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Abstract 
1 blank line using 9-point font with single spacing

Mel-frequency cepstrum coefficients (MFCC) have been the 

most popular features used in speaker recognition. It has 

been recently shown that residual signal estimated through 

linear prediction (LP) also conveys speaker-specific 

information, and applied to speaker identification. In this 

paper, we investigate on the impact of LP-residual cepstrum 

coefficients (LPRC) on speaker verification along with 

MFCC and linear predictive cepstrum coefficients (LPCC) 

as well, and make comparisons of their performance in 

verification by conducting experiments on NIST 2001 SRE 

corpus, including modern classifiers. It is shown that LPRC 

features are as useful as MFCC and LPCC features in

speaker verification, and fusing the LPRC, LPCC, and 

MFCC features in pairs improves the verification 

performance. 
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1. Introduction 
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Cepstral representations of speech signal such as mel-

frequency cepstrum coefficients (MFCC) and linear predictive 

cepstrum coefficients (LPCC) have been widely used in speaker 

recognition. Both MFCC and LPCC are vocal tract related 

acoustic features and aim to model spectral envelope or formant 

structure of the vocal tract [1], [2]. Cepstral features based on 

short-term spectral analysis are the dominant features used in 

speaker recognition because the ease of their computation and 

their effectiveness in the performance of speaker recognition. 

But there is no feature set that only conveys the information 

about speaker identity. 

Voice excitation features which paremeterize the glottal flow 

also carry useful informaton about speaker identity. The most 

popular feature which is related to voice source is the 

fundemental frequency (F0). The most common approach when 

estimating the glottal flow is that speech signal is the output of a 

filter (vocal tract filter) and the input of the filter is the vocal 

source excitation signal [3]. Vocal tract filter parameters are 

commonly estimated via well-known linear prediction (LP) 

analysis. There are several works in the literature which 

parameterize the glottal flow and used in speaker recognition 

such as Zheng et.al. [4] have applied the wavelet transform to 

residual signal, Plumpe et.al. [5] performed inverse filtering, 

and residual phase [6]. Recently [7] it has been shown that vocal 

tract spectrum fused with MFCC features improves the speaker 

recognition accuracy.  

Using the residual signal to estimate the glottal flow is a 

common approach in speech applications as used by [8]. 

Chetouani et al. [8] has shown that residual signal conveys 

speaker-specific information and when it is fused with MFCC 

features, the speaker identification performance improves. 

However, we use LPRC features in speaker verification. Our 

work is different from that in [8] in the following ways: i) a 

detailed analysis of LPRC features (not only the base features 

but also delta and double delta) on speaker verification 

performance, ii) analyzing the fusion of classifier scores not 

only with MFCC but also with LPCC features iii) we use a well-

known and modern classifiers, e.g., Gaussian mixture model 

with universal bacground model (GMM-UBM). Furthermore the 

experiments of [8] were conducted on NTIMIT and GAUDI 

databases and NTIMIT database is a telephone speech database 

but it was recorded in laboratory environment with limited 

length of training and test utterances for each speaker (there are 

total of 10 sentences for each speaker where each sentence is 

approximately 3 seconds length), and GAUDI database which is 

more realistic compared to NTIMIT but it has a small group of 

speakers (49 speakers) with different conditions such as 

language, interval sessions and microphone and as in NTIMIT it 

consists of studio recordings. We analyze the effect of LP-

residual features on a more challenging NIST 2001 corpus [9]. 
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2. Voice Excitation Features 
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The flowchart of feature extraction procedure is shown in 

Fig. 1. Three different type of features, MFCC, LPCC, and LP-

Residual cepstrum (LPRC), are extracted from speech signal. 

The detailed description of extraction of each feature set is given 

in the following subsections. 

2.1. Vocal Tract Filter Estimation 

According to speech production model speech signal can be 

modelled as a source filter system where the source excitation 

signal is filtered by a vocal tract filter. The vocal tract filter can 

be considered as a pth order filter with transfer function 
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where , 1, 2...,i piα =  are the vocal tract filter parameters. The 

filter parameters are commonly estimated using LP analysis due 

to its better computational efficiency. The LP analysis estimates 

the filter coefficients by minimizing the prediction error. The 

predicted signal is related to p past samples of signal in the form 
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The prediction error (a.k.a. residual signal) is the difference of 

actual signal and predicted signal, namely 
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Fig. 1. Flowchart of feature extraction procedure 

                          ˆ( ) ( ) ( )r k s k s k= −                               (3) 

An example for original speech signal, predicted speech 

signal by a p=12th order LP analysis and residual signal is given 

in Figure 2. 
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Fig. 2. Prediction of a speech frame via LP analysis and residual 

signal 

The spectral envelope which is the most important part of 

speech spectrum in speaker recognition that conveys the speaker 

specific information about the resonance properties of the vocal 

tract can be estimated using vocal tract filter coefficients. The 

Fast Fourier Transform (FFT) spectrum (absolute value of 

Fourier transform) envelope and LP spectrum envelope for a 

speech frame is given in Figure 3. In Fig. 3 the vocal tract 

resonances appear as peaks in LP spectrum. 

Fig. 3. Spectrum estimation with FFT (solid line) and spectrum 

envelope estimation with LP (dashed line). 
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2.2. Extraction of LPCC Features 
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Once the vocal tract filter coefficients, , 1, 2...,i i pα = are 

estimated by LP analysis for each frame of speech the filter 

coefficients are converted into cepstral coefficients using the 

following equation: 
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where mc  are the mth cepstral coefficient and p is the order of 

LP analysis or number of LP coefficients. In the experiments we 

extract m=12 LPCC features from 30 milliseconds Hamming-

windowed frames with 10 milliseconds overlap. 
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2.3. Extraction of LPRC Features 
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LPRC features are computed using residual signal r(k) which 

is defined in Eq (3). First the LP coefficients are calculated 

using residual signal and then they converted into cepstral 

coefficients as described in Eq (4). The only difference between 

LPCC and LPRC is that LPCC uses the original speech signal 

whereas LPRC uses the error (residual) signal. We used the 

same frame and overlap length as in LPCC during the

experiments. 

2.4. Extraction of MFCC Features 
The MFCC features which are shown on the leftmost part of 

Fig.1 are the baseline features we use in the experiments. 12 

MFCCs are extracted from 30 milliseconds Hamming-

windowed frames with 10 milliseconds overlap. We compute 

the MFCCs using a 27-channel triangular filterbank.

Logarithmic filterbank outputs are converted into cepstral 

coefficients by Discrete Cosine Transform (DCT). For more 

details about MFCC extraction refer to [5]. 

For the three different feature set we analyze the effect of   

appending the first and second order derivatives (delta and 

double delta) of features on speaker recognition performance. 
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The delta features are computed by convolving the features with 

the kernel [ ]1 0 1h = − . Double delta features are computed by 

applying the same kernel to the delta features. 
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3. Experimental Setup 
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In the experiments we use NIST 2001 speaker recognition 

evaluation (SRE) corpus which consists of conversational 

telephone speech in English. NIST 2001 SRE contains 174 

speakers (74 males and 100 females) with total number of 

22,418 trials (2,038 genuine and 20,380 impostor trials). The 

training data for each speaker is with the amount of 2 minutes 

and the length of test segments vary from a few seconds up to 1 

minute. 

We use a well-known and modern classifier, Gaussian

mixture model with universal background model (GMM-UBM) 

which is introduced by Reynolds, Quatieri, and Dunn (2000). 

For GMM-UBM we use diagonal covariance matrices and only 

mean vectors are adapted with a relevance factor of 16. Two 

gender-dependent background models are trained from the 

development set of database. For the LP analysis we fixed the 

predictor order p = 12. 

In the experiments, we used Equal Error Rate (EER) as the 

evaluation metric. EER corresponds to threshold which gives 

equal false acceptance rate (FAR) and false rejection rate (FRR). 

As the second evaluation metric we used minimum detection 

cost function (MinDCF) which is used in the NIST speaker 

recognition evaluations and defined as the minimum value of the 

function FARFRR ×+× 99.01.0 . At the final stage of 

experiments we used score fusion of feature set pairs. We used 

FOCAL toolkit for score fusion. 
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4. Results 
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Different combinations of features have been studied in the 

experiments first. Table 1 shows the EERs and MinDCF values 

for each feature set with delta and double delta features. The 

number of Gaussians (Model Order) for GMM-UBM is fixed to 

64 and 256. As it seen from the table LPCC features yields 

slightly better recognition accuracy than the MFFC features and 

LPRC base features (without appending delta and double delta) 

(EER 17~18%) outperform the MFCC (EER 17~19%) and 

LPCC (EER 18~19%) base features in terms of EER. 

Appending the delta and double delta improves the recognition 

accuracy for all feature sets. Clearly the recognition rates for all 

feature sets are very close to each other and the most important 

and interesting thing is that LPRC features yields recognition 

rate almost as good as MFCC features. The feature sets show the 

same behaviour in terms of MinDCF values as in EERs. Again 

LPCC yields slightly better MinDCF value than MFCCs and 

LPRC yields slightly worse value than MFCCs and appending 

first and second order derivatives improves the system 

performance. The detection error trade-off (DET) curves for 

MFCC+�+��, LPCC+�+�� and LPRC+�+�� with 256 

Gaussians GMMs are given in Fig. 4. 
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Fig. 4. DET curves of different type of features 

Next we consider the fusion of scores of different feature set 

pairs by linear score weighting. We have used FoCal toolkit to 

optimize fusion weights. We fused the scores of base features 

with appended delta and double delta features. The MinDCF 

values for fused feature set pairs and the DET curves for 

conventional MFCC and fused feature set pairs (MFCC-LPCC, 

MFCC-LPRC and LPCC-LPRC) are given in Table 2 and 

Figure 5, respectively. 

Table 1. MinDCF values for fused feature set pairs for M=64

and M=256 mixtures of GMM-UBM 

Feature Set # Gaussians 

 M=64 M=256 

MFCC-LPCC 6.65 6.22 

MFCC-LPRC 6.66 6.27 

LPCC-LPRC 6.82 6.38 

It can be seen from Table 2 and Figure 5 that fusing the 

LPCC and LPRC features with the MFCC features slightly 

improves the recognition accuracy both in terms of MinDCF 

values and EERs. The results confirm that glottal flow features 

(LPRC) achieves the recognition accuracy as good as or slightly 

worse than MFCC and LPCC. Chetouani et al. (2009) showed 

that LPRC features did not yield good identification rate and 

suggested to be fused with MFCC. Our results show that LPRC 

features can be used as the baseline features for speaker 

verification, achieving recognition rate as well as that of MFCC. 

All fused features outperform the conventional MFCC features. 
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Table 2. EERs and MinDCF values of different feature sets for M=64 and M=256 mixtures of GMM-UBM 
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Fig. 5. DET curves of fused feature sets 

5. Conclusions 
1 blank line using 9-point font with single spacing

We have studied the effect of glottal flow features (LPRC) on 

speaker verification performance. The results reveal that LPRC 

features convey useful speaker-specific information as much as 

those of MFCC and LPCC, and fusing these features with LPRC 

improve recognition accuracy. This indicates the usefulness of 

glottal flow features in speaker recognition. For future work, 

comparisons of MFCC, LPCC, and LPRC features with other 

popular feature sets such as PLPs and LFCCs would be 

interesting.  
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EER (in %) MinDCF x 100 

 # Gaussians # Gaussians 

Feature Set M = 64 M = 256     M = 64    M = 256 

MFCC 18.06 17.39 7.79 7.22 

MFCC+� 16.78 15.67 7.47 6.81 

MFCC+�+�� 16.48 15.45 7.28 6.65 

LPCC 18.49 18.15 7.48 7.13 

LPCC+� 16.87 15.75 7.01 6.63 

LPCC+�+�� 16.13 15.26 6.82 6.47 

LPRC 17.9 17.3 7.61 6.98 

LPRC+� 17.02 16.06 7.31 6.7 

LPRC+�+�� 17.02 15.75 7.24 6.76 
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