"ELEC0'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

E01.08/B7-12

EXAMINATION OF SUBSTITUTION BOXES OF SAFER

E. Aras’ and M. D. Yiicel”
*ASELSAN Inc., MGEO Division, P.O. Box: 30, Etlik 06011, Ankara
**Dept. of Electrical and Electronics Eng., Middie East Technical University, 06531, Ankara

Abstract—Two operations, called “exponentiating
box” and “logarithm-taking box” which we call
S-boxes of SAFER family of ciphers, are the
“only nonlinear layers” of these ciphers and they
apply two different “highly monlinear”
transformations, which map 8-bit inputs to 8-bit
outputs. Therefore their characteristics have
significant effects on the strength of the entire
system. The characteristics of S-boxes of SAFER
family of ciphers are examined for the criteria of
strict avalanche, bit independence, and XOR
table distribution. Qur experiments show that
the “exponentiating” S-box has a weakness for
the input difference of 128 (=10000000,) and the
“logarithm-taking” S-box has a weakness for the
input difference of 253 (=11111101,).

L INTRODUCTION

Secure And Fast Encryption Routine with
a Key of length 64 bits [1] (SAFER K-64) is a
symmetric (one-key) block cipher, which was
designed by J. L. Massey. SAFER K-64 is a byte-
oriented block-enciphering algorithm. The block
length is 8 bytes (64 bits) for plaintext and
ciphertext; the user-selected key is also 8 bytes (64
bits) in length. SAFER K-64 is the first designed
cipher of the SAFER family of ciphers consisting
of SAFER K-64, SAFER K-128, SAFER SK-64,
SAFER SK-128, and SAFER SK-40. The block
size of all the ciphers in the SAFER family is 64
bits, while the key length is 40 or 64 or 128 bits as
indicated in the name of the cipher. The other
ciphers in the SAFER family differ from SAFER
K-64 only in their key schedules and in the oumber
of rounds used. The encryption round structure of
SAFER K-64 is shown in Figure 1. The operations
labeled “45 and “logss” in Figure 1 are the “only
nonlinear layers™ of the cipher and they apply two
different “highly nonlinear” transformations to their
inputs. Therefore their characteristics have
significant effects on the strength of the entire
system. These two operations are called
“exponentiating box” and “logarithm-taking box™
which we call S-boxes of SAFER family of ciphers.
They are used both in the encryption and
decryption, but in different locations of the round
structures, since the encryption and decryption are
slightly different. The S-boxes of SAFER family of
ciphers are built on a mathematical structure, in
that;

= the operation labeled “45“” in Figure 1, which
notation is to suggest that if the byte input is the integer j
the byte output is 45' modulo 257 (except that this output
is taken to be 0 if the modular result is 256, which occurs
for j = 128), and

- the operation labeled “logss” in Figure 1, which
potation is to suggest that if the byte is the integer j then
the byte output is log,s(j) (except that this output is taken
to be 128 if the input bit is j = 0).

ROUND INPUT (3 Byles)

Figure 1: Encryption Round Structure of SAFER K-64

II. DEFINITIONS

1. Completeness: The idea of completeness
was introduced by Kam and Davida [2). If a
cryptographic transformation is complete, then each
ciphertext bit must depend on all of the plaintext bits.
Thus, if it were possible to find the simplest Boolean
expression for each ciphertext bit in terms of the
plaintext bits, each of those expressions would have to
contain all of the plaintext bits if the function was
complete. Alternatively, if there is at least one pair of n-
bit plaintext vectors P and P, that differ only in bit i (P, =
P @ ¢;, and ¢, is the n-bit unit vector with a 1 in position
i), and f (P) and f (P) differ at least in bit j for all { (i, ) |
1<i,j<n}, then the function f must be complete.

2. Avalanche Criterion: The idea of avalanche
was introduced by Feistel [3]. For a given transformation
to exhibit the avalanche effect, an average of one half of
the output bits should change whenever a single input bit
is complemented. In order to determine whether a given
n x n (n input bits and n output bits) fimction f satisfies
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this requirement, the 2" plaintext pairs, P and P,
such that P and P; differ only in bit i (P; =P @ ¢,
and e; is the n-bit unit vector with a 1 in position /)
are used to calculate the 2" exclusive-or sums, Cy =
S (P) & f (P). These exclusive-or sums will be
referred to as avalanche vectors each of which
contains n bits, or avalanche variables. If this
procedure is repeated for all i such that 1<i<mn,
and one half of the avalanche variables are equal to
1 for each /, then the function f'has good avalanche
effect.

3. Strict Avalanche Criterion: The

concepts of the completeness and the avalanche
effect were combined by Webster and Tavares [4]
to define the strict avalanche criterion (SAC). If a
cryptographic function is to satisfy the strict
avalanche criterion, then each output bit should
change with a probability of one half whenever a
single input bit is complemented. Consider P and
P,, two n-bit, binary plaintext vectors, such that P
and P; differ only in bit i (P; =P @ ¢;, and ¢; is the
n-bit unit vector with 2 1 in position /), 1 <i<n
Let C4=f(P) @ f (P)) and fis the cryptographic
transformation, under consideration. If f is to meet
the strict avalanche criterion, the probability that
each bit in the avalanche vector Cy is equal to 1
should be one half over the set of all possible
plaintext vectors P and P;. This should be true for
all values of /. Therefore; completeness and
avalanche effect are necessary conditions if the
strict avalanche criterion is to be met.
In addition, f'is said to satisfy maximum order SAC
(MOSAC) if for all j such that 1<;j<n, flipping
any combination of one or more input bits changes
output bit j with probability one half. SAC is a
subset of MOSAC.

Normalized distance to SAC and
normalized distance to MOSAC are the measures of
the closeness of the cipher function /' to SAC and
MOSAC respectively. We define normalized
distance to SAC for the j* avalanche variable as
follows;

{ Ducli] | Pi=e, }= l - Y, | Q)]

all(?. 7)
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where n is the number of input/output bits of f; e; is
the n-bit unit vector with a 1 in position /, P, is the
input difference between input pairs (P, Py, Cd/] is
the /* avalanche variable of the avalanche vector,
Cs (=AP) ® fiP®e) ), and 1<i, j<n If SAC is
satisfied, then D™ is 0, which is the ideal case. In
the worst case, D™ equals to 1.

And we define normalized distance to
MOSAC for the /* avalanche variable as follows;
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where n is the number of input/output bits of £, 5 is the n-
bit binary representation of any integer in the interval [1,
2°-1], P4 is the iny flt difference between input pairs (P,
PY), C4lj] is the j° avalanche variable of the avalanche
vector, Cy (= S(P) ® S(PP3) ), and 1< <n. If MOSAC
is satisfied, then D™ is 0, which is the ideal case. In the
worst case, D™ equals to 1.

4. Bit Independence Criterion: The idea of bit
independence criterion (BIC) was introduced by Webster
and Tavares {4]. For a given set of avalanche vectors
generated by the complementing of a single plaintext bit,
all the avalanche variables should be pairwise
independent. Alternatively, consider P and P;, two n-bit,
binary plaintext vectors, such that P and P; differ only in
biti (P, =P @ e;, and ¢, is the n-bit unit vector witha 1 in
position /), 1<i<n. Let C4=f(P) ® f (P, and fis the
cryptographic transformation, under consideration. If fis
to meet the bit independence criterion, the bits j and & in
C4 change independently for all i, j, k (1 </, k<n with
£k,

In order to measure the degree of independence between
a pair of avalanche variables, their correlation coefficient
pis calculated. For two variables j and k;

cov{}, k}

, k} =
ihdigiyres

&)

where

p {j, k} = correlation coefficient of j and k

cov{j, k} = covariance of j and k = E{jk} - E{j}E{k}
o’ {3 =E{7} - B4}

E{j} = expected value of

For the case of binary variables, a correlation coefficient
of 0 means that the variables are independent. In
addition, the variables will always be identical if the
correlation coefficient equals 1, and a value of —1 means
that they will always be complements of one another.
In addition, f is said to satisfy maximum order BIC
(MOBIC) if the same output bit independence holds
whenever flipping any combination of one or more input
bits. BIC is a subset of MOBIC.

For the criteria of BIC, if correlation coefficient
is calculated for every pair of avalanche variables, a
correlation matrix and a maximum correlation matrix of
sizes n x n are defined with elements:

Bplc(i’ k I P,=e,)=p{ Cd[i] > Ci[k] } ©

B2(j, k)= }{ Byuclj, k | B=e) } D

max
P,!‘.I.A_...z"'

where n is the number of input/cutput bits of £, ¢; is the n-
bit umit vector with a 1 in position i P; is
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themputdlﬂ‘erenoebetweenmputpmrs(P, P),
C4lf] is the /* avalanche variable of the avalanche
vector, Ca (=AP) ® f(PLe)) ), and 1<i,j, k<n.

Similarly, for the criteria of MOBIC, if
correlation coefficient is calculated for every pair of
avalanche variables, a correlation matrix and a
maximum correlation matrix of sizes n x n are
defined with elements:

Bmmc(j: k | Ri=5)=P{ Ca[j] > Cd[k] }(8)
B::m(jr k)='sl}‘13x._‘{ mec(jr k lP4=5) }(9)

where n is the number of input/output bits of £, 3 is
the n-bit binary representation of any integer in the
interval {1, 2"-g Py is the mpmdlﬁ'elence between
input pairs (P, P), C4lj] is the j* avalanche variable
of the avalanche vector, Cy4 ( = S(P) © S(PDS) ),
and 1<, k<n.

5. XOR Table Distribution: Differential
cryptanalysis [5], a powerful cryptanalytic attack,
requires knowledge of the XOR tables of
substitution boxes (S-boxes). For an n x n S-box,
the XOR table has a size of 2" x 2° with its rows
and columns indexed by O, 1, 2, ..., 2°-1. Position
[#, ] in the XOR table contains the value;

|t e, 1F:sE)@s(x @7)=n,}| 10)

such that 0<i, j<2°-1, and 7, and 7 are n-bit
bmmyxepresenmuonsofmdlmzand] The pair (j,
J) is called an input/output XOR pair. Differential
cryptanalysis exploits such XOR pairs with large
XOR table entries. A cipher can be secured against
" differential cryptanalysis by selecting S-boxes with
low XOR table entries, ideally 0 or 2 (the one
exception is the entry (0, 0) which has the value of
2"). The sum of the XOR table entries on the each
row is equal to 2°, which is the total number of

input vector pairs (X, X® n)).

IIL. RESULTS

Exponentiating S-Box

a) SACand MOSAC:

For  the exponentiating S-box,
{D.uc[j]lPa =e,} curves, given by (1), are
depicted in Figure 2. In the figure there are eight
curves each obtained for one of the eight 8-bit unit
vector input differences, ¢;, ..., e;. Those curves are
merged into a single one, D™%[ j] curve, by (2) in
that it takes the maximum of normalized distance to
SAC values for each avalanche variable. But, the
D[ j] curve is not depicted since it is almost the
same as the curve (D [7]l P, = e;(=128,,)}
and (1) gives more valvable information than (2)
will give. The normalized distance to MOSAC
values for all possible 255 input differences are
calculated by (3).

e

1 H ) . s ) ’ )

Figure 2: {D,.[/]| P, = ¢,} versus curves
for the exponentiating S-box

Instead of drawing all these curves in the same figure the
D= cL7] curve, given by (4), is depicted in Figure 3.
Actually, this curve is also nearly the same as the curve
{Dg.cljl| P, =128,,} in Figure 2. The only difference
is at the 6™ avalanche variable and occurs for the input
difference of 137 (=100010015). At all other avalanche
variables,themaximaoowrfortheinpmdiﬂ‘aenceof
128 (=10000000;). It is observed that normalized
distance to (MO)SAC for all avalanche variables other
than the 6™ are considerably high and the strict avalanche
criteria completely fails at the 7® and 8™ avalanche

variables where Dyg’ o - is /.

Figure 3: D, mc[}] versus ; curve for the
cxponentiating S -box

b) BIC and MOBIC:
The Bge and By, matrices are calculated

by (7) and (9) respectively as follows;
[100 070 048 033 -059 015 100 1,00]
070 100 069 047 031 -030 L00 100

Byc=|048 069 100 068 044 025 100 1,00
033 047 068 L00 065 037 100 100
-059 031 044 065 100 057 100 100
015 -030 025 037 057 100 100 100
100 100 100 L00 100 100 100 100
[ 100 100 100 100 100 100 L0O 100]
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man
MOBIC

100 070 048 033 -059 -0.25 100 1.00]
070 100 069 047 031 -030 100 100
048 069 100 068 044 -031 100 100
033 047 068 100 065 037 100 100
-059 031 044 065 100 057 LOO 100
~025 -030 -031 037 057 100 100 LOO
1.00 1,00 1,00 100 100 1,00  L00 L00
[ 100 100 100 100 100 100 100 100]
As scen [from the matrices. the correlation

cocfficient between the 7" and any other avalanche
variable, and betwecn the 8" and any other
avalanche variable is /,00 (actually “undefined”
since the variance of the avalanche variable is 0 for
thc 7" and 8" bit positions of the avalanche vecior).
A search over all correlation matrices defined by
(8) shows that these undefined rows correspond to
an input difference of 128. Other values in the

B op- matrix are also quite close to /. which

means that the avalanche variables arc highly
corrclated.

¢) XOR Tabic Distribution:

The XOR table is a matrix of 256 x 256,
whose entries are calculated by (10). If it is divided
into 8 pieces. so that each piece is 32 x 256. the
maximurm entry for cach piecc is as follows;

1™ picce:max. entry = 12 for (i j) = (21. 184)
2™ picce:max. entry = 16 for (i. j) = (53. 68)
3" picce:max. entry =22 for (i, j) = (64. 60)
4" picce:max. entry = 12 for (i j) = (112. 101)
5" piece:max. entry = 128 for (i. j) = (128, 253)
6" picce:max. entry = 16 for (i, j) = (181, 185)
7" piece:max. entry = 22 for (i, j) = (192, 120)
8" picce:max. entry = 16 for (i, j) = (237. 120)

The maximum entry is 128 for the whole XOR
table and occurs for the position [128, 253). which
mcans that when P,=128,.. the avalanche vector
C4=253), occurs for 50% of the overall input pairs
since the highest possible value is 2°=256. The
XOR table distribution test also verifies the
previous tests in that the maximum (able entry
occurs for the input difference of 128.

Logarithm-taking S-Box

a) SAC and MOSAC:

For the logarithm-taking  S-box,
Dy cljlI P, =¢,} curves, given by (1), are
depicted in Figure 4. In the figure there are eight
curves each obtained for one of the eight 8-bit unit
vector input differences. ¢, ..., ez It is seen from
the Figurc 4 that normalized distances to SAC for
all avalanche variables are below 0,25, which is
quite good. Those curves are merged into a single
one, D;‘é‘[j] curve, by (2) in that it takes the

maximum of normalized distance to SAC values for

cach avalanche variablc. The 1);";’("[ Jj] curve is not

depicted since (1) gives more valuable information (han
(2) will give. The normalized distance to MOSAC valucs
for all possible 255 input differences arc calculated by
(3). Instead of drawing all these curves in the same figure
the D:,‘&".[ Vi ] curve. given by (4). is depicted in Figure
5. In Figure 5 the maxima, which are about 0,5, occur for
the input difference of 253 (=111111015) at all avalanche
variables. hence. we obtain the same curve if
(D[ 7)1 P, =253,,} is depicted.

Figure 4: {Dy,.[j]| P, = ¢,} versus; curves for the
logarithm-taking S-box

P e

"
0

Figure 5: D [ /] versus j curve for the logarithm-
taking S-box

b) BIC and MOBIC:
The B and B, . matrices arc calculated
by (7) and (9) respectivcly as follows:

By
[ 100 018 -018 021 016 -012 -0i3 -025]
018 100 009 006 -022 018 015 -019
~018 009 100 -025 011 015 024 -012
021 006 -025 100 026 009 -016 -031
016 -022 011 026 1,00 006 -012 019
-012 018 0I5 009 006 100 -015 007
~0i3 015 024 -0l6 -0I12 -0I5 100 -019
(025 -019 -012 -031 019 007 -019 100 |
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Blgsc ™
MOBIC .
[1,00 -028 -044 035 -0,48 034 033 -0,40
-028 100 -034 036 —0,28 040 034 031
-0,44 —034 100 033 -0,50 037 027 040
035 036 033 1,00 033 025 031 -031
-048 —028 -050 033 L00- 029 -030 -0737
034 040 037 025 029 100 027 037
033 034 027 031 -030 027 100 -0,53
[-040 031 040 -031 -037 037 -053 100

¢) XOR Table Distribution;

The XOR table is a matrix of 256 x 256,
whose entries are calculated by (10). If it is divided
into 8 pieces, so that each piece is 32 x 256, the
maximum entry for each piece is as follows;

l“plece max. entry = 12 for (i, j) = (13, 64)
plece max. entry =22 for (i, j) = (60, 64)
3' piece:max. entry = 16 for (i, j) = (68, 53)
4" piece:max. entry = 22 for (i, j) = (120, 192)
5 piece:max. entry = 12 for (i, j) = (133, 109)
6"" piece:max. entry = 16 for (i, j) = (185, 181)
7* piece:max. entry =16 for (i, j) = (193, 192)
8" piece:max. entry = 128 for (i, j) = (253, 128)

The maximum entry is 128 for the whole XOR
table and occurs for the position [253, 128], which
means that when P4=253,,, the avalanche vector
C4=128;, occurs for 50% of the overall input pairs
since the highest possible value is 2°=256. The
XOR table distribution test also verifies the SAC
test in that the maximum table entry occurs for the
input difference of 253, where SAC test has its

IV. CONCLUSIONS

The exponentiating S-box has a weakness
for the input difference of 128 (=10000000;). In
order to compare the exponentlaung S-box and the
logarithm-taking S-box better in terms of SAC, the
D= [j] curves, given by (4), are depicted in
Figure 6. As seen from the solid curve in Figure 6,
none of the avalanche variables obey the SAC;
moreover, it is observed from Figure 2 and Figure 6
that D)Egs.qc[j] = {DSAC[]]I P, =128,,} forall j,
except j = 6.
For the same input difference of 128, the resulting
outputs (C,C') always have the same bit values in
their 7® bit and the complement bit values in their
8™ bit positions, which make the last two rows of
By and By, matrices undefined. Other values
in Bypp, are also quite close to /, which means
that the avalanche variables are highly correlated,
and many of them are the same as the elements of
Buc(j, k | P,=128,), given by (6). The
XOR table distribution test also verifies SAC and

BIC tests in that the maximum table entry occurs
for the input difference of 128.

Figure 6: D mc[l] versus j curves for the
exponentiating and logarithm-taking S-boxes

The logarithm-taking S-box has a weakness for
the input difference of 253 (=11111101,). The dashed

curve in Figure 6 corresponds to D2, [ ;] and is equal
to  {Dg[/]lP,=253,,} for all j However,
normalized distance to MOSAC for all j is about 0,5,
which is better than the case of exponentiating S-box.

Many elements of B, 7. . are the same as the elements

of By (), & | P, =253w),andthemax1mumenu'y

of the B, is—0,53.
The maximum entry of the XOR table also occurs for the
input difference of 253, where SAC test has its maxima.

Finally, ailthough the logarithm-taking S-box
scems to be more resistive to the attacks than the
exponentiating S-box, yet it has a weakness for the input
difference of 253 and the exponentiating S-box has a
weakness for the input difference of 128.
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