Dairesel Mikroşerit Antenlerin Yama Yarıçapının Çeşitli Algoritmalarla Optimize Edilen Bulanık Mantık Sistemine Dayalı Uyarlanır Ağlar ile Hesaplanması

Patch Radius Calculation for Circular Microstrip Antennas Using Adaptive Network-Based Fuzzy Inference Systems Optimized by Various Algorithms

Kerim Güney¹, Nurcan Sarıkaya²

¹Erciyes Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Bölümü, 38039, Kayseri kguney@erciyes.edu.tr

²Erciyes Üniversitesi, Sivil Havacılık Yüksekokulu, Uçak Elektrik-Elektronik Bölümü,

38039, Kayseri nurcanb@erciyes.edu.tr

Özet

Bulanık mantık sistemine dayalı uyarlanır ağ (BMSDUA) yöntemi, dairesel mikroşerit antenlerin yama yarıçapını hesaplamak için sunulmuştur. BMSDUA, fonksiyonel olarak bulanık mantık sistemlerine eşdeğer olan uyarlamalı ağların bir sınıfıdır. En küçük kareler algoritması (EKKA), neldermead algoritması (NMA), farksal gelişim algoritması (FGA), genetik algoritma (GA), ısıl işlem algoritması (IİA) ve parçacık sürüsü optimizasyonu (PSO) gibi altı optimizasyon algoritması ile BMSDUA'nın tasarım parametreleri optimum bir şekilde belirlenmiştir. BMSDUA modellerinin sonuçları, literatürdeki mevcut deneysel sonuçlarla çok iyi bir uyumluluk içerisindedir. BMSDUA modellerinin sonuçları birbirleriyle karşılaştırıldığında, en iyi sonuç EKKA ile eğitilen BMSDUA modelden elde edilmiştir.

Abstract

A method based on adaptive-network-based fuzzy inference system (ANFIS) for computing the the patch radius of circular microstrip antennas is presented. The ANFIS is a class of adaptive networks which are functionally equivalent to fuzzy inference systems. Six optimization algorithms, least-squares, nelder-mead, differential evolution, genetic, simulated annealing, and particle swarm, are used to determine optimally the design parameters of the ANFIS. The results of the ANFIS models are in very good agreement with the experimental results available in the literature. When the performances of ANFIS models are compared with each other, the best result is obtained from the ANFIS model trained by the least-squares algorithm.

1. Giriş

Mikroşerit antenler (MŞA), uzay araçlarında, uçaklarda, radarlarda, uydu haberleşmesinde, güdümlü mermi gibi bir çok askeri alanda, adaptif anten dizilerinde ve biyomedikal uygulamalarda geniş bir şekilde kullanılmaktadır [1, 2]. Yaklaşık olarak 100 MHz'den 80 GHz'e kadar geniş bir frekans aralığında kullanılan MŞA'ların bilinen mikrodalga antenlerine göre bazı üstünlükleri şu şekilde sıralanabilir: Hafifliği, küçük hacimli olması, düşük üretim maliyeti, düzlemsel biçimliliği nedeniyle kullanışlı olması, besleme konumundaki ufak değişikliklerle doğrusal ve dairesel kutuplanmış ışıma yapabilmeleri, osilatörler, yükselteçler, anahtarlar, modülatörler, karıştırıcılar, v.s. gibi katı hal araçlarının MŞA'ların tabanına ilave edilerek bileşik geliştirilebilmesi, besleyici sistemlerin hatları ve uvumlandırma devrelerinin antenle birlikte aynı zamanda üretilebilir biçimde olmasıdır.

Pratikte en çok kullanılan MŞA tiplerinden biri, anten dizilerinde diğer MŞA tiplerine göre daha fazla avantajlara sahip olan dairesel MŞA'dır. Dairesel MŞA'lar, mikrodalga entegre devrelerinde süzgeçler ve osilatörler için düzlemsel rezonatörler olarak da kullanılmaktadır. Dairesel MŞA tasarımında ilk adım uygun bir dielektrik taban seçimidir. İkinci adım dairesel yamanın yarıçapının belirlenmesidir. Antenin karekteristik parametreleri yama yarıçapına çok sıkı bir şekilde bağlı olduğu için yama yarıçapının doğru olarak belirlenmesi şarttır. Literatürde yama yarıçapını belirlemek için analitik ifadeler mevcuttur [1-3]. Bu analitik ifadelerin sonuçları deneysel sonuçlarla [4-15] çok iyi bir uyumluluk içerisinde değildir. Yapay sinir ağları ve bulanık sinir ağları da vama varicapinin hesaplanmasında kullanılmıştır [3, 16, 17]. Yapay sinir ağları, kaynak [1, 2]'de sunulan dairesel MŞA tasarım yönteminden elde edilen teorik veriler ile eğitilmiş ve test edilmiştir [16]. Kaynak [17]'de, veriden bulanık sinir ağı yapısını doğrudan elde eden Matlab Genfis kullanılarak yama yarıçapı hesaplanmıştır. Kural oluşturma mekanizması, giriş üyelik fonksiyonlarını ve kural sayısını belirlemek için öncelikle azaltımlı kümeleme (subtractive clustering) yöntemini, daha sonra ise her bir çıkış kuralına ait parametre değerlerini belirlemek için en küçük kareler kestirimini kullanmaktadır [17]. Elde edilen bulanık sinir ağı, bulanık sinir ağını eğitebilen BMSDUA [18, 19] sistemi icerisine yerleştirilmiştir. Bu sistem giriş-çıkış verisini temel alarak geriye yayılım algoritması ile bulanık sinir ağını ayarlamaktadır. Kaynak [17]'de, bulanık sinir ağı moment yönteminden elde edilen verilerle eğitilmiş ve test edilmiştir. Kaynak [3]'de, dairesel MŞA'nın yama yarıçapı, melez öğrenme algoritması (MÖA) [18, 19] kullanılarak tasarım parametreleri belirlenen BMSDUA yöntemi ile hesaplanmıştır. MÖA, en küçük kareler metodu ve geriye yayılım algoritması olmak üzere iki farklı öğrenme algoritmasının birleşmiş hali olan iki aşamalı bir algoritmadır. İlk aşamada BMSDUA'ya ait lineer parametreler en küçük kareler metodu vasıtasıyla tanımlanmaktadır. İkinci aşamada ise hata işaretleri geriye yayılmakta ve lineer olmayan parametreler gradyent azaltımı vasıtasıyla güncellenmektedir. BMSDUA'nın kuralları ise ızgara bölütleme (grid partitioning) yöntemi kullanılarak oluşturulmuştur. Kaynak [3]'de, BMSDUA'yı eğitmek ve test etmek için deneysel ölçüm veri seti [4-15] kullanılmıştır.

Bu çalışmada dairesel MŞA'nın yama yarıçapı, EKKA [20-22], NMA [23, 24], FGA [25, 26], GA [27, 28], IİA [29, 30] ve PSO [31, 32] gibi farklı altı optimizasyon algoritması ile eğitilen BMSDUA modeller ile hesaplanmıştır. Bulanık mantık son yıllarda pek çok mühendislik probleminin çözümünde kullanılmıştır. Bulanık mantığın yaygın olarak kullanılmasının en önemli sebepleri; anlaşılmasının kolay olması, esnek bir yapıya sahip olması, kesin olarak bilinmeyen verileri tolere etme ve lineer olmayan fonksiyonları modelleyebilme özelliğidir. Daha önceki çalışmalarda da [33-36], BMSDUA farklı MŞA yapılarının çeşitli karakteristik parametrelerini başarılı bir şekilde hesaplamak amacıyla kullanılmıştır.

2. Dairesel Mikroşerit Antenin Yama Yarıçapı

Dielektrik taban kalınlığı h ve bağıl dielektrik sabiti ε_r olan ve Şekil 1'de gösterilen dairesel MŞA'nın yama yarıçapı aaşağıdaki üç denklemden biri kullanılarak hesaplanabilir [1-3].

$$a = \frac{1.84118}{k_0 \sqrt{\varepsilon_r}} \tag{1}$$

$$a = \frac{\kappa}{\left[1 + \frac{2h}{\pi\varepsilon_r K} \left\{ \ln\left(\frac{\pi K}{2h}\right) + 1.7726 \right\}\right]^{1/2}}$$
(2)

$$a = \frac{1}{\left[1 + \frac{2h}{\pi\varepsilon_r F} \left\{ \ln\left(\frac{F}{2h}\right) + (1.41\varepsilon_r + 1.77) + \frac{h}{F}(0.268\varepsilon_r + 1.65) \right\} \right]^{1/2}}$$
(3)

Şekil 1: Dairesel MŞA geometrisi.

Yukarıdaki denklemlerde

$$k_0 = \frac{2\pi}{\lambda_0} = \frac{2\pi f_r}{c} \tag{4}$$

$$K = \frac{8.794}{f_r \sqrt{\varepsilon_r}} \tag{5}$$

$$F = \frac{1.84118 c}{2\pi f_r \sqrt{\varepsilon_r}} \tag{6}$$

ile verilir. Bu denklemlerde, c elektromagnetik dalgaların boşluktaki hızını ve f_r rezonans frekansını temsil eder. Sadece eşitlik (5)'deki formülde f_r GHz cinsindendir. Yukarıdaki denklemlerden yama yarıçapının h, ε_r ve f_r 'ye bağlı olduğu açıkça görülmektedir.

3. Bulanık Mantık Sistemine Dayalı Uyarlanır Ağ (BMSDUA)

Kullanışlı bir hesaplama yapısı olan bulanık mantık sistemleri; bulanık küme teorisi, bulanık eğer-ise kural dizisi ve bulanık muhakeme kavramlarına dayanır. BMSDUA, bulanık mantık sistemlerine fonksiyonel olarak eşdeğer olan bir çeşit uyarlanabilir ağdır [18, 19]. Bulanık mantık sisteminin parametreleri optimum olarak belirlenmelidir. BMSDUA'nın temel amacı, eşdeğer bulanık mantık sisteminin parametrelerini, giriş-çıkış veri kümelerini kullanıp bir öğrenme algoritması vasıtasıyla optimize etmektir. Parametre optimizasyonu, gerçek çıkış ile hedef çıkış arasındaki hata değeri minimum olacak şekilde yapılmaktadır. Tipik bir BMSDUA yapısı, Şekil 2'de verilmiştir. Burada, sabit düğümler daire, uyarlanır düğümler ise kare şeklinde gösterilmiştir. Basit olması açısından, BMSDUA'nın x ve y gibi iki girişinin ve z gibi bir çıkışının olduğu kabul edilmiştir. BMSDUA için, bu çalışmada birinci dereceden Sugeno bulanık modeli kullanılmıştır. Bu model için tipik bir kural seti olan iki bulanık eğer-ise kuralı aşağıdaki şekilde ifade edilebilir:

*Kural 1: Eğer x,
$$A_1$$
 ve y, B_1 ise $z_1 = p_1 x + q_1 y + r_1$ (7a)
Kural 2: Eğer x, A_2 ve y, B_2 ise $z_2 = p_2 x + q_2 y + r_2$ (7b)*

Burada A_i ve B_i başlangıçtaki bulanık kümelerdir, p_i , q_i , ve r_i eğitme işlemi boyunca belirlenen tasarım parametreleridir. BMSDUA, Şekil 2'de olduğu gibi beş katmandan oluşmaktadır:

1. Katman: Birinci katmandaki her bir düğüm aşağıda verilen bir düğüm fonksiyonunu kullanır.

$$O_i^1 = \mu_{A_i}(x), \qquad i = 1, 2$$
 (8a)

$$O_i^1 = \mu_{B_{L^2}}(y), \qquad i = 3,4$$
 (8b)

Burada $\mu_{Ai}(x)$ ve μ_{Bi-2} (y) herhangi bir bulanık üyelik fonksiyonuna uyumlandırılabilir. Bu çalışmada, aşağıdaki üçgen ve genelleştirilmiş çan eğrisi üyelik fonksiyonları kullanılmıştır.

$$\ddot{u}cgen(x;a,b,c) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x \le b \\ \frac{c-x}{c-b}, & b \le x \le c \\ 0, & c \le x \end{cases}$$
(9a)

Şekil 2: BMSDUA yapısı.

$$can(x;a,b,c) = \frac{1}{1 + \left|\frac{x-c}{a}\right|^{2b}}$$
 (9b)

Burada $\{a_i, b_i, c_i\}$ üyelik fonksiyonunun şeklini değiştiren parametreler kümesidir. Bu katmandaki parametreler lineer olmayan parametreler olarak bilinir.

2. Katman: Bu katmandaki her bir düğüm, kuralların çarpımı ile elde edilen ağırlığı,

$$O_i^2 = \omega_i = \mu_{A_i}(x)\mu_{B_i}(y), \qquad i = 1, 2$$
 (10)

şeklinde hesaplar.

3. Katman: Bu katmandaki i'nci düğüm, i'nci kuralın ağırlığının tüm ağırlıkların toplamına oranını aşağıdaki şekilde belirler.

$$O_i^3 = \overline{\omega_i} = \frac{\omega_i}{\omega_1 + \omega_2}, \qquad i = 1, 2 \tag{11}$$

Burada ω_i normalize edilmiş ağırlık olarak adlandırılır.

4. Katman: Bu katmanda, her bir i düğümü aşağıdaki fonksiyona sahiptir:

$$O_i^4 = \omega_i z_i = \omega_i (p_i x + q_i y + r_i), \qquad i = 1, 2$$
(12)

Burada ω_i üçüncü katmanın çıkışıdır ve $\{p_i, q_i, r_i\}$ parametre setidir. Bu katmandaki parametreler, lineer parametreler olarak bilinir.

5. Katman: Bu katmanda tek bir düğüm, gelen bütün işaretlerin toplamı olan genel çıkışı aşağıda ifade edildiği gibi hesaplar:

$$O_1^5 = \sum_{i=1}^2 \overline{\omega_i} z_i = \frac{\omega_1 z_1 + \omega_2 z_2}{\omega_1 + \omega_2}$$
(13)

Açıktır ki, BMSDUA'nın, lineer ve lineer olmayan parametreler olarak isimlendirilen ayarlanabilir iki parametre seti vardır. Eğitme işlemi boyunca, birinci katmandaki lineer olmayan parametreler ve dördüncü katmandaki lineer parametreler, bulanık mantık sistemi arzu edilen cevaba ulaşana dek ayarlanır. Bu çalışmada, EKKA, NMA, FGA, GA, IİA ve PSO bulanık mantık sistemini eğitme ve uyarlamada kullanılmıştır.

4. BMSDUA İle Yama Yarıçapı Hesabı

Bu çalışmada BMSDUA, dairesel MŞA'nın yama yarıçapının hesaplanması için uyarlanmıştır. BMSDUA'nın girişleri, h, ε_r ve f_r 'dir. BMSDUA'nın çıkışı ise ölçülen yama yarıçapı a_{me} 'dir. Tablo 1'de verilen ve on iki farklı kaynaktan [4-15] elde edilen toplam 37 veri BMSDUA'yı eğitmek ve test etmek için kullanılmıştır. Bu 37 veriden, 31'i ağı eğitmek için 6'sı ise ağı test etmek için kullanılmıştır. EKKA, NMA, FGA, GA, IİA ve PSO kullanılarak BMSDUA eğitilmiştir. Eğitimden önce giriş ve çıkış veri kümeleri 0 ile 1 arasında normalize edilmiştir. Giriş değişkenleri h, ε_r ve f_r için üyelik fonksiyon sayıları sırasıyla 4, 10, 4'dür. Bu durumda kural sayısı 160 (4x10x4 = 160)'dır. Giriş değişkenleri *h*, ε_r ve f_r için üyelik fonksiyonları sırasıyla üçgen, üçgen ve genelleştirilmiş çan eğrisidir. Eşitlik (9)'dan açıkça görüldüğü gibi, üçgen ve genelleştirilmiş çan eğrisi üyelik fonksiyonları 3 parametreye sahiptir. Böylece BMSDUA, 54 (4x3+10x3+4x3 = 54) lineer olmayan parametre ve 640 (4x160 = 640) lineer parametre olmak üzere toplam 694 parametre içermektedir.

Altı farklı algoritma ile eğitilen BMSDUA modeller ile elde edilen yama yarıçapı sonuçları ölçme sonuçları ile Tablo 1'de karşılaştırılmıştır. Sunulan BMSDUA modelleri ile elde edilen sonuçların ölçme sonuçları ile çok iyi bir uyumluluk içerisinde olduğu Tablo 1'den açıkça görülmektedir. Sunulan BMSDUA modellerin sonucları ile denevsel sonuclar arasındaki mutlak hataların toplamı Tablo 2'de verilmiştir. Karşılaştırma yapmak amacıyla literatürde mevcut MÖA ile eğitilen BMSDUA vönteminin [3] toplam mutlak hatası ve (1), (2) ve (3) eşitlikleri ile verilen formüller kullanılarak elde edilen sonuçların toplam mutlak hataları da Tablo 2'de sunulmuştur. Bu çalışmada sunulan EKKA, NMA, FGA ve GA ile eğitilen BMSDUA modellerinin toplam mutlak hatalarının, MÖA ile eğitilen BMSDUA yönteminin [3] toplam mutlak hatasından daha küçük olduğu Tablo 2'den görülmektedir. BMSDUA modellerinin sonuçları birbirleri ile karşılaştırıldığında, en iyi sonuç EKKA ile eğitilen BMSDUA modelinden elde edilmiştir. Tablo 2'den ayrıca, tüm BMSDUA modellerinin toplam mutlak hatalarının, (1), (2) ve (3) eşitlikleri ile verilen formüller kullanılarak elde edilen sonuçların toplam mutlak hatalarından daha küçük olduğu görülmektedir. Bu sonuçlar, BMSDUA modellerinin dairesel MSA'ların yama yarıcapının hesabında kullanılabileceğini açıkça göstermektedir.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_		_	Ölçülen	Sunulan BMSDUA Modelleri						
1 0.08000 2.32 835 6.80000 6.799906 6.799784 6.799401 6.800871 6.807534 6.80757 2* 0.15900 2.32 815 6.80000 6.815235 6.828138 6.829106 6.834998 6.836964 3 0.31800 2.32 815 6.80000 6.80347 6.799287 6.799019 6.800103 6.804982 6.80661 4 0.15900 2.32 1128 5.00000 4.999464 5.000384 5.001085 5.004449 5.005571 5 0.15240 2.49 1443 3.80000 3.798681 3.798513 3.798452 3.798283 3.800762 3.801407 6 0.31800 2.52 1099 4.85000 4.849695 4.855126 4.855778 4.858912 4.859958 7* 0.15880 2.50 1570 3.49300 3.487422 3.487702 3.48702 3.489183 3.89921 13.89390 10 0.23500 4.55 1030 3.	No	h (cm)	\mathcal{E}_r	f_r (MHz)	a_{me} (cm) [4-15]	EKKA	NMA	FGA	GA	IİA	PSO	
2* 0.15900 2.32 829 6.80000 6.815235 6.828138 6.827804 6.829106 6.834998 6.836964 3 0.31800 2.32 815 6.80000 4.999464 5.00527 5.000384 5.001085 5.004449 5.005571 5 0.15240 2.49 1443 3.80000 3.798681 3.798501 3.798452 3.798828 3.800762 3.801407 6 0.31800 2.50 1570 3.49300 3.487205 3.487302 3.487602 3.489188 3.489716 8 1.27000 2.70 378 13.89400 13.89402 13.89407 13.89398 13.89392 13.89392 9 0.07940 2.59 4070 1.27007 1.269941 1.269954 1.269954 1.269993 1.269941 1.269954 10 0.31750 2.50 1510 3.49300 3.974771 3.971703 3.974628 3.975598 12 0.23500 4.55 1500 3.97500 <t< td=""><td>1</td><td>0.08000</td><td>2.32</td><td>835</td><td>6.80000</td><td>6.799906</td><td>6.799784</td><td>6.799401</td><td>6.800871</td><td>6.807534</td><td>6.809757</td></t<>	1	0.08000	2.32	835	6.80000	6.799906	6.799784	6.799401	6.800871	6.807534	6.809757	
3 0.31800 2.32 815 6.80000 6.800347 6.799287 6.799019 6.800103 6.804982 6.806610 4 0.15900 2.32 1128 5.00000 4.999464 5.000527 5.001384 5.001085 5.004449 5.00571 5 0.15240 2.49 1443 3.80000 3.798681 3.798521 3.798852 3.798858 3.800762 3.801407 6 0.31800 2.50 1570 3.49300 3.487205 3.487302 3.487602 3.48188 3.489716 8 1.27000 2.70 378 13.89400 13.89401 13.89407 13.89407 13.89398 13.89392 13.89399 9 0.07940 2.59 4070 1.27000 1.270077 1.269947 1.270650 1.269931 1.269943 3.498054 3.499983 3.500627 11 0.23500 4.55 103 3.97500 3.971275 3.971402 3.971428 3.97558 12 0.23500	2*	0.15900	2.32	829	6.80000	6.815235	6.828138	6.827804	6.829106	6.834998	6.836964	
4 0.15900 2.32 1128 5.00000 4.999464 5.000327 5.000384 5.001085 5.004449 5.005571 5 0.15240 2.49 1443 3.80000 3.798681 3.798501 3.798522 3.798282 3.800762 3.801407 6 0.31800 2.52 1099 4.85000 4.849695 4.855241 4.855126 4.855778 4.858912 4.859988 7* 0.15880 2.50 1570 3.49300 3.487205 3.487302 3.487602 3.489188 3.49716 8 1.27000 2.70 378 13.89400 1.89407 1.269947 1.270550 1.269903 1.269941 1.26954 10 0.31750 2.50 1510 3.49300 3.494242 3.497710 3.498054 3.499983 3.500627 11 0.23500 4.55 1030 3.97500 3.974787 3.971402 3.971719 3.974628 3.975598 12* 0.23500 4.55 1360	3	0.31800	2.32	815	6.80000	6.800347	6.799287	6.799019	6.800103	6.804982	6.806610	
5 0.15240 2.49 1443 3.80000 3.798681 3.798501 3.798452 3.798828 3.800762 3.801407 6 0.31800 2.52 1099 4.85000 4.849695 4.855126 4.855178 4.858912 4.859958 7* 0.15880 2.50 1570 3.49300 3.487205 3.487330 3.487302 3.487022 3.489188 3.48916 8 1.27000 2.70 378 13.89400 13.89402 13.89407 13.89398 13.89392 13.89399 9 0.07940 2.59 4070 1.27000 1.270077 1.269471 1.270650 1.269931 1.269954 10 0.31750 2.50 1510 3.49300 3.494773 3.497693 3.498054 3.499983 3.506627 11 0.23500 4.55 1030 3.97500 3.971475 3.971402 3.971719 3.974628 3.97559 13* 0.23500 4.55 1360 2.99000 2.973516	4	0.15900	2.32	1128	5.00000	4.999464	5.000527	5.000384	5.001085	5.004449	5.005571	
6 0.31800 2.52 1099 4.85000 4.849695 4.855241 4.855126 4.855778 4.858912 4.859958 7* 0.15880 2.50 1570 3.49300 3.487205 3.487302 3.487602 3.489188 3.489716 8 1.27000 2.70 378 13.89400 13.89402 13.89407 13.89398 13.89392 13.89390 9 0.07940 2.59 4070 1.27000 1.270077 1.269947 1.270650 1.269903 1.269941 1.269954 10 0.31750 2.50 1510 3.49300 3.49422 3.497710 3.497693 3.499834 3.49983 3.500627 11 0.23500 4.55 825 4.95000 4.951126 4.952358 4.952887 4.957143 4.958563 12 0.23500 4.55 1360 2.99000 2.973516 2.97044 2.970172 2.971800 2.972343 14 0.23500 4.55 3750 1.04000 <	5	0.15240	2.49	1443	3.80000	3.798681	3.798501	3.798452	3.798828	3.800762	3.801407	
7* 0.15880 2.50 1570 3.49300 3.487205 3.487302 3.487302 3.487602 3.489188 3.48916 8 1.27000 2.70 378 13.89400 13.89400 13.89407 13.89398 13.89392 13.89390 9 0.07940 2.59 4070 1.27000 1.270077 1.269947 1.270650 1.269903 1.269941 1.269954 10 0.31750 2.50 1510 3.49300 3.494242 3.497710 3.497693 3.498054 3.499983 3.500627 11 0.23500 4.55 1030 3.97500 3.971787 3.971275 3.971402 3.971719 3.974628 3.975598 13* 0.23500 4.55 1360 2.99000 2.973516 2.969899 2.970142 2.97130 2.972343 14 0.23500 4.55 3050 1.0000 1.039673 1.038643 1.038627 1.03884 1.038864 1.038864 1.038864 1.038864 1.038864 1.038864 1.038864 1.038864 1.04098 1.03565 1.03603 1.038	6	0.31800	2.52	1099	4.85000	4.849695	4.855241	4.855126	4.855778	4.858912	4.859958	
8 1.27000 2.70 378 13.89400 13.89400 13.89402 13.89407 13.89398 13.89392 13.89390 9 0.07940 2.59 4070 1.27000 1.270077 1.269947 1.270650 1.269903 1.269941 1.269954 10 0.31750 2.50 1510 3.49300 3.494242 3.497710 3.497693 3.498054 3.499983 3.500627 11 0.23500 4.55 825 4.95000 4.950126 4.952259 4.952358 4.952887 4.957143 4.958563 12 0.23500 4.55 1030 3.974787 3.971275 3.971402 3.971719 3.974628 3.975598 13* 0.23500 4.55 1360 2.99000 2.973516 2.969899 2.97044 2.970172 2.971800 2.972343 14 0.23500 4.55 3750 1.04000 1.038673 1.038643 1.038627 1.038804 1.038864 16 0.23500 4.55	7*	0.15880	2.50	1570	3.49300	3.487205	3.487330	3.487302	3.487602	3.489188	3.489716	
9 0.07940 2.59 4070 1.27000 1.270077 1.269947 1.270650 1.269903 1.269941 1.269954 10 0.31750 2.50 1510 3.49300 3.494242 3.497710 3.497693 3.498054 3.499983 3.500627 11 0.23500 4.55 825 4.95000 4.950126 4.952259 4.952358 4.952887 4.957143 4.958563 12 0.23500 4.55 1030 3.97500 3.974787 3.971275 3.971402 3.971719 3.974628 3.975598 13* 0.23500 4.55 2003 2.00000 2.002379 2.002514 2.002522 2.003189 2.003411 15 0.23500 4.55 3750 1.04000 1.039673 1.038649 1.038627 1.038804 1.038864 16 0.23500 4.55 4945 0.77000 0.770211 0.770568 0.770612 0.770675 0.77070 17 0.15875 2.65 4723	8	1.27000	2.70	378	13.89400	13.89400	13.89402	13.89407	13.89398	13.89392	13.89390	
100.317502.5015103.493003.4942423.4977103.4976933.4980543.4999833.500627110.235004.558254.950004.9501264.9522594.9523584.9528874.9571434.958563120.235004.5510303.975003.9747873.9712753.9714023.9717193.9746283.9759813*0.235004.5513602.990002.9735162.9698992.9700442.9701722.9718002.972343140.235004.5537501.040001.0396731.0385691.0386431.0386271.0388041.038864160.235004.5544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6544251.150001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.5013144.191004.1931764.192124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.18548240.160002.5828301.410001.4896381.8895481.8895601.8896121.8896221.890079260.075002.472860	9	0.07940	2.59	4070	1.27000	1.270077	1.269947	1.270650	1.269903	1.269941	1.269954	
110.235004.558254.950004.9501264.9522594.9523584.9528874.9571434.958563120.235004.5510303.975003.9747873.9712753.9714023.9717193.9746283.97559813*0.235004.5513602.990002.9735162.9698992.9700442.9701722.9718002.972343140.235004.5520032.000002.0002072.0023792.0025142.0025222.0031892.003411150.235004.5537501.040001.0396731.0385691.0386431.0386271.0388041.038864160.235004.5549450.770000.7702110.7705680.7706120.7705990.7706750.770700170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6552240.960000.9597090.9598850.9600720.9598630.9599630.95999720*0.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.19576230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185488240.160002.472885<	10	0.31750	2.50	1510	3.49300	3.494242	3.497710	3.497693	3.498054	3.499983	3.500627	
120.235004.5510303.975003.9747873.9712753.9714023.9717193.9746283.97559813*0.235004.5513602.990002.9735162.9698992.9700442.9701722.9718002.972343140.235004.5520032.000002.002072.0023792.0025142.0025222.0031892.003411150.235004.5537501.040001.0396731.0385691.0386431.0386271.0388041.038864160.235004.5549450.770000.7702110.7705680.7706120.7705990.7706750.770700170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.19576230.317502.5012864.190104.1897014.1817614.1817024.1821884.1846404.185488240.160002.472885 <t< td=""><td>11</td><td>0.23500</td><td>4.55</td><td>825</td><td>4.95000</td><td>4.950126</td><td>4.952259</td><td>4.952358</td><td>4.952887</td><td>4.957143</td><td>4.958563</td></t<>	11	0.23500	4.55	825	4.95000	4.950126	4.952259	4.952358	4.952887	4.957143	4.958563	
13*0.235004.5513602.990002.9735162.9698992.9700442.9701722.9718002.972343140.235004.5520032.000002.0002072.0023792.0025142.0025222.0031892.003411150.235004.5537501.040001.0396731.0385691.0386431.0386271.0388041.038864160.235004.5549450.770000.7702110.7705680.7706120.7705990.7706750.770700170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.472860	12	0.23500	4.55	1030	3.97500	3.974787	3.971275	3.971402	3.971719	3.974628	3.975598	
140.235004.5520032.000002.002072.0023792.0025142.0025222.0031892.003411150.235004.5537501.040001.0396731.0385691.0386431.0386271.0388041.038864160.235004.5549450.770000.7702110.770580.7706120.7705990.7706750.770700170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191001.4103521.4102921.4117351.4104361.4105351.410588240.160002.5828301.410001.4193521.4102921.4117351.4104361.4105351.410568250.035002.4728601.890001.8896381.8895481.8896121.8896121.889621.890079260.075002.472860	13*	0.23500	4.55	1360	2.99000	2.973516	2.969899	2.970044	2.970172	2.971800	2.972343	
150.235004.5537501.040001.0396731.0385691.0386431.0386271.0388041.038864160.235004.5549450.770000.7702110.7705680.7706120.7705990.7706750.770700170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6552240.960000.9597090.9598850.9600720.9598630.9599630.95999720*0.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8896601.8896121.8899621.890079260.075002.4728601.890001.889631.8894691.8894971.8895681.8900931.89026828*0.160002.623540	14	0.23500	4.55	2003	2.00000	2.000207	2.002379	2.002514	2.002522	2.003189	2.003411	
160.235004.5549450.770000.7702110.7705680.7706120.7705990.7706750.770700170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6552240.960000.9597090.9598850.9600720.9598630.9599630.95999720*0.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8896601.8896121.8899621.890079260.075002.4728101.890001.889631.8894691.8894971.8895681.8900931.89026828*0.160002.623540	15	0.23500	4.55	3750	1.04000	1.039673	1.038569	1.038643	1.038627	1.038804	1.038864	
170.158752.6544251.150001.1462741.1462521.1466471.1462291.1463561.146398180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6552240.960000.9597090.9598850.9600720.9598630.9599630.95999720*0.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8896001.8896121.8899621.890079260.075002.4728101.890001.8896031.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.35000	16	0.23500	4.55	4945	0.77000	0.770211	0.770568	0.770612	0.770599	0.770675	0.770700	
180.158752.6547231.070001.0739181.0740351.0743341.0740121.0741341.074174190.158752.6552240.960000.9597090.9598850.9600720.9598630.9599630.95999720*0.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8896121.8899621.890079260.075002.4728101.890001.8896031.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350041.3500421.3498711.3501631.3499391.3503411.350475	17	0.15875	2.65	4425	1.15000	1.146274	1.146252	1.146647	1.146229	1.146356	1.146398	
190.158752.6552240.960000.9597090.9598850.9600720.9598630.9599630.95999720*0.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8896121.8899621.890079260.075002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3499391.3503411.350475	18	0.15875	2.65	4723	1.07000	1.073918	1.074035	1.074334	1.074012	1.074134	1.074174	
20*0.158752.6566340.740000.7720610.7717540.7717650.7717470.7717690.771777210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8895601.8896121.8899621.890079260.075002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3493991.3503411.350475	19	0.15875	2.65	5224	0.96000	0.959709	0.959885	0.960072	0.959863	0.959963	0.959997	
210.158752.6560740.820000.8197130.8197600.8198350.8197460.8197950.819811220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8895601.8896121.8899621.890079260.075002.4728601.890001.8904191.8909281.8909391.8909911.8913291.891442270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3493991.3503411.350475	20*	0.15875	2.65	6634	0.74000	0.772061	0.771754	0.771765	0.771747	0.771769	0.771777	
220.158752.5013144.191004.1931764.1922124.1921364.1926134.1950004.195796230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8895601.8896121.8899621.890079260.075002.4728601.890001.8904191.8909281.8909391.8909911.8913291.891442270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3493991.3503411.350475	21	0.15875	2.65	6074	0.82000	0.819713	0.819760	0.819835	0.819746	0.819795	0.819811	
230.317502.5012864.191004.1897014.1817614.1817024.1821884.1846404.185458240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8895601.8896121.8899621.890079260.075002.4728601.890001.8904191.8909281.8909391.8909911.8913291.891442270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3493991.3503411.350475	22	0.15875	2.50	1314	4.19100	4.193176	4.192212	4.192136	4.192613	4.195000	4.195796	
240.160002.5828301.410001.4103521.4102921.4117351.4104361.4105351.410568250.035002.4728851.890001.8896381.8895481.8895601.8896121.8899621.890079260.075002.4728601.890001.8904191.8909281.8909391.8909911.8913291.891442270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3499391.3503411.350475	23	0.31750	2.50	1286	4.19100	4.189701	4.181761	4.181702	4.182188	4.184640	4.185458	
250.035002.4728851.890001.8896381.8895481.8895601.8896121.8896221.890079260.075002.4728601.890001.8904191.8909281.8909391.8909911.8913291.891442270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3493991.3503411.350475	24	0.16000	2.58	2830	1.41000	1.410352	1.410292	1.411735	1.410436	1.410535	1.410568	
260.075002.4728601.890001.8904191.8909281.8909391.8909911.8913291.891442270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3499391.3503411.350475	25	0.03500	2.47	2885	1.89000	1.889638	1.889548	1.889560	1.889612	1.889962	1.890079	
270.160002.4728101.890001.8896031.8894691.8894971.8895681.8900931.89026828*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.350001.3500421.3498711.3501631.3499391.3503411.350475	26	0.07500	2.47	2860	1.89000	1.890419	1.890928	1.890939	1.890991	1.891329	1.891442	
28*0.160002.6235401.410001.3133861.3124431.3132881.3124501.3125641.312602290.320002.6236001.3500421.3498711.3501631.3499391.3503411.350475	27	0.16000	2.47	2810	1.89000	1.889603	1.889469	1.889497	1.889568	1.890093	1.890268	
29 0.32000 2.62 3600 1.35000 1.350042 1.349871 1.350163 1.349939 1.350341 1.350475	28*	0.16000	2.62	3540	1.41000	1.313386	1.312443	1.313288	1.312450	1.312564	1.312602	
	29	0.32000	2.62	3600	1.35000	1.350042	1.349871	1.350163	1.349939	1.350341	1.350475	
30 0.47000 2.62 3500 1.30000 1.299991 1.300022 1.300134 1.300146 1.300632 1.300794	30	0.47000	2.62	3500	1.30000	1.299991	1.300022	1.300134	1.300146	1.300632	1.300794	
31 0.04900 2.43 25600 0.19698 0.196980 0.196981 0.196983 0.196981 0.196977 0.196975	31	0.04900	2.43	25600	0.19698	0.196980	0.196981	0.196983	0.196981	0.196977	0.196975	
32 0.04900 2.43 13100 0.39592 0.395939 0.395895 0.395891 0.395922 0.395921 0.395921	32	0.04900	2.43	13100	0.39592	0.395939	0.395895	0.395891	0.395922	0.395921	0.395921	
33* 0.04900 2.43 8960 0.58898 0.585331 0.590375 0.590369 0.590382 0.590386 0.590387	33*	0.04900	2.43	8960	0.58898	0.585331	0.590375	0.590369	0.590382	0.590386	0.590387	
34 0.04900 2.43 6810 0.80017 0.800058 0.800264 0.800270 0.800276 0.800323 0.800339	34	0.04900	2.43	6810	0.80017	0.800058	0.800264	0.800270	0.800276	0.800323	0.800339	
35 0.04900 2.43 5470 0.99617 0.996382 0.996032 0.996040 0.996049 0.996134 0.996162	35	0.04900	2.43	5470	0.99617	0.996382	0.996032	0.996040	0.996049	0.996134	0.996162	
36 0.11938 10.00 5455 0.47752 0.477526 0.477509 0.477521 0.477509 0.477448 0.477427	36	0.11938	10.00	5455	0.47752	0.477526	0.477509	0.477521	0.477509	0.477448	0.477427	
37 0.11938 10.00 3650 0.71628 0.716274 0.716269 0.716303 0.716321 0.716534 0.716605	37	0.11938	10.00	3650	0.71628	0.716274	0.716269	0.716303	0.716321	0.716534	0.716605	

Tablo 1: BMSDUA modellerinin yama yarıçapı sonuçları ile ölçme sonuçlarının karşılaştırılması

*Test verileri.

Tablo 2: Ölçülen ve hesaplanan yama yarıçapları arasındaki mutlak hataların toplamı

		S	unulan BMS	MÖA [3]	Eşitlik	Eşitlik (2)	Eşitlik			
	EKKA	NMA	FGA	GA	IİA	PSO	[9]	(1)	(2)	(3)
Hata (cm)	0.188475	0.229179	0.230372	0.231208	0.255824	0.266504	0.232563	3.828817	1.671820	2.847902

5. Sonuçlar

Bu çalışmada, dairesel MŞA'ların yama yarıçapı BMSDUA yöntemi ile başarılı bir şekilde hesaplanmıştır. BMSDUA'nın tasarım parametreleri EKKA, NMA, FGA, GA, IİA ve PSO gibi farklı altı optimizasyon algoritması kullanılarak optimum bir şekilde belirlenmiştir. Sunulan BMSDUA modellerinin sonuçları, literatürdeki mevcut deneysel sonuçlarla çok iyi bir uyumluluk içerisindedir. BMSDUA modellerinin sonuçları birbirleriyle karşılaştırıldığında, en iyi sonuç EKKA ile eğitilen BMSDUA modelinden elde edilmiştir. Sunulan BMSDUA yönteminin avantajları, kolaylıkla uygulanabilmesi ve elde edilen sonuçların doğruluğudur.

6. Kaynaklar

- [1] Bahl, I.J. and Bhartia, P., *Microstrip antennas*, Artech House, Dedham, MA, 1980.
- [2] Garg, R., Bhartia, P., Bahl, I., and Ittipiboon, A., *Microstrip antenna design handbook*, Artech House, Canton, MA, 2001.
- [3] Guney, K. and Sarikaya, N., "Adaptive neuro-fuzzy inference system for computing patch radius of circular microstrip antennas", *Microwave and Optical Technology Letters*, Vol. 48, 1606-1610, 2006.
- [4] Itoh, T. and Mittra, R., "Analysis of a microstrip disk resonator", AEU-Int. J. of Electron. and Communications, Vol. 27, 456-458, 1973.
- [5] Howell, J.Q., "Microstrip antennas", *IEEE Trans. Antennas Propagat.*, Vol. 23, 90-93, 1975.
- [6] Long, S.A., Shen, L.C., Walton, M.D., and Allerding, M.R., "Impedance of a circular disk printed-circuit antenna", *Electron. Lett.*, Vol. 14, 684-686, 1978.
- [7] Carver, K.R., "Practical analytical techniques for the microstrip antenna", *Proc. Workshop Printed Circuit Antenna Technol.*, Las Cruces, New Mexico, 1979, 7.1-7.20.
- [8] Chew, W.C. and Kong, J.A., "Analysis of a circular microstrip disk antenna with a thick dielectric substrate", *IEEE Trans. Antennas Propagat.*, Vol. 29, 68-76, 1981.
- [9] Yano, S. and Ishimaru, A., "A theoretical study of the input impedance of a circular microstrip disk antenna", *IEEE Trans. Antennas Propagat.*, Vol. 29, 77-83, 1981.
- [10] Dahele, J.S. and Lee, K.F., "Effect of substrate thickness on the performance of a circular-disk microstrip antenna", *IEEE Trans. Antennas Propagat.*, Vol. 31, 358-360, 1983.
- [11] Dahele, J.S. and Lee, K.F., "Theory and experiment on microstrip antenna with air gaps", *IEE Proc. Pt. H.*, Vol. 132, 455-460, 1985.
- [12] Davidovitz, M. and Lo, Y.T., "Input impedance of a probe-fed circular microstrip antenna with thick substrate", *IEEE Trans. Antennas Propagat.*, Vol. 34, 905-911, 1986.
- [13] Abboud, F., Damiano, J.P., and Papiernik, A., "New determination of resonant frequency of circular disc microstrip antenna: Application to thick substrate", *Electron. Lett.*, Vol. 24, 1104-1106, 1988.
- [14] Antoszkiewicz, K. and Shafai, L., "Impedance characteristics of circular microstrip patches", *IEEE Trans. Antennas Propagat.*, Vol. 38, 942-946, 1990.
- [15] Losada, V., Boix, R.R., and Horno, M., "Resonant modes of circular microstrip patches in multilayered substrates", *IEEE Trans. Microwave Theory Tech.*, Vol. 47, 488-497, 1999.
- [16] Guney, K., Gultekin, S., and Sagiroglu, S., "Design of circular microstrip antennas using artificial neural networks", Proc. of 10th Turkish Symposium on Artificial Intelligence and Neural Networks (TAINN'2001), Turkish Republic of Northern Cyprus, 2001, 12-21.
- [17] Anguilli, G. and Versaci, M., "A neuro-fuzzy network for the design of circular and triangular equilateral microstrip antennas", *Int. J. of Infrared and Millimeter Waves*, Vol. 23, 1513-1520, 2002.
- [18] Jang, J.-S.R., "ANFIS: Adaptive-network-based fuzzy inference system", *IEEE Trans. Systems Man and Cybernetics*, Vol. 23, 665-685, 1993.
- [19] Jang, J.-S.R., Sun, C.T., and Mizutani, E., Neuro-fuzzy and soft computing: A computational approach to

learning and machine intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.

- [20] Levenberg, K., "A method for the solution of certain nonlinear problems in least-squares", *Quart Appl. Math.*, Vol. 2, 164-168, 1944.
- [21] Marquardt, D.W., "An algorithm for least-squares estimation of nonlinear parameters", *SIAM J. Appl. Math.*, Vol. 11, 431-441, 1963.
- [22] Dennis, J.E., *State of the art in numerical analysis*, Academic Press, 1977.
- [23] Spendley, W., Hext, G.R., and Himsworth, F.R., "Sequential application of simplex designs in optimization and evolutionary operation", *Technometrics*, Vol. 4, 441-461, 1962.
- [24] Nelder, J.A. and Mead, R., "A simplex method for function minimization", *Computer J.*, Vol. 7, 308-313, 1965.
- [25] Price, K.V., "Differential evolution: A fast and simple numerical optimizer", Proc. of Biennial Conference of the North American Fuzzy Information Processing Society, Berkeley, CA, 1996, 524-527.
- [26] Storn, R.M. and Price, K.V., "Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces", J. Global Opt., Vol. 11, 341-359, 1997.
- [27] Holland, J., *Adaptation in natural and artificial systems*, University of Michigan Press, 1975.
- [28] Goldberg, D.E., Genetic algorithms in search, optimization and machine learning, Reading, MA, Addison Wesley, 1989.
- [29] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., "Equations of state calculations by fast computing machines", *J. Chemical Physics*, Vol. 21, 1087-1092, 1953.
- [30] Kirkpatrick, S., Gerlatt, C.D., and Vecchi, M.P., "Optimization by simulated annealing", *Science*, Vol. 220, 671-680, 1983.
- [31] Kennedy, J. and Eberhart, R., "Particle swarm optimization", Proc. of the IEEE Int. Conference on Neural Networks, Perth, Australia, 1995, 1942-1948.
- [32] Eberhart, R. and Kennedy, J., "A new optimizer using particle swarm theory", *Proc. of the Sixth International Symposium on Micro Machine and Human Science*, Piscataway, NJ, Nagoya, Japan, 1995, 39-43.
- [33] Guney, K. and Sarikaya, N., "Computation of resonant frequency for equilateral triangular microstrip antennas with the use of adaptive neuro-fuzzy inference system", *Int. J. of RF and Microwave CAE*, Vol. 14, 134-143, 2004.
- [34] Guney, K. and Sarikaya, N., "Adaptive neuro-fuzzy inference system for the computation of the bandwidth of electrically thin and thick rectangular microstrip antennas", *Electrical Engineering*, Vol. 88, 201-210, 2006.
- [35] Guney, K. and Sarikaya, N., "Adaptive-network-based fuzzy inference system models for input resistance computation of circular microstrip antennas", *Microwave* and Optical Technology Letters, Vol. 50, 1253-1261, 2008.
- [36] Guney, K. and Sarikaya, N., "Multiple adaptive-networkbased fuzzy inference system for the synthesis of rectangular microstrip antennas with thin and thick substrates", *Int. J. of RF and Microwave CAE*, Vol. 18, 359-375, 2008.