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Abstract: This paper introduces improved blind
deconvolution schemes for equalising a
communicstion channel. Proposed algorithms have
been developed r.d are in fact extensions of the
existing one and sorne rnodifications have been rrade
to speed up its convergence. Simulation results have
been includeil in this paper to demonstrate the speed
and effectiveness of the propmed algorithms.

l.INTRODUCTION

In blind deconvolution, the desired signal or input
to the channel is unknown to the receiver. The only
information available about the input signal is its
probability disnibution. Since both the channel and
the input signal are unknown, the task of blind
deconvolution is to recover the unknown input
sequence based only on its probabilistic and
statistical properties. This is illustrated in Fig. l.

In fig. I, the input signal w(n) is transmitted and
convolved with the channel impulse response f(n).
The output of the channel denoted by x(n) is the
signal received at the receiver. The channel f(n)
may be a minimum or possibly a nonminimum
phase system. The task of the equaliser is to
deconvolve the sequence of x(n) by a filter denoted
by b(n) so that the output is the recovered replica
of the input w(n). It has already been proven that a
sufficient condition for equalisation is that the
probability distribution of the individual recovered
sequence y(n) be equal to the probability
distribution of the individual input sequence w(n).

Benveniste et al. $l presents a comprehensive
analytical study on blind equalisation. They
establish that second order statistics of x(n) alone
only provides the magnitude information of the
linear channel and thus it is insufficient for blind
equalisation of a nonminimum phase channel f(n)

containing zeros both in the inside and outside of
the unit circle. Hence, a nonminimum phase channel
cannot be identified from its output when the input
signal is i.i.d. Gaussian since second order moments
completely characterises the input and output
statistics of a linear system.

New criterion that is based on higher order
statistics has been developed in [2,3]. New method
requires the equalisation of only a few moments of
the corresponding probability distributions. An
important feature of the new criterion is that they
are universal in the sense that they do not impose
any restrictions on the probability distribution of the
input sequence. In this paper, the proposed channel
equalisation is based on the new criteria of higher
order statistics.

2. PROBLEM FORMULATION

The following assumptions are made in the model
developed in this paper:
l. The input sequence w(n) consists of zero mean

independent and identically disnibuted (i.i.d.)
real or complex random variables.

2. The unknown channel may be a nonminimum
phase linear time invariant (LTI) system in
which no zeros are placed on the unit circle.

3. Although the exact inverse of a nonminimum
phase LTI channel is unstable, a truncated
anticausal expansion can be delayed by a
constant to allow a causal approximation of the
inverse filter. This leads to our third assumption
which states that the length of the equaliser be
sufficiently long so as to avoid the anticausal
truncation effect.

Considering fig. I , wTcan write for the output

Y(n) = b(n)*f(n)*w(n) ( l)

where * denotes the convolution operation. The
convolution-deconvolution operator is defined as :

h(n) = b(n;*1n) = (n) * b(n)

= Irtn 
- k)b(k) Qa)

k

Fig. l. Convolution-deconvolution model

408



"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING''

Therefore, (l) can be written as :

Y (n )=h (1 ) *YY11 ;

= Intn - k) w(k) Qb)
k

The deconvolution in z{omain can be written as:

Y(z) = B(z) F(z)W(z) (3a)

The required convolution-deconvolution should
satisfy the following crit€rion in general:

a ejo z-'
B(z) =:_ (3b)

F(z)

where a is any number, z-^ is the constant time

delay as required for assumption 3 and eja is the
constant phase shift. Many researchers tackle the
equalisation problem with a=1. The constant
phase shift. is inherent when the probability
distibution of the input sequence is symmetric
under rotation. This phase ambiguity can be
overcome by using differential encoding of the
channel input.
From (2a), the convolution-deconvolution
operation in z-domain can be represented as:

H(z) = r1'; g1';

= 4 sll '-m 
(4a)

The inverse z-hansform of (4a) can be defined as

h ( n ) = a s j a d ( n - m )  ( 4 b )

Eq. (l) can now be simplified into a more compact
form using the above result in (4b). It can be
proven that when (4b) is satisfied, the transfer
function of the equaliser is a scaled and rotated
inverse of the channel transfer function f(n). Hence
the output of the equaliser is:

i A
y(n) =la eJ" d(n - m - k) w(k)

k

= a ej9 w(n - m) (5)

4. ALGORITHM FORMULATION

This section presents the criterion used for the
equalisation based on the Higher Order Statistics.

For complex case and assuming i.i.d. input w(n),
kurtosis ofthe deconvolved (recovered) sequence is
defined as :
co, (0,0,0) = cumly' (n), y(n), y(n), y' (n)l

= ltnGl rt'tk) h'(k) h(k) x

cum[w'(n - k), w(n - k), w(n - k), w'(n - k)] ] (6a)

where cum denotes the cumulant operation and
superscript (*) denotes the complex conjugate.

Assuming fourth order stationarity of the input
sequence, the whole equation can be rewrite as:

/+y = /+w l,nfnl f (6b)
k

where ya, and yo* are defined as the kurtosis of

the deconvolved (recovered) and transmitted
sequence respectively. Following the same line of
derivation, the variance of the deconvolved
sequence (for complex case) is defined as:

lzy = lzw f rng.l t2 (oc)

where lzn is defined as the variance of the
transmitted sequence. Having defined the kurtosis
and variance, the normalised kurtosis is defined as:

k

_ ro* ,  T 'n f t ' 'o
t / r * t t  r f { r r r { r ) r2}12

)ir,rrr r
=ka* x1-J-;-; (6d)

tz { th(k) t ' ) t '
k

Eq. (6a) to (6d) form the basis of the new criterion
for the equalisation. Since it is always true that

/ '\t

LrrtCr.lf = It'h(k)t2 | the ine4ualityof
T\T)
lk4y | < lka* I willalwaysbeobeyed andequal

if and only if the vector fr is in the form defined by
(4b). Therefore, the task of equalisation based on
this criterion is to equalise the absolute value of the
recovered sequence normalised kurtosis with that of
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the nansmitted sequence normalised kurtosis. One
of the techniques used to satisfy the criteria is to
maximise the absolute value of the recovered
sequence normalised kurtosis i.e.

max I ka, | = max I ka, ' sign fta, )] (6e)

and use of gradient algorithm to direct the hunting
of the maximum point. Defining the cost function J
to be the absolute value of the recovered sequence
normalised kurtosis, this cost function is always
nonnegative i.e.

J =  l k r y  l =  k r v ' s i g n ( k o r )  >  0  ( 7 )

Since this cost function is always nonnegative and
the required deconvolution is achieved only when
maximisation is reached, we can therefore employ
the steepest ascent algorithm to locarc the maxima
in the cost function. Cadzaw [5] has studied several
algorithmic approaches for solving the blind
deconvolution problem and presented a general
nomecursive deconvolution algorithm based on
maximising the normalised kurtosis using the
steepest ascent algorithm. However, the algorithm
converges slowly when the power spechal density
of the convolved sequence has a large variation in
itseli thereby increases the eigenvalue spread of
the convolved sequence. Besides that, the
algorithm also suffers from direction crash.
Direction crash occurs quite often when the
required deconvolved normalised kurtosis is in the
vicinity close to zero and results in the algorithm
moving in the wrong direction. [n this paper, we
propose a new algorithm based on the extension of
the existing algorithm to complex case and some
modifications to speed up its convergence and
avoid direction crash. The cost function has been
modified and is defined as:

J = l k + , -  k 4 y P > o (8)

This cost function is also always nonnegative but
the difference is that the minimum point here
conesponds to the maximum point defined in (7).
Cost function defined in this way avoids direction
crash and the algorithm will always move in the
same direction. The task of deconvolution is now
to hunt for the minimum point so as to satisfy the
criteria defined above. In particular, the new cost
function requires a priori knowledge of the
hansmitted sequen@ normalised kurtosis. The
latter parameter can be estimated as soon as when
the probability density function of the transmitted

input sequence is known since higher order
cumulant is related to its moments, For example, if
fte fansmitted sequence is of binary nature and has
equal probability of transmitting I's and 0's , then
the normalised kurtosis as defined in (6d) is equal to
-2. For a 4-QAM signal, it is approximately equal to
-1 .

Fast convergence has been observed when the
convolved sequence is white, however, it is
relatively slow when the convolved sequence has a
large variation in the power spectral density.
Therefore, in order to speed up the convergence, we
proposed to use spectral prewhitening prior to the
deconvolution algorithm. fiis can be achieved by
using the Karhunen-Lo6ve Transform(KlT) which
transforms a set of correlated random variables into
a set of uncorrelated random variables. This in turn
can be obtained via Singular Value Decomposition
(SVD) a set of orthonormal eigenvectors.

A less stringent method to speed up its
convergence speed without having to calculate the
normalised kurtosis of the transmitted sequence but
only requires the a priori knowledge of is sign is to
orthogonalise the convolved sequence and use the
cost function defined in (7) with a slight
modiftcation as follow:

J = kry .sign (ka* ) (9)

Algorithms based on this cost function will unlikely
exhibit direction crash.

4. RESULTS

The proposed two algorithms are tested together
with the existing algorithm based on (7). The
channel response is described by

(10)

which is an allpass system. The input to the channel
is a 4-QAM signal with equal probability of
distribution. Results are shown in fi9.2. (a) to 2(d).
Fig,2. (a) shows the ouput of the channel. Fig.2. (b)
shows the result of the conventional algorithm based
on (7) after proper scaling and removing the
constrant time delay. Fig.2(c) and 2(d) show the
results from the two new algorithms based on (8)
and (9) respectively with KLT orthogonalisation
after proper scaling and delay.

Resuls from fig.2 (b) to 2(d) show that all the
algorithms produce similar results. This is expected

] l 0
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Initialisation

b(0) = [br(o) b2(O) b3(O) ....'. bM(O)f = 0 exceptfor rhecentretap-weight= I or
thecentre, left and right adjacent taps = I

Perform Singular Value Decomposition on the convolved sequence :

o"vtvo=ftj 
0'l 

o,r,.r"virtheoverrdeterminedtemporaldatamatrixof theconvolved sequence
L O  O J

i .e .  Y=[y (n)  y (n+ l )  y (n+2) . . . . . . . . . y (N) f  andy(n)= [y1n;  y1n- r ; . . . y (n -M+t ) f
Q is the orthonomral matrix containing the right singular vectors of data maEix y

^  r ^  -  ' l
Z" = dtaepf oi oi......o(oj -do, isthe iusingularvalueof datamatrixy

Orthogonalise the convolved sequence via thesingular vectors :

V(n)=QHX(n)  whereV(n)= [v , (n )  v r (n ) . . . . . . vy (n) f  andX(n)= [x (n)  r (n - l ) . . . . . . x (n -M+l ) f
for loops

y(n)= bH(n)v(n) :outputof equaliser , i^, = :i;"i : estimateof kurtosisasinequation(6)'  l fz" l '

altematively

wh i le  l lo r1n+ l ) l<  l i4y@) l  ,  s ta r tw i thm=0

B M L ' I
biG+l)=bi(k)+r.-: i  Vo$nrJsignfto*) whereristhemult ipl icat ivestepsizeand O<p<l

oi

m = m + l

end

repeat the loops until I ta* - [.n,,' . d where d is the required mean square error

of the cost function defined

vo [tn, r]= vo For] r,eoGo* I

Summar.v of the oroposed alsorithms

as the output of the channel is specfally white and
prewhitening prior to filtering will achieve the same
results. However, the existing conventional algorithm
degrades when the power spectral density of the
convolved sequence has a large variation in itself.
This can be illustrated by:

F(z) =
-0 .4  +z- l

I-l.Ez-1 +O.99952'2

The transfer function has a pair of poles settle in
close approximity to the unit circle. Fig. 2(e) shows

the oulput of the channel, which is highly dispersive
and fig. 2(f) shows the inability of the conventional
steepest ascent algorithm to equalise the channel. Fig.
2(g) and 2(h) show the equalised results via the
algorithm based on (8) and (9) respectively with KLT
orthogonalisation after proper scaling and removing
the constant delay.

All the figures plotted describe the constellation
diagram ofthe convolved and deconvolved sequences.
It is also highly informative to consider the error
convergence of all the three algorithms with respect to
the number of iterations. The error conuergencJ for

( l  l )
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simultaneously between the 5e and the 7h iteration.
This is the direct implication of deconvolving a
s€quence which is spectrally white. No improvement is
seen when using prewhitening prior to filtering.

The action of prewhitening can now be seen for the
error convergence of the frg. 2(f) to 2(g). It can be seen

Figure 2(a) to 2(h)

Erd b.lM k.w .M k.y

| - .xlrilhe .l@iihh I
l + . b o n h m b d d ( 6 ) l
| 

- - .reodthm bd s e) I

2 0 2 8 $ $ € G &

Figure 3: Error convergence between lq* and k+,

frg. 2(b) to 2(d) is plotted in fig. 3. A point worth
noting is that the steady state error convergence of
all the three algorithms occtu almost

Figure 4 : Error convergence between lq. and h,

ftom figure 4 that existing algorithm saturates after the
2* iteration. However, the . other two algorithms
converge at the 56 and 6s iteration leaving an
unnoticeable error. This demonsFates the effectiveness
of the two algorithms that employ SVD prewhitening.

5. CONCLUSION

In this paper, three algorithms have been presented
which are nonrecursive. The optimisation route based
on the cost function as defined in (7) has demonstrated
fast convergence when the convolving sequence is
white, however convergence speed is affected seriously
when the convolved sequence has large variation in the
power spectral density. Results have shown that thc
two algorithms innoduced here achieved better results
where the conventional one fails. Use of SVD-KLT
prewhitening prior to filtering improves the
convergence speed considerably albeit at more
computational complexity.
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