
  

  Abstract 
A symbolic analyser is presented. It automatically 

generates analog circuit design equations. It is based 
on the use of directed graph theory. Needed 
expressions, transfer functions, poles and zeros and 
others can be automatically get from a given net list. A 
schematic support is used for this purpose. 

 
Index Terms--- Symbolic analyser, graph theory, 
automatic circuit design. 

1. Introduction 

 Design of analog circuits generally relies on both 
designer experience and the use of a numerical 
simulator [1]. However these approaches are 
nevertheless possible for the design of complicated 
circuits. The task rapidly becomes hard, tedious and 
error prone since the formulation of needed equations 
is hand made. In addition, designer can not have direct 
and easy information on components forming poles and 
zeros, and, obviously, can not act on them.  

 For these reasons, symbolic analysers are, 
nowadays, at the aim of interest of analog designers 
[1, 2]. Indeed, such tools are receiving strong attention 
because they allow and facilitate design of complicated 
circuits (involving transistors, dependent sources, etc.), 
and study of the behaviour of a circuit. Furthermore, 
they form an essential complement to numerical 
simulations [3, 4]. 

 In this paper, we present a tool that we developed 
for this purpose. It automatically generates symbolic 
and/or semi symbolic design equations. It is based on 
the use of directed graph theory. In fact, we choose the 
graph approach for two reasons:  

• Firstly, representing a circuit by its correspondent 
directed graph allows designer to have right 
information on his circuit’s main characteristics [1, 5]. 
So with a minimum experience on handling this tool, 
he becomes able to introduce the right modifications on 
this circuit (for example; to modify circuit’s 
characteristics by adding extra components in the right 
place ), 

• Secondly generation of symbolic expression is 
easier when compared to other approaches. Besides, it 
allows to ease the problem of the maximum analysed  
                                                            
 

circuit size and memory limitation ( especially for 
matrix transformations ). 

2. Architecture of the developed tool  

 Usually, determination of circuit design equations 
is based on the use of KCL and KVL (Kirchoff Current 
and Voltage Laws). Generally obtained systems are 
written in matrix form [3]: 

BXA =.  (1)

where [ ]nxnijaA=  is the coefficient matrix, and 

[ ]n
T

xxxX ...,,, 21=  and [ ]n
T

bbbB ...,,, 21=  refer to the 
symbolic circuit parameters and the input vector 
respectively. 

 If the coefficient matrix is non singular, the solution 
of  (1) can be written as follows: 
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where ik∆  denotes the correspondent cofactor.  

 However this representation is not adequate. 
Indeed, since automated generation of design equations 
is needed, designer have not to make any mathematic 
formulation [5,6]. 

 Fortunatly, diagrammatic representations offer 
interrest spare solution. Thus, we use directed graph 
theory to solve equations such as (2). 

 A useful link between a determinant of a matrix and 
its corresponding graph is obtained by referring to the 
defnition of a determinant: 

( ) ∑=
i

iniiinii aaaA ...det 21...21α  (3)

where ∑
i

iniiinii aaa ...21...21α  is the sum taken over 

all permutations, inii ...21α  is equal to –1 or +1 if 
niiii ...321  is an odd or an even permutation 

respectively.  
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 In our symbolic tool we use this feature to 
determine dependency between all circuit edges, 
admittances of loops, dependency between the graph 
loops. Also, paths between input node and the specified 
output vertex are calculated in the same way (i.e. by the 
use of the matrix permanent developped formula). 
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fig.1: flowchart of the symbolic tool architecture 

 The architectural diagram of the symbolic analyser 
tool is depicted at fig 1. The flow of main operations in 
this software can be summarized as follows: 

• From a schematic software, a net list is obtained 
(we use any schematic software for this purpose), 

• A software program written in MATLAB software, 
reads the net list, converts it to a suitable form for the 
graph treatment, does the chosen analyses and returns 
result in a symbolic form as given by (4): 
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where s is Laplace operator, and x refers to circuit’s 
parameters. TF refers to the transfer function. 

 Semi-symbolic analysis is also possible, since 
dependency between the circuit behaviour and one (or 
more) component is sometimes needed. Besides, a 
series of simulations can be obtained by variation of 
the values of a ‘generic’ component in a specified 
range. 

• Simulations are also possible. Component values 
are, therefore, introduced or get from the net list file (it 
depends on the simulation kind the designer looks for; 
simple or parametric).  

3. Application Examples 

 Two simple examples are detailed below to highlight 
some of the abilities of the symbolic analyser (of 
course more complicated circuits can be easily treated, 
however, their transfer functions will take much place 
to be presented). 

• Example n°1:  

An example of an analog filter is depicted at fig.2. Net 
list, obtained from the schematic software, is given at 
table I. Figure 3 depicts the directed graph 
representation of the circuit illustrated at fig.2. we put 
the stress on the fact that the graph is programmed in 
the symbolic software and the obtained result is 
directly given without any need of presenting the 
graph. 
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fig.2: An example of analog filter with state variables 
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fig.3: Graph representation of the circuit of  fig. 2. 

 The symbolic transfer function (TF) obtained 
thanks to the symbolic Analyser tool is given below. 
We see clearly how complicated this TF is, even 
though many simplification considerations are taking 
into account. Simplifications are done just to get a 
reasonable number of terms for the proposed example, 
other ways TF contains more than 600 terms. 
(Rs=RL0=R0;Rss=RL=R;C3=C1=C2=C0;C11=C22=C33:=C;Rs=
RL:=Ri; L2=L22=L.)  
@ source FILTER 
R_Rs         N1 N2  1   
V_entree     N1 0 DC 1V AC 1V  
C_C1         0 N2  1.44483   
R_RL0        0 N3  1   
C_C2         N2 N3  0.20718   
L_L2         N2 N3  0.93666   
C_C3         0 N3  1.44483   
C_C11        0 N4  1.44483   
L_L22        N4 N6  0.93666   
R_RL         0 N6  1   
C_C22        N4 N6  0.20718   
C_C33        0 N6  1.44483   
R_Rss        N3 N4  1   

Table 1 : Netlist of the analog filter depicted at fig.1 

TF:=(2*C0*L^4*C*Ri^2*R*s^6+C0*L^4*R*Ri*s^5+(2*C*L*Ri+C
0*L*Ri)*L^2*R*Ri*s^4+L^3*R*Ri*s^3+L^2*Ri^2*R*s^2)/(9*L^4*
Ri^3*C0^2*C^2*R^2*s^8+L^2*Ri*(12*C0*L^2*Ri^2*C^2*R+6*C0
^2*L^2*Ri^2*R*C+6*C0^2*L^2*Ri*C*R^2+6*C^2*L^2*R^2*C0*R
i)*s^7+L^2*Ri*(3*C0^2*L^2*Ri*R+12*C0*L^2*Ri*C*R+4*C0*L^
2*Ri^2*C+6*C^2*L^2*R*Ri+4*C*L^2*C0*R^2+6*C0*Ri^2*C^2*
L*R^2+6*C0^2*L*Ri^2*R^2*C)*s^6+L^2*Ri*(4*C*L^2*R+2*C0*
L^2*Ri+2*L^2*C0*R+2*L^2*C*Ri+6*Ri^2*C^2*L*R+8*C0*Ri*C
*L*R^2+3*C0^2*L*Ri*R^2+12*C0*L*Ri^2*R*C+3*C0^2*L*Ri^2
*R+3*C^2*L*R^2*Ri)*s^5+L^2*Ri*(10*C*R*L*Ri+2*C*L*R^2+2
*Ri^2*L*C+2*C0*L*Ri^2+L^2+2*C0*R^2*L+8*C0*R*L*Ri+4*Ri
^2*C0*R^2*C)*s^4+L^2*Ri*(2*Ri*C0*R^2+4*Ri^2*C*R+2*L*Ri
+2*R^2*C*Ri+3*L*R+2*Ri^2*C0*R)*s^3+L^2*Ri*(3*Ri*R+Ri^2
+R^2)*s^2)                                                                                       (5) 
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fig.4:SPICE Simulations 

 

 

fig.5: MAPLE Simulations 

 Figure 4 illustrates numeric simulations obtained by 
SPICE software. At fig.5 we give output voltages 
obtained at the same nodes that those of fig.4: n3, n4 
and n6. These results are obtained by simulation, with 
MAPLE software, of transfer functions calculated at 
these nodes.  

 We can easily see the perfect correspondence 
between both simulations. 

• Example n°2:  

At fig.6. is depicted a classical MOS mirror circuit. Let 
TF the transfer function between output voltage (node 
5) and input current I0. Its symbolic expression is 
given below. Fig.7 illustrates the graph representation 
of the circuit shown at fig.6. 
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Fig.6: Simple MOS Current Mirror 

 

TF:=gmX2*R1/((CgsX1+CgsX2)*(g0X2*R1+1)*s 
+(g0X1+gmX1)*(g0X2*R1+1) 

(7)

where CgsXi, g0Xi and gmXi are grid to source 
capacitance, output conductance and transconductance 
parameter of Xi MOS transistor .   
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Fig.7: Graph representation of the circuit of  fig. 6. 
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Fig.8: Two MOS transistor models 

where g0, gm, Cgs and Cgd refer to output 
conductance, MOS transconductance, grid to source 
capacitance and grid to drain capacitance respectively. 

 We put the stress on the fact that the designer can 
choose his transistors level of modelling according to 
the needed precision. For MOS transistors three models 
can be chosen from the library. Two of them are 
depicted at fig.8-a and 8-b. In the third model fig.8-c, 
bulk node is taken into consideration. 

4.  Conclusion  

In this paper, we present a symbolic analyser tool 
programmed with MATLAB software. The tool is 
based on the use of directed graph theory. The tool’s 
conceptual and architectural approaches are detailed. 
The analyser allows the automatic featuring and the 
generation of analog circuit design equations. It 
automatically generates specific symbolic transfer 
functions from net lists obtained from a schematic 
software. Poles and zeros can also be automatically 
extracted. From the circuit’s graph, one can have a 
direct idea on components forming zeros and/or poles 
and can ‘act’ on them. Two examples are given to 
illustrate some of the ability of the analyser. 

Now we work on using graph theory to generalize 
the application of this software to automatically design 
optimised MOS transistor circuits, such as OTAs, 
current conveyors and switched current memory cells,. 
We also project to introduce, in this tool, a procedure 
to simplify obtained functions by means of genetic 
algorithms. 
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