
A High Performance Multiply-Accumulate Unit with Double Carry-Save

Scheme for 6-Input LUT Based Reconfigurable Systems

Ugur Cini
1
, Olcay Kurt

2

1 Dept. of Electrical & Electronics Engineering

Trakya University, Turkey
ugurcini@trakya.edu.tr

2 Institute of Natural and Applied Sciences

 Trakya University, Turkey
olcaykurt@trakya.edu.tr

Abstract

Redundant number systems provide carry-propagation free

arithmetic, so that faster arithmetic circuits can be designed.

In this work, an alternative redundant arithmetic based

fused multiply-accumulate (MAC) unit is designed especially

suitable for 6-input look-up-table (LUT) based FPGAs. By

employing only (6, 3) counters in the partial product

reduction and accumulate operations, least amount of logic

depth is provided which results as high performance without

any pipeline requirement in the system. The proposed MAC

unit has 16x16 input with sign extended 40-bit output. The

MAC unit is compared to conventional redundant carry-

save and various standard MAC architectures. The

proposed structure provides highest performance among the

structures that have been compared.

1. Introduction

Multiply-accumulate (MAC) units are extensively used in

mathematical operations such as matrix multiplication,

convolution, filtering operations etc. Therefore performance

analysis of MAC units is critical for improvement of overall

performance of a digital system [1-4]. Reconfigurable systems,

i.e. Field Programmable Gate Arrays (FPGAs) are extensively

used in signal processing applications. In this work, a high

throughput and low latency MAC unit is designed for high

performance 6-input look-up table (LUT) based FPGAs. More

than a decade, high performance FPGAs, such as Stratix

Families of AlteraTM and Virtex Families of XilinxTM are built

using 6-input LUT elements [5,6]. Higher input LUT structures

results in faster logic since more complex building blocks can be

mapped into less logic cascades.

Redundant number systems are popular because of having

constant delay for the addition operations independent of digit

size of the input operands [7-9]. In general, there are two ways

of building carry-free arithmetic. One is signed-digit arithmetic;

the other is carry-save arithmetic. There are numerous hardware

implementations employing carry-free arithmetic for fast digital

arithmetic operations [7-9]. Carry-save arithmetic operations

have similar performance compared to signed-digit systems

since both of them are based on redundant arithmetic operations.

Moreover, carry-save arithmetic can be built using conventional

adder elements. Carry-save adder trees are most popular for

partial product reduction in multiplication [9, 10]. Moreover,

they can also be used for redundant arithmetic structures to

develop carry-free arithmetic. In this work, a carry-save

operation based MAC unit is generated employing double carry-

save encoding at the output so that 6-input LUT structures are

fully utilized for best performance. In conventional carry-save

arithmetic, the resulting redundant output is based on one carry,

and one sum bit for each digit, i.e. each digit has the value set of

(0, 1, 2) [7, 11]. In the presented implementation, each output

digit is represented as three bits, i.e., each digit has the value set

of (0, 1, 2, 3). The proposed representation is advantageous for

the 6-input LUT based FPGAs, since the arithmetic operations

are based on (6, 3) counters for the double-carry save arithmetic.

Whenever 6-input LUT devices are considered, (6, 3) counters

are recommended for the partial product reduction, since (6, 3)

counters have a single atomic delay for the 6-input LUT based

systems [12]. The reason is that, each parallel input have 6

inputs in a (6, 3) counter, which can be synthesized in a single

LUT delay. Another well-known partial product reduction

technique is employing (4, 2) compressors, which is one of the

most efficient VLSI design blocks. However, in 6-input LUT

based designs, (4, 2) compressors cannot be synthesized in a

single level cell. An alternative partial product reduction

technique is signed–digit arithmetic [1, 3]. In signed-digit

addition, two signed-digit partial products are reduced to a

single one, i.e. halving the partial product count, similar to (6, 3)

counters and (4, 2) compressors, which also halve the partial

products. However, the signed-digit implementation needs more

than single LUT delay, since the addition operation is composed

of two cascaded operations as interim sum and finalized sum [1,

3, 13].
In this work, (6, 3) counters are both used in the partial

product reduction together with accumulate operation. As a

result, the carry-propagation does not occur in the multiply-add

operations. It should also be noted that, in this work, double-

carry save encoding for MAC unit generation using (6, 3)

counters is proposed for the first time in the literature. The

output is always kept in double carry save format, i.e. the result

is kept in three output bits for each digit. As a result, redundant

MAC output is generated without any pipeline stage with

highest speed compared to any of the non-pipelined MAC unit

architecture. Whenever conventional binary result, i.e.

conventional 2’s complement output is required, a three operand

adder is used for the computation of the result.

940

Fig. 2. Modified Booth encoding scheme with sign extension to 40-bits

(6,3) counter

x5

x4

x3

x2

x1

x0

s0

s1

s2

X0

X1

X2

X3

X4

X5

S0

S1

S2

 (a) (b)

Fig. 2. (6, 3) counter: (a) Single-bit; (b) multi-bit

representation with vertical line reduction

However, the redundant to standard 2’s complement binary

conversion is only needed after all multiply-add operations are

finished. As an example, in a 100-tap FIR filter implementation,

redundant to binary conversion is needed once in 100 multiply-

add operation. The proposed system provides a high throughput

with minimum delay of the system.

The designed MAC unit is synthesized for AlteraTM’s Stratix-

III FPGA and compared to conventional MAC units built using

various software multipliers, hardware multipliers, pipelined

multipliers etc. The hardware cost, speed and throughput metrics

and dynamic power requirements are analyzed.

2. Redundant MAC Architecture

In the proposed MAC unit, after the partial product

generation using well-known radix-4 modified Booth encoding,

multiply and add operations are unified under the (6, 3) counter

tree arrays. Counters are generally used for the reduction of

number of the addition operands. Fig. 1(a) and 1(b) show the

single bit and multi-bit (6, 3) counter schemes, respectively. In

Fig. 1(a), six of the input operands are added up to have output

values between 0 and 6, i.e. (000)2 – (110)2. In Fig. 1(b), six of

eight-bit binary inputs operands to be added are fed into (6, 3)

array vertically and the number of the input operands to be

added are reduced from six to three. The advantages of the usage

of (6, 3) counters and efficient implementation techniques for

the 6-input LUT based FPGAs are explained in [12]. Since each

(6, 3) counter for each bit array requires 6-inputs, any (6, 3)

counter array can be synthesized within a single LUT delay.

Table 1. Various reduction operator metrics

Binary

signed-digit

(4,2)

compressor
(6,3) counter

Bit-

width

Delay

(ns)

Area

(LUT)

Delay

(ns)

Area

(LUT)

Delay

(ns)

Area

(LUT)

16-bit 2,77 80 1,84 48 1,15 48

24-bit 3,45 120 1,91 72 1,10 72

32-bit 3,27 160 1,95 96 1,15 96

64-bit 3,19 320 1,93 192 1,15 192

Generally, a carry-save reduction tree is not preferred in the

partial product reduction in FPGA systems, since they require

more area than carry-propagate schemes [15, 16]. Moreover, fast

carry chains provide efficient performance which makes carry-

propagate schemes more popular [15, 16] for general

applications. However, carry-propagate schemes have linear

dependency on bit-width, and, as the bit-width grows, the carry-

propagate scheme becomes inefficient. Carry-save scheme

doubles area requirement compared do carry-propagate schemes

[16]. If area requirement is not main concern, redundant

reduction trees, such as (4, 2) compressors, binary-signed digit

adder trees, counter trees can be used in FPGA multipliers.

Table 1 shows performance characteristics and area

requirements of various multi-operand reduction operators.

Among various reduction operators, (6, 3) counters give best

performance for the 6-input LUT based FPGAs as shown in

Table 1. According to Table 1, (4, 2) compressors and (6, 3)

counters require same amount of resources where (6, 3) counters

are much faster. Binary signed-digit scheme require more area

and the delay of the operator is more compared to (4, 2)

compressor and (6, 3) counter array. Among the compared

redundant operators; (6, 3) counter array, (4, 2) reduction array

and binary signed digit operators all halve the input operands,

i.e., all of them have similar functionality for arithmetic

efficiency regardless of performance concern.

In [11], a regular carry-save scheme is proposed suitable for

multiply-add operations without carry propagation. The

redundant number format in [11] consists of two components,

where in the proposed double carry-save scheme the redundant

output consists of three components. A MAC unit consists of a

multiplier path, a registered accumulate output. For the

multiplication of the proposed architecture, standard Booth

encoding scheme is employed with sign extension to 40-bit

outputs. The sign extension is made due to the fact that the

941

Fig. 4. Redundant MAC architecture based on conventional redundant CSA structure

Fig. 3. Proposed multiply-accumulate architecture

 accumulate output should not overflow after multiple multiply-

accumulate operations. The radix-4 modified Booth encoding

with sign extension is depicted in Fig. 2. Here, each line

represents generated partial product. The partial products are

generated according to the rules shown in Table 2. Here, each

partial product is generated according to the multiplier bits (x2i+1

x2i+1 x2i+1). The ei in each line is equivalent to the sign bit of the

related partial product. si in each line is 1 if the sign of Y is

inverted, it is 0 if the sign of Y is positive, which is generated

according to Table 2.The last partial product of the Booth

encoding stage (i.e. 8th line in Booth encoding output) is padded

with 1’s to extend the multiplier output from 16x16 = 32 bits to

40 bits in order not to overflow the output after multiple

multiply-accumulate operations. 40-bit output with 32-bit+8-bit

sign extension provides versatile structure so that overflow does

not exist for recursive multiply-add operation. The details of the

Booth encoding scheme is straightforward and explained in

[14].

Although Booth encoding halves the number of partial

products, i.e. there exists 8 partial product, s7 of the last line

results as another operand to be added together. As a result, the

output of Booth encoding results as 9 operands to be added.

Empty lines for the each addition operands are padded with 0’s

for easy hardware implementation, i.e, there exists 40-bits of 9

rows for the partial product reduction scheme.

The proposed MAC architecture is shown in Fig. 3. Here, the

thick lines represent 40-bit operands. The output of the MAC

consists as a composition of three outputs, i.e. each digit has the

value set of (0, 1, 2 3). For the accumulate operation, the three

bit output is fed back to the (6, 3) counter tree. By using the

proposed architecture, the critical path for each multiply-add

operation consist of one Booth encoding stage and two (6, 3)

counter stages. Since both Booth encoding and (6, 3) counter

stages can be implemented with a cost of single LUT logic

depth, total system critical path is only 3 LUT delays. As a

result, a high throughput with minimum register delay can be

achieved. As shown in Fig. 3, the redundant multiply

accumulate operation does not have an explicit pipeline stage.

Even with no pipeline in the operation, the structure operates at

high speed as contrast to conventional multiply-accumulate

structures. The only clock delay appears for the redundant to

normal binary conversion stage which is simply a three operand

adder. The redundant to binary conversion stage is shown inside

the dotted box in Fig. 3. Normal binary conversion is not

required frequently in most of the digital signal processing

applications. As an example, for a 100-tap finite impulse

response filter (FIR) stage, redundant to binary conversion is

needed after every 100 multiply-add operations. The condition

is true for other digital signal processing applications such as

matrix multiplication, general convolution operations etc.

Table 2. Radix-4 modified booth encoding

x2i+1 x2i x2i-1
Partial

Product

Booth

Selector

Output

0 0 0 0 0

0 0 1 Y jy

0 1 0 Y jy

0 1 1 2Y 1jy

1 0 0 -2Y 1jy

1 0 1 -Y jy

1 1 0 -Y jy

1 1 1 -0 0

942

Fig. 5. Conventional MAC unit with various pipeline

combinations

3. Results and Discussions

For performance and resource requirement comparison,

redundant carry-save-adder (CSA) redundant standard output

encoding as (C, S) structure is also designed and compared with

the proposed double carry-save structure as depicted in Fig. 4.

Here, each output digit is encoded as two bits (C, S) as

explained in detail in [11]. The standard redundant CSA scheme

is employed by adding an extra (3, 2) reduction stage to our

proposed MAC unit which is shown in Fig. 4. Moreover, to

compare other standard structures, conventional multiply-

accumulate units are also constructed using: MAC units with

hardware and software multipliers as depicted in Fig. 5, where

software based multipliers are automatically synthesized using

Altera’s Megafunctions Library. Fig. 5. shows a generic

pipelined MAC unit model with various pipeline stages which is

built for comparison with the proposed structure. The first

pipeline stage appears at the multiplier, which is represented as

stage A. The second stage is the pipeline stage between the

multiplier and the adder operation. There does not exist a bit-

level pipeline stage for the add operator, since fast carry chains

provide sufficiently fast operation for 40-bit addition. According

to the given pipeline stages, performance metrics are measured

and tabulated in Table 3. The first 5 rows are non-redundant

standard binary MAC unit implementations, i.e. different

configurations of Fig. 5. Resource usage is determined by

Adaptive LUT units (ALUT) and register count (Reg.). If the

multiplier inside the MAC unit synthesized using logic

elements, the structure is named as soft multiplier and, if the

multiplier is synthesized using hardwired multiplication units,

the structure is named as hardware multiplier.

If hardware multiplier is used in standard configuration, high

performance is achieved. However, the proposed structure is

still faster. The proposed structure has no pipeline; however, it

may require a single extra clock delay for the redundant output

to binary conversion, so that the clock delay is represented as

(1+1) in Table 3. The benchmark circuits are built by employing

shallow pipeline stages and the proposed scheme is faster than

pipelined multiply-add units. Hardware multiplier based MAC

unit performance is close to the proposed scheme; however, the

proposed scheme is still 10% faster. As a result, double carry-

save redundant representation provides best performance

metrics among the carry-propagate multipliers and hardware

multiplier based implementations. Moreover, the proposed

structure has 8% better speed performance and requires 18 %

less LUT requirement compared to the conventional redundant

CSA (Fig. 4) architecture. However, double carry-save encoding

requires more registers compared to standard redundant CSA

implementation of Fig. 5.

4. Conclusions

In this paper, alternative redundant carry-save arithmetic, i.e.

double carry-save encoding based MAC unit is proposed. The

designed MAC unit has high throughput with low clock delay.

The structure is advantageous since it is free of carry

propagation. Since all of the redundant arithmetic systems are

free of carry propagation, the system is also compared to another

classical carry-fee MAC unit with carry-save output encoding.

Among all, the proposed structure shows best throughput with

least amount of clock delay. The proposed structure provides

lowest logic depth providing fast multiply-add operation in a

single stage without pipeline. The system is especially suitable

for 6-input LUT based FPGA structures.

Table 3. Comparison of the MAC units

Structure
Resource

Usage

Dynamic

Power

(mW)

Clock

Delay

Speed

(MHz)

Soft

Multiplier

(no pipeline)

258 ALUT

72 Reg.

8

1 124

Soft

Multiplier

1-level

pipeline:

(B =1)

259 ALUT

104 Reg.

8

2 160

Soft

Multiplier 2-

level pipeline:

(A =1; B =1)

263 ALUT

190 Reg.
9 3 210

Hardware

Multiplier

(no pipeline)

2 DSP Block

40 ALUT

40 Reg.

6.8 1 141

Hardware

Multiplier

1-level

pipeline:

(B =1)

2 DSP Block

40 ALUT

80 Reg.

6.9 2 261

Carry-Save

MAC Unit

(Fig. 4)

493 ALUT

150 Reg.

12

1+1 265

Proposed

(Fig. 3)

418 ALUT

178 Reg.

11.5 1+1 286

5. References

[1] K. Parhi, VLSI Digital Signal Processing Systems, John
Wiley & Sons, 1999.

[2] W. Kamp, A. Bainbridge-Smith, “Multiply Accumulate
Unit Optimised for Fast Dot-Product Evaluation”, Int.
Conf. on Field-Programmable Technology, pp. 349-352,
2007.

[3] X. Huang, W. Liu, B. Wei, “A High Performance CMOS
Redundant Binary Multiplication-and-Accumulation
(MAC) Unit”, IEEE Trans. Circuits & Syst.-I, Vol. 41 No.
1, pp. 33-44, Jan. 1994.

[4] D. Lee, C. Ryu, K. Kwon, W. Choi, “Design and
implementation of 16-bit fixed point digital signal
processor”, Int. SoC Design Conference, Vol.2 pp 61-64,
2008.

943

[5] Xilinx Inc., Virtex-6 Family Overview, www.xilinx.com,
2012.

[6] Altera Corp., Stratix III Device Handbook,
www.altera.com, 2011.

[7] A. F. Gonzalez and P. Mazumder, “Redundant Arithmetic:
Algorithms and Implementations,” INTEGRATION, the
International VLSI Journal, Vol. 30, Dec. 2000, pp. 13-53.

[8] D. S. Phatak, T. Goff, and I. Koren, “Constant-Time
Addition and Simultaneous Format Conversion Based on
Redundant Binary Representations”, IEEE Trans.
Computers, Vol. 50, pp. 1267-1278, Nov. 2001.

[9] M. D. Ercegovac, T. Lang, Digital Arithmetic, Morgan
Kaufmann, 2003.

[10] B. Parhami, Algorithms and Design Methods for Digital
Computer Arithmetic, Oxford University Press, 2012.

[11] T. G. Noll, “Carry-Save Architectures for High-Speed
Digital Signal Processing”, Journal of VLSI Signal
Processing, vol. 3, 121-140, 1991.

[12] Altera Corp., Advanced Synthesis Cookbook,
www.altera.com, 2011.

[13] G. C. Cardarilli, S. Pontarelli, M. Re, A. Salsano, “On the
use of Signed Digit Arithmetic for the new 6-Inputs LUT
based FPGAs”, Int. Conf. on Electronics, Circuits and
Systems, ICECS’2008, pp. 602-605, 2008.

[14] N. Weste, D. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th Ed., Addison Wesley, 2010.

[15] W. Jamro, K. Wiatr, “FPGA implementation of addition as
a part of the convolution”, Euromicro Int. Conf., Sept.
2001.

[16] C. D. Moreno, F. J. Quiles, M. A. Ortiz, M. Brox, J.
Hormigo, J. Villababa, E. L. Zapata, “Efficient mapping on
FPGA of convolution computation based on combined
CSA-CPA Accumulator”, Int. Conf. on Electronics,
Circuits, and Systems, ICECS 2009, pp. 419-422, 2009.

944

http://www.xilinx.com/
http://www.altera.com/
http://www.altera.com/

