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Abstract 
 
In power system, stability problem and problems with 
electromechanical oscillations or generators swinging are 
consistent in power system. Electromechanical oscillations 
are noticeable in characteristic variables of synchronous 
generators. Consequences of synchronous generator 
connecting on grid are physical nature, apropos more 
generators connecting on one power system. The responses 
of power system on any system disturbance are 
electromechanical oscillations.  Oscillations can be low 
damped or undamped with constant or increasing 
amplitude, so they can achieve value which can disrupt the 
system operation. The monitoring of power system 
electromechanical oscillations is very important in the frame 
of modern power system management and control. This 
paper presents techniques for identification and analysis of 
low-frequency oscillations. Simulations and analysis shall be 
performed on Two-Area Test system. 
 

1. Introduction 
 
Like operations limits, the monitoring of power system 

oscillating modes is a relevant aspect of power system operation 
and control. Non-prevented low-frequency power swings can be 
cause of cascading outages that can rapidly extend effect on 
wide region. On this regard, a WAMPC systems help in 
detecting such phenomena and assess power system dynamics 
security. Oscillations in power systems are classified by the 
system components that they affect. Some of the major system 
collapses attributed to oscillations are described [1]. 
Electromechanical oscillations are of the following types: 
interplant mode oscillations, local plant mode oscillations, inter-
area mode oscillations, control mode oscillations, tensional 
modes between rotating plant. Machines on the same power 
generation site oscillate against each other at 2.0 to 3.0 Hz 
depending on the unit ratings and the reactance connecting 
them. This oscillation is termed as interplant because the 
oscillations manifest themselves within the generation plant 
complex. The rest of the system is unaffected. In local mode, 
one generator swings against the rest of the system at 1.0 to 2.0 
Hz. Inter-area mode oscillations is observed over a large part of 
the network. It involves two coherent group groups of 
generators swinging against each other at 1 Hz or less. 

This paper introduces the technique for identification and 
analysis low frequency oscillations in power system with special 
focus on multi-resolution wavelet analysis. After multi-
resolution decomposition of characteristic signals, in signal 
components physical characteristics of system oscillations are 
identified and presented on the map using the Fast-Fourier 

Transform (FFT) in time-frequency domain representation. The 
results of the Eigenvalue analysis are compared with the results 
coming from the Prony and wavelet analysis.     

The remainder of this paper is organized as follows. In 
Section 2, basic theory of small signal stability of multi-machine 
systems and also Prony and wavelet theory basics are presented. 
Practical application results identification and analysis low 
frequency oscillations on test system are given in Section 3. 
Section 4 contains the main conclusions. 

 
2. The techniques of identification low frequency 

oscillations in power system 
 
The analysis and monitoring of transient oscillations can be 

accomplished by means of several methodological approaches. 
Each approach has its own advantages and feasible applications, 
providing a different view of the system dynamic behavior. 
Eigenvalue analysis technique is based on the linearization of 
the nonlinear equations that represent the power system around 
an operating point which is the result of electromechanical 
modal characteristics: frequency, damping and shape. Direct 
spectral analysis of power response signals use the Fourier 
Transforms (or Short Time Fourier Transform (STFT), Prony or 
Wavelet analysis technique.  

 
2.1. Modal analysis - small signal stability of multi- 
machine systems 

 
Analysis of practical power systems involves the 

simultaneous solution of equations representing the following: 
(i) synchronous machines, and the associated excitation systems 
and prime movers, (ii) interconnecting transmission network 
(iii) static and dynamic (motor) loads and (iv) other devices 
such, as HVDC converters, static VAR compensators [2]. Low 
frequency electromechanical oscillations range from less than 1 
Hz to 3 Hz other than those with sub-synchronous resonance. 
Multi-machine power system dynamic behavior in this 
frequency range is usually expressed as a set of non-linear 
differential and algebraic equations. The algebraic equations 
result from the network power balance and generator stator 
current equations. The high frequency network and stator 
transients are usually ignored when the analysis is focused on 
low frequency electromechanical oscillations. The initial 
operating state of the algebraic variables such as bus voltages 
and angles are obtained through a standard power flow solution. 
The initial values of the dynamic variables are obtained by 
solving the differential equations through simple substitution of 
algebraic variables into the set of differential equations. The set 
of differential and algebraic equations is then linearized around 
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the equilibrium point and a set of linear differential and 
algebraic equations is obtained: 

 
( )uzxfx ,,=�  (1) 
( )uzxg ,,0 =  (2) 
( )uzxhy ,,=  (3) 

 
where f and g are vectors of differential and algebraic 

equations and h is a vector of output equations. The inputs are 
normally reference values such as speed and voltage at 
individual units and can be voltage, reactance and power flow 
asset in FACTS devices. The output can be unit power output, 
bus frequency, bus voltage, line power or current etc. By 
linearization (1) to (3) around the equilibrium point following 
equations (4) to (6) are given: 
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Elimination of the vector algebraic variable �z from (4) and 

(6), gives: 
 

uBxAx Δ+Δ=Δ�  (7) 
uDxCy Δ+Δ=Δ  (8) 

 
where A, B, C, D are the matrix of partial derivatives in (4) to 

(6) evaluated at equilibrium. Power system state space 
representation is normally linearized around an operating point. 
The symbol A from (7) and (8) is omitted so as to follow the 
standard state space making x and u into the incremental values. 
This is the representation of a linearized differential and 
algebraic equations model of a power system on which standard 
linear analysis tools. 

 
2.2. Basis of Prony analysis 

 
Prony analysis is a signal processing method that extends 

Fourier analysis. It is a technique of analyzing signals to 
determine model, damping, phase, frequency and magnitude 
information contain within the signal. Prony method is a 
technique for sample data modeling as a linear combination of 
exponentials, it has a close relationship to least squares linear 
prediction algorithm used for AR (Autoregressive) and ARMA 
(Autoregressive moving average) parameter estimation. Prony 
analysis is a method of fitting a linear combination of 
exponential terms to a signal. Each term in (9) has four 
elements: the magnitude An, the damping factor 	n, the 
frequency fn, and the phase angle �n. Each exponential 
component with a different frequency is viewed as a unique 
mode of the original signal y(t) [3]. The four elements of each 
mode can be identified from the state space representation of an 
equally sampled data record. The time interval between each 
sample is T: 
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Using Euler’s theorem and letting t=MT, the samples of y(t) 
are: 
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Prony analysis consists of three steps. In the first step, the 

coefficients of a linear predication model are calculated. The 
linear predication model (LPM) of order N, shown in (13), is 
built to fit the equally sampled data record y(t) with length M. 
Normally, the length M should be at least three times larger than 
the order N: 

 
 NMNMMM yayayay −−− +++= ...2211  (13) 

 
Estimation of the LPM coefficients an is crucial for the 

derivation of the frequency, damping, magnitude, and phase 
angle of a signal. To estimate these coefficients accurately, 
many algorithms can be used. A matrix representation of the 
signal at various sample times can be formed by sequentially 
writing the linear prediction of yM repetitively. 

In the second step, the roots 
n of the characteristic 
polynomial shown as (14) associated with the LPM from the 
first step are derived. The damping factor 	n and frequency fn are 
calculated from the root 
n according to (12): 
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In the last step, the magnitudes and the phase angles of the 

signal are solved in the least square sense. According to (10), 
(15) is built using the solved roots 
n: 
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The magnitude An and phase angle �n are thus calculated 

from the variables Bn according to (11). 
 

2.3. Wavelet transform 
 
Wavelet analysis is a relatively new signal processing tool 

and is applied recently by many researchers in power systems 
due to its strong capability of time and frequency domain 
analysis [4][5][6]. The Wavelet transform is a mathematical 
tool, like the Fourier transform for signal analysis. A wavelet is 
an oscillatory waveform of effectively limited duration that as 
average value of zero [7][8]. Similarly, wavelet analysis is the 
breaking up of a signal into shifted and scaled versions of the 
original (or mother) wavelet. As an example, Daubechies (db4) 
wavelet is presented on the Fig. 1. 
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Fig. 1. Wavelet (db4) 
 
The wavelet transform of a time dependent signal f(t) 

consists of a set coefficients Ws(a,b). These coefficients measure 
the similarity between the signal f(t) and a set of functions 

)(, tbaψ . All the functions )(, tbaψ are derived from a ‘mother 
wavelet’ as follow: 
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Where a represent a time dilatation and b a time translation. 

The Continuous Wavelet Transformation (CWT) of a time 
domain signal is defined by: 
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where: ( )tψ  is the basis wavelet function (or mother    

wavelet), that can be real or complex,  a is the dilatation scale 

parameter,  b is the time scale parameter, �
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daughter wavelet function. The application of wavelet transform 
in engineering areas usually requires a discrete wavelet 
transform Discrete Wavelet Transformation (DWT). A square 
integrable signal f(t) is decomposable into different time-
frequency scales. In wavelet analysis, such a signal can be 
represented by a linear combination of two parameter wavelet 
functions: 
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The wavelet functions ( )tϕ  and ( )tψ  are localized in time. 

Parameters k and j perform translation and time scaling of the 
original functions. The functions ( )tϕ  and ( )tψ are usually 
chosen so that the functions on the right side of (19) form an 
orthonormal basis. Then decomposition and reconstruction are 
efficient using orthogonal projection. The aj(k) and dj(k) terms 
are referred to as approximation and detail coefficients, 
respectively (coefficients of low-pass and high-pass filters). 
These coefficients can be order according fallowing relations: 
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They reflect a range from local to global characteristics of the 

original signal f(t) because their associated functions have 
different time-frequency scales. A very useful implementation 
of DWT, called multi-resolution analysis, is demonstrated in 
Fig. 2.  

 

Fig. 2. Wavelet multi-resolution analysis
 
The original sampled signal f is passed through a highpass 

filter (D) and a lowpass filter (A). Then the outputs from both 
filters are decimated by 2 to obtain the detail coefficients and the 
approximation coefficients at level 1 (A1 and D1). The 
approximation coefficients are then sent to the second stage to 
repeat the procedure. Finally, the signal is decomposed at the 
expected level. 

 
3. An identification low frequency oscillations in 

power system- Test results 
 
Simulation and analysis was done by using Two-Area 

System present on Fig. 3 and using software Power system 
analysis Toolbox (PSAT), Wavelet toolbox and Prony toolbox. 
The Eigenvalue analysis of the system for a specific operating 
point led to the identification of several modes of oscillation.  

 
Bus 11

Bus 10
Bus 09

Bus 08

Bus 07
Bus 06

Bus 05

Bus 04

Bus 03

Bus 02

Bus 01

Fig. 3. Test system 
 
In Table 1, selected modes of oscillation and their 

characteristics are reported. 
After simulation small disturbance (the system has been 

perturbed by applying small active power load increase at bus 8) 
observed oscillation throughout the system.  

In this case, Fig. 4 shows the voltage oscillation at bus 9. Fig. 
5 presents the Prony approximation in time domain and Fig. 6 
present Prony analysis in frequency domain. The Prony analysis 
leeds to the identification of dampings of all the identified 
modes indicated in Fig. 6 and reported in Table 2. The value of 
the dominant oscillations modes of 0.59 Hz and 1,2 Hz are 
correctly identified in agreement with the Eigenvalue analysis. 

 
Table 1. Modes of oscillations 

 

mode eigenvalue 
1/s 

damping ratio frequency 
Hz 

1 -0.102 ± j0 1 0 
2 -0.181 ± j0 1 0 
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3 -0,433 ± j3,863 0,111 0,615 
4 -0,498 ± j0,114 0,975 0,018 
5 -1,548 ± j7,932 0,192 1,262 
6 -1,640 ± j8,219 0,196 1,308 
7 -5,364 ± j0,062 1,000 0,010 
8 -19,018 ± j20,714 0,676 3,297 
9 -19,686 ± j14,411 0,807 2,294 

 

0 2 4 6 8 10 12 14 16 18 20
0.9694

0.9695

0.9696

0.9697

0.9698

0.9699

0.97

time (s)

 

VBus 09

Fig. 4. Voltage oscillation 
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Fig. 5. Prony analysis in time domain  
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Fig. 6. Prony analysis in frequency domain 
 

Table 2. Prony analysis: Frequency and damping estimation 
 

damping 
ratio 

frequency 
Hz 

0.091 0.59 
0.2 1.2 

0.81 4.0 
0.58 1.8 
1.2 3.5 

0.91 2.4 
0.64 2.9 

  
In wavelet analysis, we often speak of approximations (A) 

and details (D). The approximations are the high scale, low-
frequency components of the signal. The details are low-scale, 
high-frequency components. DWT comprises two functions. 
The first one is the scaling function, related to the low-pass 
filters and the second one is the wavelet function, related to the 
high-pass filters. Signal with low-pass and high-pass filters 
dispense on approximations (A) and details (D).  For many 
signals, the low-frequency content is the most important part, 
giving to the signal’s identity. The high- frequency content, on 
the other hand, gives the flavour or nuance. 

 

Fig. 7. Wavelet multi-resolution analysis signal of voltage 
oscillation 

 
The Haar’s mother wavelet is selected to analysis voltage 

signal on Fig. 4. Using DWT multi-resolution analysis, this 
signal is decomposed on approximations and details coefficients 
at the five levels (Fig. 7). Identification of onset of the system 
disturbance is possible with the usage of the first inner 
decomposition level of the signal (D1) which is normally 
adequate to detect any disturbance in the signal [9]. However 
other coarser resolution levels are used to extract more features 
which can help in the estimation process. As it shown 
previously, wavelet transform is applied to extract the signal 
containing the dominant mode from the voltage signal. And 
afterward, by using the Fast-Fourier Transform (FFT) in time-
frequency domain representation, as shown on Fig. 8., the 
frequency characteristic and power spectrum of the dominant 
oscillation mode in the frequency domain only of D3 component 
is done.  

After time frequency analysis of the component signal, it is 
possible to detect character of low frequency oscillations in the 
signal. The value of the dominant oscillations modes of 0.6 Hz 
as the dominant mode is correctly identified in agreement with 
the Eigenvalue analysis. The dominant mode of the D1 
component is 3.8 Hz and 0.61 Hz, while in D2 and D3 four 
dominant modes are identified: 0.6 Hz, 1.6 Hz, 2.8 Hz and 3.8 
Hz. 
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Fig. 8. FFT time frequency representation and power 
spectrum of dominant low frequency mode of the D3 

component 
 

The chart on the Fig 8. shows the time-frequency behavior of 
the oscillation modes hidden into the signal and gives rise to a 
qualitative approach for estimation the damping of the 
oscillation modes [10][11]. Like the Eigenvalue and Prony 
analysis, wavelet analysis identifies dominant modes and 
characters of these oscillations with obvious identification of 
onset of system disturbance.  
 

6. Conclusions 
 
In this paper, the technique for identification and analysis 

low frequency oscillations in power system is presented. The 
results of the Eigenvalue analysis, applied to the test system, are 
compared with the results coming from Prony and wavelet 
analysis. The test results show that with the support of this 
technique is possible to: (i) identify the onset of 
events/disturbance on the power system, (ii) efficiency in fast 
identification oscillations in power systems, (iii) detection 
dominant electromechanical oscillatory mode in power system 
and (iv) oscillatory mode character.  Real-time monitoring of 
power system dynamics can help in identifying poorly damped 
modes of oscillations and possible threats to the security of the 
system. Regarding its own advantages over the standard 
mathematical signal processing tools, it is expected for wavelet 
transform to be used in modern wide area monitoring systems. 
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