks
of matrices W, and Wy in (12), (13) with the corresponding spectral characteristics. For example, we can
choose H; and H, such that W, = I, and corresponding eigenvalues of blocks of Wy will coincide with
the diagonal elements of matrices ¥%,%3 (the analog of the transformation (6) for k=0). In the following

sections we construct analogs of the transformation (6) for k=0, k=0.5 and k=1.

5. Orthogonalization of the Matrix QH

If matrix H is orthogonal, then transformation (11) is an analog of (6) for k=0. In this case the problem is
to construct the transformation (10), in which H as well as QH are orthogonal. For this purpose we can
use the orthogonalization procedure of [6,8,9]. Let the singular decomposition [10] of matrices H; and H>

be in the form

Hy=UZWVT, Hy=UTaVy,

where U;, Vi(i = 1,2) are orthogonal matrices, and

Fl diag{’yll: Y12, “’7717‘}, F2 = dia'g{’yZla Y22, -"772!1}7

n—r, Y1272 270 >0, Y21 272220 2729 > 0.

Il

I

q

Hence, (10) may be written as

r=UVT,U=Q diag{Ui,Us},
T = diag{l'1,T2}, V = diag{Vi,V2}.

]

Evidently, U and V are orthogonal and T is diagonal with positive diagonal elements. If we introduce the

sequence

28,41 =0, + 8,7, ®=1, p=0,1,2... (14)
then, as shown in Appendix B we obtain the result,
oo = lim &, = UvT =Q diag{U: VT, UV} (15)

Thus if take 7o = W®s (i.e. transformation (10), with orthogonal Hy = U1V{' and Hp = U;VE) as
the transforming matrix, then we obtain an analog of the transformation (6) for k=0. In fact, in this case
W, =1I and

Wo = diag{Wo1, Wo2}, Wor = H{ £3H1, Woe = HIY2H,
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Since H; and Hj are orthogonal, eigenvalues of Wo1 and Wy, will coincide with diagonal elements of 2
and ¥2.

Now we construct an analog of (6) for k=1. Decompose the blocks of the matrix

L WIWW o = diag{HY ©3H;, HT S2H,} = LLT (16)

into Cholesky factors. If we take 7, = W®, LT as the transforming matrix, then we obtain an analog of
(6) for k=1. According to (16), singular decomposition of matrix L will be in the form

L = diag{HT$:1 ¥, HI 5,5}, (17)

where ¥,, ¥y are orthogonal matrices. Thus

Wy T = LTL = diag{¥] £2¥,, ¥I52%,},
TirWQTl =TI

Thus, in view of the spectral characteristics of transformed Grammians, the transformation 7; is an analog
of the transformation 77 of (6). Finally if we decompose the blocks of the matrix

(BLWTWoW )2 =117 (18)

into Cholesky factors (an algorithm for calculating the square root of a positive definite matrix can be found
in Appendix C) and take 7 = W¥,,1~7T as the transforming matrix, then we obtain the transformation
which ensures the equality of eigenvalues of the controllability and the observability Grammians

Wy T = 171,

TZTW[)’TZ = 171.

Taking into account the singular decomposition of the matrix 1 (analogous to (17)) in the form

1 = diag{HF £}/2Q,, HT x1/%Q,}

where €24,y are orthogonal matrices, we have

171 = diag{0QT >0, 05 5,05},

i.e. transformation 7; corresponds to transformations (6) when k=0.5. Note that calculating the trace of
the lower diagonal block of the matrix 171, we can, by use of (8), estimate the error of the approximation
corresponding to the chosen «y. Thus, matrices that generate the analogs of the transformation (6) for k=0,
k=0.5 and k=1 are

To = W@oo,
Ty = Wde1 7,
= Wo LT,

which are determined by means of the matrices in (4), (15), (16) and (18).

187




ALIEV,LARIN: On the Computation...

6. Computational Procedures

We can further simplify our computations by eliminating the matrix inversion procedures from the operation
of finding the signum function of U, and the orthogonalization of matrix 7. By [11], if the matrix X satisfies

the condition

|7I-Xx?|<1 (19)

where || . || is some matrix norm, then it is possible to dispense with the inversion procedure when computing

the signum function. When this condition is satisfied, we have

signX = lim X,, 2Xp,.1= p(SI—XZ),

p—oo

Xo =X, p=0,1,2,...

Since the eigenvalues of matrix U, are real, condition (19) will be satisfied if the matrix U, is correspondingly
scaled. In fact, signlU, = sign(eU, ), if € > 0. Thus calculation of signU, may be replaced by the calculation
of sign(eU,) if the factor e is chosen so that ||  — €*U2 ||< 1. Assuming that the norm in (19) is a spectral
norm || . |]z (| X ||z is a maximal singular number of the matrix X [10]), we assert that the condition
(19) will be satisfied if € || U, [l2< v2. The choice of ¢ may be simplified by use of the M-norm, [10]
(M(X) := n(maz;;| Xi;|), where X;; are elements of the n x n matrix X). Since M(X) >|| X ||2, [10], we

can take
IR
M(U,,) ” U, “2

Thus, an algorithm for the calculation of signlU, is as follows:

€

signU, = bm Z,, 2Zp41= Zp(31 — Z2),

p—o0

1

% = uw,)

U,, p=0,12,..

A similar algorithm (which also does not require matrix inversion) may also be used in the orthogonalization

of the matrix 7. So, introducing the sequence

2,1 = U831 — ¥1W,), p=0,1,2... (20)
Wo = (1/M(r))r,

we obtain that the matrix ¥, = limy oo ¥, coincides with the matrix ®o defined by (15) [6]. This
orthogonalization scheme can be used in the algorithm for the computation of the square-root of a positive
definite matrix, that is to form (18) (another algorithm that includes also the operation of inversion of the
matrix is presented in Appendix C). The algorithm has the following steps:

I. Define the Cholesky factor L:

LIT =X wiwoW e
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| IL. Calculate the M-norm of L, i.e. M(L).
| III. define ¥, using (20) with
Vo = (1/M(L))L.

IV. Find value of the desired root:

(@LWTWW®,0) 2 = U LT

7. Conclusion

In this paper an algorithm is given for finding a transformation for a stationary linear controllable system
that reduces the controllability and observability Grammians to block diagonal forms. Since the algorithm
is related to the calculation of the projectors that are expressed through the signum function of the -
corresponding matrix it does not require singular decomposition. It is also shown that under certain
conditions, matrix inversion can be eliminated from the determination of the matrix signum-function.
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Appendix A: The Matrix signum-function [5,11].

Scalar signum function of a complex variable A (Re()) # 0) is defined as

. +1 if ReA>0
sign\ = .
—1 if ReA<O

This concept can be generalized to the matrix case. Let an n X n matrix A have no eigenvalues on the

imaginary axis, then there exists a matrix M such that

J=M"1AM =Block diag{Js+,J_},

where the Jordan blocks J,JJ_ have dimensions n1 X n, and ngy X ng (n1+n2 = n) respectively and their
eigenvalues lie respectively in the right and left half-planes. Then we define

signA = Mdiag{l;,—L}M™*. (A.1)

where I; and I, are identity matrices of dimensions n; and np. Note that

(signA)® =1 (A.2)
We also define matrices sign' A, sign™ A as:
" 1 .
signt A = 5[[-!— signA, (A.3)
1
sign” A = §[I — signAl. (A4)

There, (A.3), (A.4) are projectors, since they satisfy the condition [12]

(signt A)? = signt A, (sign” A)? = sign™ A,

which are easily checked using (A.2). There exist some simple iterations to find the matrix signum function.

For example,

signA = plim Ap, 24,11 =Ap+ A;l, Ag=A, p=0,1,2,.. (A.5)

Appendix B: An Algorithm for Orthogonalization (polar decom-
position) [6,8,9].

Let the singular decomposition of n x n matrix ® have the form ® = U V7T, where U, V are orthogonal
matrices, & is a diagonal matrix with positive diagonal elements. The problem is to find the orthogonal
matrices U and V7. Define the sequence

28, =8, +8;7, =@, i=0,1,2,.. (B.1)
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The limit of this sequence is UVT, that is

UVT =&, = lim &;. (B.2)

12—00

Multiplying (B.1) with UT from left and with V' from right we have a sequence of diagonal matrices with
positive diagonal elements

2% =5+2;T, $o=%, i=0,1,2..

From (A.1) and (A.5) we have lim; oo ¥; = I, which implies (B.2). There are modifications that increase
the speed of convergence. For example the sequence in (B.1) can be replaced with:

1= ;@ +5% T, i=0,1,2..

B.3
;= [(det‘pi)l/n + 1]‘—1,,3i =1-q. ( )

Appendix C: An Algorithm for Finding the Square-root of a
Positive Definite Matrix [6].

It is necessary to find X = A'/2, that is, the positive definite solution of the equation

X?—A=0 (C.1)
Since A is positive definite, then it has a Cholesky decomposition
A=LL".
Singular decompositions of the matrices A and L have the following forms

A=UxU%, L=UxVT, (C.2)

where U,V are orthogonal matrices and ¥ is a diagonal matrix with positive diagonal elements. From (C.2)
solution of the problem has the form

AV =UvTLT.

Thus, the construction of the root of the equation (C.1) is reduced to the construction of the matrix UV7T,
for which one can use, for example, the procedures of (B.1), (B.3) or (20).
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Dogrusal Denetlenebilen Sistem igin Dengeleme Déniigiimii
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Ozet

Bu makalede denetlenebilirlik ve gézlenebilirlik Grammian’larinan blok kdgegenlere indergeme algo-
ritmalar incelenmektedir. Onerilen algoritmalar denetlenebilir bir dinamik sistemin kademe indirgeme

probleminin tekil deder hesaplar yapilmadan ¢ézilmesini saglamaktadar.

Anahtar Sézciikler: Denetlenebilirlik, gézlenebilirlik, Grammian, sistem indirgeme.
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