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ABSTRACT 
A new adaptive asymptotic biomass observer for fed-
batch E. coli growth on glucose is proposed. The 
observer uses on-line measurements of oxygen and 
stirrer speed only. The observation algorithm includes 
a procedure of on-line estimation of yield coefficients 
on the basis of off-line measurements of biomass 
concentration. Simulation investigations of the 
observer are carried out using experimental data as 
input information. The observation algorithm is 
verified through laboratory experiment of a 
recombinant E. coli strain. 
 

I. INTRODUCTION 
Escherichia coli is a frequently used host organism for 
production of recombinant proteins. It has many 
advantages, such as being well-characterized and 
supporting growth to high cell densities, but also has some 
drawbacks. One of the difficulties encountered in E. coli 
cultivation is the formation of the metabolic by-product, 
acetate, in case of excess glucose under aerobic 
conditions. Accumulation of oxidative acetate reduces 
both cell growth and recombinant protein production. The 
accumulation of acetate and its inhibiting effects is 
reduced by applying an optimal glucose feeding profile 
during the fed-batch part of cultivation [2]. The feeding 
rate, Fin, is calculated on-line for each time interval using 
the following expression: 
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where Yxg is biomass/glucose yield coefficient; t0 is the 
start of the interval; Sin is glucose concentration in feed; V 
is the volume and µset is a set value of specific growth 
rate. As obvious from above, the fed rate depends mostly 
on biomass concentration in the reactor. Unfortunately, 
the real growth information is not used due to the lack of 
cheap and reliable on-line biomass sensors. Instead, a 
predicted value of biomass concentration is applied that is 
calculated by the shown expression in the square brackets 
in (1). 

The non-linear system control theory proposed аn option 
for indirect biomass measurements design. The biomass 
observation can be obtained by combining the information 
from existing sensors using parameter and state estimation 
[3-7]. As the process behavior is non-linear and time 
varying, usually an adaptive algorithm for biomass 
observation is proposed.  
 
To address this matter, the paper presents a design of 
adaptive biomass observer during the fed-batch 
fermentation where the optimal profile of glucose feeding 
(1) is applied. That feeding strategy stabilizes the specific 
glucose rate at a critical value, . Hence, the 
concentrations of glucose and those of acetate are 
considered to be zero in the reactor. At the same time, the 
concentration of the other main substrate, oxygen, is kept 
at a constant value. Hence, the biomass grows on 
substrate feedings only because both limiting substrates 
are kept at constant concentrations in the reactor.  
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II. MODELS OF AEROBİC GROWTH OF E. COLİ 

 
II.1. Models Of Aerobic Growth 

For the considered process, M. Akensson proposed a 
biochemical model [1,2]. As the concentration of acetate 
is kept zero in the reactor, the model can be reduced and 
the dynamics of the main process variables during the fed-
batch part of cultivation can be presented as follows: 
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= maxq  is specific glucose uptake rate. 
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The feeding strategy keeps the value of qS above or equal 
to the critical one, q . The values of specific 
growth rate therein, µ, and of specific oxygen uptake rate, 
q

crit
SS q≥

o, are calculated using the expressions: 
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In the model (2), the oxygen dynamics is presented by the 
dissolved oxygen concentration through Henry’s law 

 

OCHO .=  (4) 
 
and the volumetric oxygen transfer coefficient, KLa, is 
presented as a function of the stirred speed: 

).( oLa NNK −=α  where  (5) oNN >

Given the existing sensors, the available process 
information consists of on-line measurements of oxygen, 
O2, and stirrer speed, N; glucose feed rate, Fin, and 
glucose concentration in feed, Sf; This available on-line 
information is used for biomass observer design. 

 
II.2. General Dynamical Model 

G. Bastin and D. Dochain proposed a method for deriving 
a General Dynamical Model for bioreactor [3]. The model 
is an operational one and translates the available process 
information into appropriate inputs for biomass observer 
design. The model is derived from the simplest 
description of a biotechnological process - process 
reaction scheme. Once the reaction scheme is available, 
the model derivation can be made fully systematic by 
applying the rules proposed in [3]. 
 
An appropriate reaction scheme is proposed following the 
process dynamics (2). For the case under consideration, 
the optimal profile (1) guarantees acetate production 
restriction as well as glucose uptake rate saturation. The 
glucose and acetate concentrations are close to zero in the 
reactor. The oxygen concentration is kept at a constant 
value (30%) and all transferred oxygen is used for 
degradation of fed glucose. Hence, the reaction scheme 
consists of two reactions The first one, ϕ1, is constant with 
specific uptake rate  and the second reaction, ϕcrit
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represents the rate  in (3). In the case under 

consideration, , both reactions are activated. 
The process scheme is as follows 
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The General Dynamical Model of the process is derived 
according to the scheme (5). 
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The model (6) includes the dynamics of oxygen uptake 
rate, OUR.V, as a measured process variable. The 
measurements of oxygen uptake rate can be calculated by 
the expression 
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when the oxygen concentration is constant. 
 
The operational model (6) is used for biomass observer 
design. 
 

II.3. Biomass observer design 
The general model (6) consists of two main parts. The 
first term represents process the kinetics and the second 
one represents the transport dynamics. In the case under 
consideration, the process kinetics is unknown, and the 
transport dynamics is known and must be used. For this 
purpose a transformation of model (6) has to be made in 
such a way that the dynamics of the process to be 
presented with known information only, namely measured 
variables and transport dynamics. Hence, the available 
process information consists of: measurements of the 
oxygen concentration, COV , and oxygen uptake rate, 
OUR.V; and the known information of the transport 
dynamics (terms QinV  and FinSf )  

The model transformation is made applying the basic 
property of General Dynamical Model [3]. According to 
that property, there exists a state transformation 

 

baAZ ξξ += 0  (8) 
 
where A0, is the unique solution to the matrix equation,  
 

00 =+ ba KKA  (9) 
 
such that the state-space model (6) is equivalent to 
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State variables of model (6) are divided into measured 
variables, ξa,, and unmeasured ones, ξb, as follows:  
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and the appropriated matrises are defined: 
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According to (9), the matrix Ao is obtained 
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and the expressions for the auxiliary variables, Z, and its 
dynamics are calculated 
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Taking into account that S=0 and after some appropriate 
substitutions, the auxiliary variable Z2 is presented as a 
function of Z1 
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Therefore, using the equations (6), (14) and (15) the 

biomass observer for the considered case is derived as 
follows: 
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The observation algorithm consists of three main steps. In 
the first one, the values of auxiliary variables and liquid 
volume are calculated by differential equations (16a). A 
MATLAB S-Function is applied for this purpose. In the 
second step, a observation of biomass is obtained by the 
expression (16b). This expression is a function of the of 
yield coefficients, k1 ,k2, k3, that are unknown and time-
varying. Therefore, a parameter estimation algorithm is 
proposed as a third step. In this step, estimates of the yield 
coefficients are made by comparison of the observed and 
off-line measured values of biomass. After an 
optimization procedure, the appropriate values of the 
coefficients are obtained. 
 

III. SİMULATİON İNVESTİGATİONS 
The experimental data of four fermentations of E.coli 

are used for simulation investigations of the proposed 
observers. The results are shown on next figures where 
the observations of biomass are presented with lines, and 
the measured points with stars.  

In Figures 1 and 2, the simulations with the fermentation 
data No 43 and 48 are shown respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1 – Fermentation No 43  
 

As can be seen in the figures, the observation curves are 
very close to the off-line measured points of biomass.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These results prove that the feeding profiles are the really 
optimal ones and they stabilize the process close to the 
critical value of the glucose uptake rate. Therefore, the 
acetate production as well as the glucose concentrations 
are close to zero in the reactor as is was assumed in the 
observation algorithm. Moreover, in Figure 2, a jump 
down of observation curve recognizes a change of the set 
value of the specific growth rate, µset, (from 0.125 to 0.1 h-

1) at 15.46 h of fermentation No 48. In this case again, the 
observation curve fits well with the measurements.  
 
In Figures 3 and 4, the simulations with fermentations No 
46 and 47 data are shown respectively. The observation 
curves are at a distance from the measured points. 
Perhaps, the off-line measurements are not made 
precisely, or the feeding profiles are not the optimal ones 
and some acetate is produced during the fermentations, 
however, the acetate and the glucose concentrations are 
not measured, therefore these are only hypothetical 
conclusions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Fermentation No 47 Figure 2 – Fermentation No 
In general, the simulation investigations proved the lack 
of experimental reproducibility of the culture. Therefore, 
the feeding strategy proposed in [2] could not be 
considered as the optimal one for all experiments.  

The results shown in all figures demonstrate the ability 
of the proposed adaptive algorithm to produce biomass 
observations on the basis of oxygen measurements. Better 
observations are obtained in the cases of optimal feeding 
strategies.  

 
IV. EXPERİMENTAL İNVESTİGATİON 

An experiment in continuous mode was carried out on 
the same strain in the laboratory. In this way, the 
experimental value of biomass/glucose yield coefficient, 

, was obtained. It was equal to 0.41 hexper
xsY -1. The 

estimated values of the same coefficient are obtained 
during the simulation investigations applying the 
expression . It is observed 
that the coefficient keeps having a constant value, which, 
however, is different for each fermentation (see table).  
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A comparison between experimental, =0.4100, 

and estimated, Y , values shows that three out of the 
four estimated values are in proximity to the experimental 
one 
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xsY

estim
xs

 
Table 

Fermentation estim
xsY  [h-1] 

No 43 0.3994 
No 46 0.1575 
No 47 0.4001 
No 48 0.4130 

 
 
That result shows the ability of the proposed algorithm to 
estimate also the unknown yield coefficients. Figure 3 – Fermentation No 46 

 



V. CONCLUSION 
The proposed biomass observer is an adaptive asymptotic 
one. As the E. coli fermentation is a non-linear process 
with time varying parameters, a parameter estimation 
procedure is included in the observation algorithm. The 
values of process parameters are estimated at the moment 
when the biomass measurements are received as 
additional off-line information. Better results could be 
obtained if those three points are being measured at the 
beginning of the fed-batch part of the cultivation. Such 
off-line information would be good enough for biomass 
observer tuning The values of biomass/glucose yield 
coefficients calculated during the investigations are 
verified by continuous fermentation of the same strain. 
The different values of coefficients are obtained for each 
experiment. This fact proves the lack of experimental 
reproducibility of the culture, the later being the reason 
for applying an adaptive algorithm for biomass 
observation.  
 
The observer of biomass could be considered as a key step 
to process control design. Thereupon, several interesting 
tacks can to be solved. Using the biomass observer, the 
next steps would be: 
- the observed value of biomass as well as the estimated 
value of the yield coefficient Y  could be used for 
calculation of the feeding profile of glucose (1) instead of 
the theoretical ones that are in the use in the laboratory; 

estim
xs

- on the other hand, the observer of biomass could be 
considered as the first step of a closed loop adaptive 
linearizing control design of the glucose feeding and 
stirrer speed. 
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