

 Abstract
A symbolic analyser is presented. It automatically

generates analog circuit design equations. It is based
on the use of directed graph theory. Needed
expressions, transfer functions, poles and zeros and
others can be automatically get from a given net list. A
schematic support is used for this purpose.

Index Terms--- Symbolic analyser, graph theory,
automatic circuit design.

1. Introduction

 Design of analog circuits generally relies on both
designer experience and the use of a numerical
simulator [1]. However these approaches are
nevertheless possible for the design of complicated
circuits. The task rapidly becomes hard, tedious and
error prone since the formulation of needed equations
is hand made. In addition, designer can not have direct
and easy information on components forming poles and
zeros, and, obviously, can not act on them.

 For these reasons, symbolic analysers are,
nowadays, at the aim of interest of analog designers
[1, 2]. Indeed, such tools are receiving strong attention
because they allow and facilitate design of complicated
circuits (involving transistors, dependent sources, etc.),
and study of the behaviour of a circuit. Furthermore,
they form an essential complement to numerical
simulations [3, 4].

 In this paper, we present a tool that we developed
for this purpose. It automatically generates symbolic
and/or semi symbolic design equations. It is based on
the use of directed graph theory. In fact, we choose the
graph approach for two reasons:

• Firstly, representing a circuit by its correspondent
directed graph allows designer to have right
information on his circuit’s main characteristics [1, 5].
So with a minimum experience on handling this tool,
he becomes able to introduce the right modifications on
this circuit (for example; to modify circuit’s
characteristics by adding extra components in the right
place),

• Secondly generation of symbolic expression is
easier when compared to other approaches. Besides, it
allows to ease the problem of the maximum analysed

circuit size and memory limitation (especially for
matrix transformations).

2. Architecture of the developed tool

 Usually, determination of circuit design equations
is based on the use of KCL and KVL (Kirchoff Current
and Voltage Laws). Generally obtained systems are
written in matrix form [3]:

BXA =. (1)

where []nxnijaA= is the coefficient matrix, and

[]n
T

xxxX ...,,, 21= and []n
T

bbbB ...,,, 21= refer to the
symbolic circuit parameters and the input vector
respectively.

 If the coefficient matrix is non singular, the solution
of (1) can be written as follows:

()A
b

x
iki

k det
∑ ∆

= (2)

where ik∆ denotes the correspondent cofactor.

 However this representation is not adequate.
Indeed, since automated generation of design equations
is needed, designer have not to make any mathematic
formulation [5,6].

 Fortunatly, diagrammatic representations offer
interrest spare solution. Thus, we use directed graph
theory to solve equations such as (2).

 A useful link between a determinant of a matrix and
its corresponding graph is obtained by referring to the
defnition of a determinant:

() ∑=
i

iniiinii aaaA ...det 21...21α (3)

where ∑
i

iniiinii aaa ...21...21α is the sum taken over

all permutations, inii ...21α is equal to –1 or +1 if
niiii ...321 is an odd or an even permutation

respectively.

A Graph Based Symbolic Analyser for the Characterization
 of Analog Circuits and the Automatic Generation of Design Equations

M. Fakhfakh, M. Loulou and N. Masmoudi

Laboratoire d’Electronique et des Technologies de l’Information.
National Engineering School of Sfax, Tunisia.

fakhfakhmourad@lycos.com

 In our symbolic tool we use this feature to
determine dependency between all circuit edges,
admittances of loops, dependency between the graph
loops. Also, paths between input node and the specified
output vertex are calculated in the same way (i.e. by the
use of the matrix permanent developped formula).

ORCAD schematic software

Netlist file

Netlist transformation

Vertex & Edge extraction
Models Library

Netlist Expansion

Adjanceny table determination

Graph resolution

Loops & Paths determination

Expression determination

Numeric
Simulations

Output
symbolic

expressions

Introduction of components
values& choice of simulation

kind

Output:
numeric

simulations

Save results in specific format

INPUTS:
* output node

*desired
analysis

Determination of loops and
paths

fig.1: flowchart of the symbolic tool architecture

 The architectural diagram of the symbolic analyser
tool is depicted at fig 1. The flow of main operations in
this software can be summarized as follows:

• From a schematic software, a net list is obtained
(we use any schematic software for this purpose),

• A software program written in MATLAB software,
reads the net list, converts it to a suitable form for the
graph treatment, does the chosen analyses and returns
result in a symbolic form as given by (4):

∑

∑

=

== n

j

jj

m

i

ii

sx

sx
TF

0

0 (4)

where s is Laplace operator, and x refers to circuit’s
parameters. TF refers to the transfer function.

 Semi-symbolic analysis is also possible, since
dependency between the circuit behaviour and one (or
more) component is sometimes needed. Besides, a
series of simulations can be obtained by variation of
the values of a ‘generic’ component in a specified
range.

• Simulations are also possible. Component values
are, therefore, introduced or get from the net list file (it
depends on the simulation kind the designer looks for;
simple or parametric).

3. Application Examples

 Two simple examples are detailed below to highlight
some of the abilities of the symbolic analyser (of
course more complicated circuits can be easily treated,
however, their transfer functions will take much place
to be presented).

• Example n°1:

An example of an analog filter is depicted at fig.2. Net
list, obtained from the schematic software, is given at
table I. Figure 3 depicts the directed graph
representation of the circuit illustrated at fig.2. we put
the stress on the fact that the graph is programmed in
the symbolic software and the obtained result is
directly given without any need of presenting the
graph.

n4n1 n2 n3 n6

0 0

RL0C3

C2

L2

C11

L22

Rs Rss

C33

C22

C1
in

RL

fig.2: An example of analog filter with state variables

in

n1 n2

n3 out

<-1/Rs>

<-1/Rs>

<-1/L2s-C2s>

<-C2s-1/L2s>
<-1/Rss>

<-1/Rss>

<-1/L22s-C22s>

<-1/L22s-C22s>

(1/Rs+1/L2s
+C2s+C1s)

(1/Rss+1/L2s
+C3s+C2s

+1/RL0)

(1/Rss+1/L22s
+C11s+C2s)

(1/R2+1/L22s
+C22s+C33s)

fig.3: Graph representation of the circuit of fig. 2.

 The symbolic transfer function (TF) obtained
thanks to the symbolic Analyser tool is given below.
We see clearly how complicated this TF is, even
though many simplification considerations are taking
into account. Simplifications are done just to get a
reasonable number of terms for the proposed example,
other ways TF contains more than 600 terms.
(Rs=RL0=R0;Rss=RL=R;C3=C1=C2=C0;C11=C22=C33:=C;Rs=
RL:=Ri; L2=L22=L.)
@ source FILTER
R_Rs N1 N2 1
V_entree N1 0 DC 1V AC 1V
C_C1 0 N2 1.44483
R_RL0 0 N3 1
C_C2 N2 N3 0.20718
L_L2 N2 N3 0.93666
C_C3 0 N3 1.44483
C_C11 0 N4 1.44483
L_L22 N4 N6 0.93666
R_RL 0 N6 1
C_C22 N4 N6 0.20718
C_C33 0 N6 1.44483
R_Rss N3 N4 1

Table 1 : Netlist of the analog filter depicted at fig.1

TF:=(2*C0*L^4*C*Ri^2*R*s^6+C0*L^4*R*Ri*s^5+(2*C*L*Ri+C
0*L*Ri)*L^2*R*Ri*s^4+L^3*R*Ri*s^3+L^2*Ri^2*R*s^2)/(9*L^4*
Ri^3*C0^2*C^2*R^2*s^8+L^2*Ri*(12*C0*L^2*Ri^2*C^2*R+6*C0
^2*L^2*Ri^2*R*C+6*C0^2*L^2*Ri*C*R^2+6*C^2*L^2*R^2*C0*R
i)*s^7+L^2*Ri*(3*C0^2*L^2*Ri*R+12*C0*L^2*Ri*C*R+4*C0*L^
2*Ri^2*C+6*C^2*L^2*R*Ri+4*C*L^2*C0*R^2+6*C0*Ri^2*C^2*
L*R^2+6*C0^2*L*Ri^2*R^2*C)*s^6+L^2*Ri*(4*C*L^2*R+2*C0*
L^2*Ri+2*L^2*C0*R+2*L^2*C*Ri+6*Ri^2*C^2*L*R+8*C0*Ri*C
*L*R^2+3*C0^2*L*Ri*R^2+12*C0*L*Ri^2*R*C+3*C0^2*L*Ri^2
*R+3*C^2*L*R^2*Ri)*s^5+L^2*Ri*(10*C*R*L*Ri+2*C*L*R^2+2
*Ri^2*L*C+2*C0*L*Ri^2+L^2+2*C0*R^2*L+8*C0*R*L*Ri+4*Ri
^2*C0*R^2*C)*s^4+L^2*Ri*(2*Ri*C0*R^2+4*Ri^2*C*R+2*L*Ri
+2*R^2*C*Ri+3*L*R+2*Ri^2*C0*R)*s^3+L^2*Ri*(3*Ri*R+Ri^2
+R^2)*s^2) (5)

 Frequency

10mHz 30mHz 100mHz 300mHz 1.0Hz
V(N6) V(N4,N6) V(RL0:2,C11:2) V(N3) V(N4)

0V

100mV

200mV

300mV

400mV

fig.4:SPICE Simulations

fig.5: MAPLE Simulations

 Figure 4 illustrates numeric simulations obtained by
SPICE software. At fig.5 we give output voltages
obtained at the same nodes that those of fig.4: n3, n4
and n6. These results are obtained by simulation, with
MAPLE software, of transfer functions calculated at
these nodes.

 We can easily see the perfect correspondence
between both simulations.

• Example n°2:

At fig.6. is depicted a classical MOS mirror circuit. Let
TF the transfer function between output voltage (node
5) and input current I0. Its symbolic expression is
given below. Fig.7 illustrates the graph representation
of the circuit shown at fig.6.

0 00

n1 n5

X1 X2 R1

1k

I0

Fig.6: Simple MOS Current Mirror

TF:=gmX2*R1/((CgsX1+CgsX2)*(g0X2*R1+1)*s
+(g0X1+gmX1)*(g0X2*R1+1)

(7)

where CgsXi, g0Xi and gmXi are grid to source
capacitance, output conductance and transconductance
parameter of Xi MOS transistor .

in

n1

n2

<I0>

<gm2>

(sCgs1+g01+sCgs2+gm1)

(1/R1+g02)

Fig.7: Graph representation of the circuit of fig. 6.

D

S

G

g0

gmVgs

Vgs

G D

S

Vgs

g0

G D

S

gmVgs

Cgs

Cgd

-a- -b- -c-

Fig.8: Two MOS transistor models

where g0, gm, Cgs and Cgd refer to output
conductance, MOS transconductance, grid to source
capacitance and grid to drain capacitance respectively.

 We put the stress on the fact that the designer can
choose his transistors level of modelling according to
the needed precision. For MOS transistors three models
can be chosen from the library. Two of them are
depicted at fig.8-a and 8-b. In the third model fig.8-c,
bulk node is taken into consideration.

4. Conclusion

In this paper, we present a symbolic analyser tool
programmed with MATLAB software. The tool is
based on the use of directed graph theory. The tool’s
conceptual and architectural approaches are detailed.
The analyser allows the automatic featuring and the
generation of analog circuit design equations. It
automatically generates specific symbolic transfer
functions from net lists obtained from a schematic
software. Poles and zeros can also be automatically
extracted. From the circuit’s graph, one can have a
direct idea on components forming zeros and/or poles
and can ‘act’ on them. Two examples are given to
illustrate some of the ability of the analyser.

Now we work on using graph theory to generalize
the application of this software to automatically design
optimised MOS transistor circuits, such as OTAs,
current conveyors and switched current memory cells,.
We also project to introduce, in this tool, a procedure
to simplify obtained functions by means of genetic
algorithms.

5. References
[1] D. Narshingh, Graph Theory With Applications to

Engineer and Computer Science. Prentice Hall, inc.
1974. ISBN 0-13-363473-6.

[2] R. Diestel, Graph Theory. Electronic Edition 2000.
Springer Verlag New York 197-2000. ISBN 0-397-
98976-5.

[3] G. Gielen and W. Sansen, Symbolic Analysis for
Automated Design of Analog Integrated Circuits,
Kluwer AcademicPublishers 1991. ISBN 0-7923-
9161-6.

[4] M. Ismail and J. Farnca, Introduction to Analog
VLSI Design Automation, Kluwer Academic
Publishers 1990. ISBN 0-7923-9071-7.

[5] G. Gielen, P. Wambacq and W. Sansen, “Symbolic
Analysis Methods and Applications for Analog
Circuits: A Tutorial Overview”, Proceeding of the
IEEE, Vol 82, n°2, February 194.

[6] .N. Horta, M. Fino and J. Goes, “Symbolic
techniques Applied to Switched Current ADCs
Synthesis”, ISCAS 2000, IEEE International
symposium on circuits and systems, May 28-31,
2000, Geneva, Switzerland.

