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Abstract 
 
There have been many researches about supervised 
clustering. The problem of common supervised clustering is 
to train a clustering algorithm by avoiding overfitting. To 
solve this problem, we develop a new algorithm based on 
gravitational cluster centers. The novel method avoids 
overfitting by taking account of the gradient between the 
misclassification error and the number of gravity centers. 
Also, it detects the number of gravity centers and their 
locations from the dataset. Two dimensional synthetic 
dataset are used in order to provide several viewpoints into 
this new method. Also, it is tested by using a benchmark 
datasets. 

 
1. Introduction 

 
Supervised clustering methods classify patterns in a dataset 

by using class labels. According to similarity concept which is 
very important measure for supervised clustering, similar 
patterns are assigned to the same clusters and cluster centers are 
selected as representatives among patterns of that clusters. There 
are two approaches to supervised clustering methods; the nearest 
neighbor and the minimum distance. In the nearest neighbor 
approach, each pattern is a cluster, and in the minimum distance 
approach, each class has only one cluster. The approaches which 
have more than one cluster for each class are more successful.  

Learning vector quantization (LVQ) is a supervised 
clustering method which finds representative patterns using 
cluster analyze [1] (Kohonen, 2001). Self generating neural tree 
is an iterational method [2] (Wen et al., 1992). Some other 
methods are based on hyper-spheres [3](Reilly, 1982), hyper-
ellipsoids [4](Kositsky and Ullman, 1996) or hyper-rectangles 
[5](Salzberg, 1991). Expectation Maximization and Gaussian 
mixture models estimate the class densities [6](Hastie et al., 
2001). [7] Kudo et al. (1996) and [8] Takigawa et al. (2004) 
offered a method based on minimum enclosing axis-parallel 
boxes. Two algorithms offered by Takigawa et al. [9](2009) are 
based on the minimum enclosing convex balls. There have been 
some methods related with logical analysis of box-based data 
([10] Eckstein et al., 2002; [11] Alexe and Hammer, 2006), and 
ball-based combinatorial classifier ([12] Cannon et al., 2002; 
[13] Priebe et al., 2003; [14] Cannon and Cowen, 2004; [15] 
Marchette, 2004). The method offered by [16] Fayed et al. 
(2007) starts with one cluster per class, shifts patterns from a 
cluster to another, and then merges clusters. 

The most common problems of the methods above are the 
selection of initial locations and the number of clusters. Thus, 
they must be re-run several times for different number of 
clusters. In this paper, we offer a new supervised clustering 
algorithm for bi-class datasets coping with these problems. We 
focus on learning the number of clusters, their weights and the 
overfitting from patterns. 

The paper is organized as follows. In Section 2, the structure 
of new supervised clustering is presented. In Section 3, we apply 
a synthetic and real datasets to verify the effectiveness of our 
method. Finally, the conclusions are given in Section 4. 

 
2. Gravitational Approach to Supervised Clustering 

for Bi-class Datasets 
 
According to the law of gravitation, each gravity center 

affects its surroundings by proportion of its weight. Inspired by 
this law, suppose that each cluster center is a gravity center. The 
patterns far from a cluster center are less affected by that center; 
on the contrary, the points closer to a cluster center are more 
affected by that center. Each pattern in a dataset has a weight 
based on neighborhood. In order to see class of a pattern, the 
gravity effect of each known cluster on that pattern must be 
determined. For this aim, the weights of each pattern are 
calculated by using Equation 1. 
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where ji xx −  is Euclidean distance between patterns xi and xj, 

and n is the number of patterns in dataset. 
The pattern xm which has maximum weight (wm) is selected 

as a cluster center (cm). The classification effect of Ck class over 
xi pattern is calculated by Equation 2.  
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The estimated class of a pattern is determined by Equation 3. 
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xi pattern is identified as a misclassified pattern if its label is 
not the same with the determined class. Then, the pattern with 
maximum weight among the misclassified patterns is assigned 
as a new cluster center.  

The gradient between misclassification error and the number 
of cluster centers is important for training the algorithm. In the 
region where the gradient is nearly zero, the learning process 
stops and overfitting starts. Therefore, the gradient must be 
controlled by the algorithm. Our learning algorithm consists of 
the following steps. 
Step 1. The weight of each pattern is calculated by Equation 1. 

The pattern with maximum weight is selected as a 
cluster center for each class. 
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Step 2. Calculate the classification effect for each pattern by 
Equation 2. 

Step 3. Determine the class label for each pattern by Equation 3. 
If determined class label of a pattern does not equal to 
its label in dataset, signify it as a misclassified pattern. 

Step 4. Calculate the gradient between misclassification error 
and the number of cluster centers. If it is less than a user 
determined threshold, stop the algorithm. 

Step 5. Select the misclassified pattern with maximum weight as 
a cluster center. Go to Step 2. 

 
3. Numerical Results and Comparisons 

 
In this section, two dimensional synthetic dataset and 

multidimensional benchmark real dataset are used in order to 
provide several viewpoints into this new method.  

Figure 1 shows the classification of the novel method for 
another dataset which has no outliers.  
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Figure 1. The classification of the method for two 
dataset without any outlier. 

 
The classification constructed by using proposed method is 

illustrated in Figure 2(a) and 2(b) for a synthetic dataset with 
outliers.  
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Figure 2. The classification of the method for a dataset 
including outliers (a) by avoiding overfitting (b) by not avoiding 
overfitting. 
 

The method classifies this dataset which has 158 patterns 
with outliers. In Figure 2(a), the algorithm reaches success 
96.84% by determining 2 cluster centers in case of avoiding 
overfitting. As seen in Figure 2(b), if the algorithm is continued 
until it is reached success 100%; it results in total 14 cluster 
centers. 

Figure 3 shows the gradient between misclassification error 
and the number of cluster centers for synthetic dataset. 
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Figure 3. The gradient between misclassification error 

and the number of cluster centers for synthetic dataset 
with outliers. 
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For dataset in Figure 1, the success of the algorithm is 
96.84% with 2 cluster centers, but this success increases only 
3.16% even though 12 more cluster centers are added.  

In order to test our algorithm, we applied it to a benchmark 
dataset (Haberman’s Survivals) obtained from University of 
California at Irving Machine Learning Repository [17]. This 
dataset contains cases from a study that was conducted between 
1958 and 1970 at the University of Chicago’s Billings Hospital 
on the survival of patients who had undergone surgery for breast 
cancer. The one of the classes is the patient died within 5 year 
and the other is the patient died within 5 year. The dataset 
contains 306 patterns with 3 attributes.  

For this dataset, the success of novel method is 74,84%. 
Figure 4 shows the gradient between misclassification error and 
the number of cluster centers for a benchmark dataset. 
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Figure 4. The gradient between misclassification error and 

the number of cluster centers for Haberman’s Survival dataset. 
 

As seen in Figure 4, overfitting starts when the number of 
cluster centers reaches to 6. 

 
4. Conclusions 

 
In this paper, we proposed a new supervised clustering 

method. It selects cluster centers among patterns with dense 
neighborhood without overfitting. The main aim of this method 
is to learn the number of cluster centers and its locations. It also 
controls overfitting and does not require any input 
parameters. 
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