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Abstract 

Redundant number systems provide carry-propagation free 

arithmetic, so that faster arithmetic circuits can be designed. 

In this work, an alternative redundant arithmetic based 

fused multiply-accumulate (MAC) unit is designed especially 

suitable for 6-input look-up-table (LUT) based FPGAs. By 

employing only (6, 3) counters in the partial product 

reduction and accumulate operations, least amount of logic 

depth is provided which results as high performance without 

any pipeline requirement in the system. The proposed MAC 

unit has 16x16 input with sign extended 40-bit output. The 

MAC unit is compared to conventional redundant carry-

save and various standard MAC architectures. The 

proposed structure provides highest performance among the 

structures that have been compared. 

1. Introduction 

Multiply-accumulate (MAC) units are extensively used in 

mathematical operations such as matrix multiplication, 

convolution, filtering operations etc. Therefore performance 

analysis of MAC units is critical for improvement of overall 

performance of a digital system [1-4]. Reconfigurable systems, 

i.e. Field Programmable Gate Arrays (FPGAs) are extensively 

used in signal processing applications. In this work, a high 

throughput and low latency MAC unit is designed for high 

performance 6-input look-up table (LUT) based FPGAs. More 

than a decade, high performance FPGAs, such as Stratix 

Families of AlteraTM and Virtex Families of XilinxTM are built 

using 6-input LUT elements [5,6]. Higher input LUT structures 

results in faster logic since more complex building blocks can be 

mapped into less logic cascades. 

Redundant number systems are popular because of having 

constant delay for the addition operations independent of digit 

size of the input operands [7-9]. In general, there are two ways 

of building carry-free arithmetic. One is signed-digit arithmetic; 

the other is carry-save arithmetic. There are numerous hardware 

implementations employing carry-free arithmetic for fast digital 

arithmetic operations [7-9]. Carry-save arithmetic operations 

have similar performance compared to signed-digit systems 

since both of them are based on redundant arithmetic operations. 

Moreover, carry-save arithmetic can be built using conventional 

adder elements. Carry-save adder trees are most popular for 

partial product reduction in multiplication [9, 10]. Moreover, 

they can also be used for redundant arithmetic structures to 

develop carry-free arithmetic. In this work, a carry-save 

operation based MAC unit is generated employing double carry-

save encoding at the output so that 6-input LUT structures are 

fully utilized for best performance. In conventional carry-save 

arithmetic, the resulting redundant output is based on one carry, 

and one sum bit for each digit, i.e. each digit has the value set of 

(0, 1, 2) [7, 11]. In the presented implementation, each output 

digit is represented as three bits, i.e., each digit has the value set 

of (0, 1, 2, 3). The proposed representation is advantageous for 

the 6-input LUT based FPGAs, since the arithmetic operations 

are based on (6, 3) counters for the double-carry save arithmetic. 

Whenever 6-input LUT devices are considered, (6, 3) counters 

are recommended for the partial product reduction, since (6, 3) 

counters have a single atomic delay for the 6-input LUT based 

systems [12]. The reason is that, each parallel input have 6 

inputs in a (6, 3) counter, which can be synthesized in a single 

LUT delay. Another well-known partial product reduction 

technique is employing (4, 2) compressors, which is one of the 

most efficient VLSI design blocks. However, in 6-input LUT 

based designs, (4, 2) compressors cannot be synthesized in a 

single level cell. An alternative partial product reduction 

technique is signed–digit arithmetic [1, 3].  In signed-digit 

addition, two signed-digit partial products are reduced to a 

single one, i.e. halving the partial product count, similar to (6, 3) 

counters and (4, 2) compressors, which also halve the partial 

products. However, the signed-digit implementation needs more 

than single LUT delay, since the addition operation is composed 

of two cascaded operations as interim sum and finalized sum [1, 

3, 13]. 
In this work, (6, 3) counters are both used in the partial 

product reduction together with accumulate operation. As a 

result, the carry-propagation does not occur in the multiply-add 

operations. It should also be noted that, in this work, double-

carry save encoding for MAC unit generation using (6, 3) 

counters is proposed for the first time in the literature. The 

output is always kept in double carry save format, i.e. the result 

is kept in three output bits for each digit. As a result, redundant 

MAC output is generated without any pipeline stage with 

highest speed compared to any of the non-pipelined MAC unit 

architecture. Whenever conventional binary result, i.e. 

conventional 2’s complement output is required, a three operand 

adder is used for the computation of the result. 
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Fig. 2. Modified Booth encoding scheme with sign extension to 40-bits 
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Fig. 2. (6, 3) counter: (a) Single-bit; (b) multi-bit 

representation with vertical line reduction 

 

However, the redundant to standard 2’s complement binary 

conversion is only needed after all multiply-add operations are 

finished. As an example, in a 100-tap FIR filter implementation, 

redundant to binary conversion is needed once in 100 multiply-

add operation. The proposed system provides a high throughput 

with minimum delay of the system. 

The designed MAC unit is synthesized for AlteraTM’s Stratix- 

III FPGA and compared to conventional MAC units built using 

various software multipliers, hardware multipliers, pipelined 

multipliers etc. The hardware cost, speed and throughput metrics 

and dynamic power requirements are analyzed. 

2. Redundant MAC Architecture 

In the proposed MAC unit, after the partial product 

generation using well-known radix-4 modified Booth encoding, 

multiply and add operations are unified under the (6, 3) counter 

tree arrays. Counters are generally used for the reduction of 

number of the addition operands. Fig. 1(a) and 1(b) show the 

single bit and multi-bit (6, 3) counter schemes, respectively. In 

Fig. 1(a), six of the input operands are added up to have output 

values between 0 and 6, i.e. (000)2 – (110)2. In Fig. 1(b), six of 

eight-bit binary inputs operands to be added are fed into (6, 3) 

array vertically and the number of the input operands to be 

added are reduced from six to three. The advantages of the usage 

of (6, 3) counters and efficient implementation techniques for 

the 6-input LUT based FPGAs are explained in [12]. Since each 

(6, 3) counter for each bit array requires 6-inputs, any (6, 3) 

counter array can be synthesized within a single LUT delay. 

 

Table 1.  Various reduction operator metrics 

 

Binary 

signed-digit 

(4,2) 

compressor 
(6,3) counter 

Bit-

width 

Delay 

(ns) 

Area 

(LUT) 

Delay 

(ns) 

Area 

(LUT) 

Delay 

(ns) 

Area 

(LUT) 

16-bit 2,77 80 1,84 48 1,15 48 

24-bit 3,45 120 1,91 72 1,10 72 

32-bit 3,27 160 1,95 96 1,15 96 

64-bit 3,19 320 1,93 192 1,15 192 

 

Generally, a carry-save reduction tree is not preferred in the 

partial product reduction in FPGA systems, since they require 

more area than carry-propagate schemes [15, 16]. Moreover, fast 

carry chains provide efficient performance which makes carry-

propagate schemes more popular [15, 16] for general 

applications. However, carry-propagate schemes have linear 

dependency on bit-width, and, as the bit-width grows, the carry-

propagate scheme becomes inefficient. Carry-save scheme 

doubles area requirement compared do carry-propagate schemes 

[16]. If area requirement is not main concern, redundant 

reduction trees, such as (4, 2) compressors, binary-signed digit 

adder trees, counter trees can be used in FPGA multipliers. 

Table 1 shows performance characteristics and area 

requirements of various multi-operand reduction operators. 

Among various reduction operators, (6, 3) counters give best 

performance for the 6-input LUT based FPGAs as shown in 

Table 1. According to Table 1, (4, 2) compressors and (6, 3) 

counters require same amount of resources where (6, 3) counters 

are much faster. Binary signed-digit scheme require more area 

and the delay of the operator is more compared to (4, 2) 

compressor and (6, 3) counter array. Among the compared 

redundant operators; (6, 3) counter array, (4, 2) reduction array 

and binary signed digit operators all halve the input operands, 

i.e., all of them have similar functionality for arithmetic 

efficiency regardless of performance concern. 

In [11], a regular carry-save scheme is proposed suitable for 

multiply-add operations without carry propagation. The 

redundant number format in [11] consists of two components, 

where in the proposed double carry-save scheme the redundant 

output consists of three components. A MAC unit consists of a 

multiplier path, a registered accumulate output. For the 

multiplication of the proposed architecture, standard Booth 

encoding scheme is employed with sign extension to 40-bit 

outputs. The sign extension is made due to the fact that the 
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Fig. 4. Redundant MAC architecture based on conventional redundant CSA structure 

 

 
 

Fig. 3. Proposed multiply-accumulate architecture 

 accumulate output should not overflow after multiple multiply-

accumulate operations. The radix-4 modified Booth encoding 

with sign extension is depicted in Fig. 2. Here, each line 

represents generated partial product. The partial products are 

generated according to the rules shown in Table 2.  Here, each 

partial product is generated according to the multiplier bits (x2i+1 

x2i+1 x2i+1). The ei in each line is equivalent to the sign bit of the 

related partial product. si in each line is 1 if the sign of Y is 

inverted, it is 0 if the sign of Y is positive, which is generated 

according to Table 2.The last partial product of the Booth 

encoding stage (i.e. 8th line in Booth encoding output) is padded 

with 1’s to extend the multiplier output from 16x16 = 32 bits to 

40 bits in order not to overflow the output after multiple 

multiply-accumulate operations. 40-bit output with 32-bit+8-bit 

sign extension provides versatile structure so that overflow does 

not exist for recursive multiply-add operation.  The details of the 

Booth encoding scheme is straightforward and explained in 

[14].  

Although Booth encoding halves the number of partial 

products, i.e. there exists 8 partial product, s7 of the last line 

results as another operand to be added together. As a result, the 

output of Booth encoding results as 9 operands to be added. 

Empty lines for the each addition operands are padded with 0’s 

for easy hardware implementation, i.e, there exists 40-bits of 9 

rows for the partial product reduction scheme.  

The proposed MAC architecture is shown in Fig. 3. Here, the 

thick lines represent 40-bit operands. The output of the MAC 

consists as a composition of three outputs, i.e. each digit has the 

value set of (0, 1, 2 3). For the accumulate operation, the three 

bit output is fed back to the (6, 3) counter tree. By using the 

proposed architecture, the critical path for each multiply-add 

operation consist of one Booth encoding stage and two (6, 3) 

counter stages. Since both Booth encoding and (6, 3) counter 

stages can be implemented with a cost of single LUT logic 

depth, total system critical path is only 3 LUT delays. As a 

result, a high throughput with minimum register delay can be 

achieved. As shown in Fig. 3, the redundant multiply 

accumulate operation does not have an explicit pipeline stage. 

Even with no pipeline in the operation, the structure operates at 

high speed as contrast to conventional multiply-accumulate 

structures. The only clock delay appears for the redundant to 

normal binary conversion stage which is simply a three operand 

adder. The redundant to binary conversion stage is shown inside 

the dotted box in Fig. 3. Normal binary conversion is not 

required frequently in most of the digital signal processing 

applications. As an example, for a 100-tap finite impulse 

response filter (FIR) stage, redundant to binary conversion is 

needed after every 100 multiply-add operations. The condition 

is true for other digital signal processing applications such as 

matrix multiplication, general convolution operations etc. 

 

 

Table 2. Radix-4 modified booth encoding 

x2i+1 x2i x2i-1 
Partial 

Product 

Booth 

Selector 

Output 

0 0 0 0 0 

0 0 1 Y jy
 

0 1 0 Y jy
 

0 1 1 2Y 1jy  

1 0 0 -2Y 1jy  

1 0 1 -Y jy
 

1 1 0 -Y jy
 

1 1 1 -0 0 
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Fig. 5. Conventional MAC unit with various pipeline 

combinations 

3. Results and Discussions 

For performance and resource requirement comparison, 

redundant carry-save-adder (CSA) redundant standard output 

encoding as (C, S) structure is also designed and compared with 

the proposed double carry-save structure as depicted in Fig. 4. 

Here, each output digit is encoded as two bits (C, S) as 

explained in detail in [11]. The standard redundant CSA scheme 

is employed by adding an extra (3, 2) reduction stage to our 

proposed MAC unit which is shown in Fig. 4. Moreover, to 

compare other standard structures,  conventional multiply-

accumulate units are also constructed using: MAC units with 

hardware and software multipliers as depicted in Fig. 5, where 

software based multipliers are automatically synthesized using 

Altera’s Megafunctions Library. Fig. 5. shows a generic 

pipelined MAC unit model with various pipeline stages which is 

built for comparison with the proposed structure. The first 

pipeline stage appears at the multiplier, which is represented as 

stage A. The second stage is the pipeline stage between the 

multiplier and the adder operation. There does not exist a bit-

level pipeline stage for the add operator, since fast carry chains 

provide sufficiently fast operation for 40-bit addition. According 

to the given pipeline stages, performance metrics are measured 

and tabulated in Table 3. The first 5 rows are non-redundant 

standard binary MAC unit implementations, i.e. different 

configurations of Fig. 5. Resource usage is determined by 

Adaptive LUT units (ALUT) and register count (Reg.). If the 

multiplier inside the MAC unit synthesized using logic 

elements, the structure is named as soft multiplier and, if the 

multiplier is synthesized using hardwired multiplication units, 

the structure is named as hardware multiplier. 

If hardware multiplier is used in standard configuration, high 

performance is achieved. However, the proposed structure is 

still faster. The proposed structure has no pipeline; however, it 

may require a single extra clock delay for the redundant output 

to binary conversion, so that the clock delay is represented as 

(1+1) in Table 3. The benchmark circuits are built by employing 

shallow pipeline stages and the proposed scheme is faster than 

pipelined multiply-add units. Hardware multiplier based MAC 

unit performance is close to the proposed scheme; however, the 

proposed scheme is still 10% faster. As a result, double carry-

save redundant representation provides best performance 

metrics among the carry-propagate multipliers and hardware 

multiplier based implementations. Moreover, the proposed 

structure has 8% better speed performance and requires 18 % 

less LUT requirement compared to the conventional redundant 

CSA (Fig. 4) architecture. However, double carry-save encoding 

requires more registers compared to standard redundant CSA 

implementation of Fig. 5.  

 

4. Conclusions 

In this paper, alternative redundant carry-save arithmetic, i.e. 

double carry-save encoding based MAC unit is proposed. The 

designed MAC unit has high throughput with low clock delay. 

The structure is advantageous since it is free of carry 

propagation. Since all of the redundant arithmetic systems are 

free of carry propagation, the system is also compared to another 

classical carry-fee MAC unit with carry-save output encoding. 

Among all, the proposed structure shows best throughput with 

least amount of clock delay. The proposed structure provides 

lowest logic depth providing fast multiply-add operation in a 

single stage without pipeline. The system is especially suitable 

for 6-input LUT based FPGA structures. 

 

Table 3. Comparison of the MAC units 

Structure 
Resource 

Usage 

Dynamic 

Power 

(mW) 

Clock 

Delay 

Speed 

(MHz) 

Soft 

Multiplier 

(no pipeline) 

258 ALUT 

72 Reg. 

 

8 

 

1 124  

Soft 

Multiplier 

1-level 

pipeline: 

(B =1) 

259 ALUT 

104 Reg. 

 

8 

 

2 160 

Soft 

Multiplier 2-

level pipeline: 

(A =1; B =1) 

263 ALUT 

190 Reg. 
9 3 210  

Hardware 

Multiplier 

(no pipeline) 

2 DSP Block 

40 ALUT 

40 Reg. 

6.8 1 141 

Hardware 

Multiplier 

1-level 

pipeline: 

(B =1) 

2 DSP Block 

40 ALUT 

80 Reg. 

6.9 2 261 

Carry-Save 

MAC Unit 

(Fig. 4) 

493 ALUT 

150 Reg. 

 

12 

 
1+1 265 

Proposed 

( Fig. 3 ) 

418 ALUT 

178 Reg. 

 

11.5 1+1 286 
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