"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

E01.74/B2-35

Minimal realization of a multiple output AND/OR
combination circuit

Orhan UCAR' and Ahmet DERVISOGLU?

Abstract

In this paper we present an algorithm to realize m
Boolean functions with n variables by the use of a two
level AND/OR combination circuit. The algorithm is
implemented in an efficient computer program
MORP(Multiple Output Reduction Program), which
gives the minimal expressions of the given Boolean
functions. The algorithm always gives a minimal
solution or all minimal solutions. However, if it takes
too long time to obtain a minimal solution then the
algorithm may give a near-minimal solution in a
shorter time.

The algorithm first determines the prime implicants.
Then a cover C; is determined which contains as few
prime implicants as possible and gives a near-minimal
solution. In the next step a cover C; with fewer prime
implicants is searched; if such a cover does not exist
the solution obtained from C; is a minimal solution. If
C; is obtained then C, which contains fewer prime
implicants than C; is searched. Continuing this way, a
minimal solution is always obtained. However search
can be terminated at the end of a given time duration
in which case a near-minimal solution is obtained.

MORP is run on the PC and tested on some two level
circuits, including some MCNC benchmarks and the
minimal solutions are obtained in reasonable time
duration.

1 Introduction

Multiple output two level minimal realization problem
is a well known problem. However well known
reduction programs like ESPRESSO, SCHERZO and
others give a near-minimal solution rather than a
minimal solution. However for some purposes such as
to test other programs which give a near-minimal
solution, a program which gives minimal or ali
minimal solutions is needed.

'NETAS, Alemdag Caddesi, Umraniye, 81244 Istanbul, TURKEY
“Istanbul Technical University, Electrical and Electronics
Enginecring Faculty, Department of Electronics and

Communication Engineering, 80626 Maslak, Istanbul, TURKEY

The synthesis of a two level combinational circuit is
important in the realization of sequential circuits.
Because the synthesis of a sequential circuit can be
reduced to the synthesis of a combinational circuit and
most of the time, multi-level combinational circuits
are obtained from the two-level combinational
circuits.

In this paper we present an algorithm to realize m
Boolean functions with n variables by the use of a two
level AND/OR combination circuit. The algorithm is
implemented in an efficient computer program
MORP(Multiple Output Reduction Program), which
gives the minimal expressions of the given Boolean
functions. The algorithm always gives a minimal
solution or all minimal solutions. However, if it takes
too long time to obtain a minimal solution then the
algorithm may give a near-minimal solution in a
shorter time.

The algorithm first determines the prime implicants.
Then a cover C; is determined which contains as few
prime implicants as possible and gives a near-minimal
solution. In the next step a cover C; with fewer prime
implicant is searched; if such a cover does not exist
the solution obtained from C; is 2 minimal solution. If
C; is obtained then Cy which contains fewer prime
implicants than C; is searched. Continuing this way, a
minimal solution is always obtained. However search
can be terminated at the end of given time duration
then, a near-minimal solution is obtained.

MORP is run and tested using the PC (Pentium
200MMX with 32MB RAM), on some two level
circuits, including some MCNC benchmarks and the
results are given in Table 1. From Table 1, it can be
seen that despite of the limited computing resources,
MORP is efficient on most of the benchmarks.

II The Algorithm

The algorithm given below deals with covering
problem. Therefore it can be used in other related

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

design problems in which covering techniques are
used.

Step-1: Determination of Prime Implicants

This algorithm finds the prime implicants by the
classic Quine-McCluskey method. In this method
minterms of the functions are ordered according to the
weights. The weight of a minterm is the number of 1s
it has. Minterms that have equal weights are grouped
and adjacent groups of minterms are compared. If two
minterms are different only at one position, a new
product term which has a ‘- at this position is
produced and these minterms are signed by “*’. This
procedure ends if a new product term can not be
obtained. Product terms or minterms that are not
signed by the ‘*’ are the prime implicants of the
related functions.

Step-2: Determination of a near-minimal solution

In this step covering table is obtained. Covering table
has a row for each prime implicant and a column for
each minterm of the output functions.

In the first part of this step covering table is searched
for an essential prime implicant. If found, these prime
implicants must be included in the minimal cover. If
we add these prime implicants to the cover, we can
delete these rows and the columns they cover. Thus
essential prime implicants are added to the near-
minimal solution and related rows and columns are
deleted.

In the second part of this step row domination
procedure is applied to the remaining covering table.
Dominated rows are deleted and first part of this step
is applied to the remaining covering table.

First and second parts of this step are applied
repeatedly. If any essential prime implicant and any
dominated row can not be found, this procedure stops.

When the procedure ends then greedy method is
applied to the remaining table. This is the third part of
this step. By this method a prime implicant which
covers maximum number of minterms of the
remaining table is selected. Selected prime implicant
is added to the near-minimal solution. Related row
and columns are deleted from the covering table. After
this greedy procedure, first and second part of this step
are applied. Thus first, second and third parts of this
step are applied until the table has no row. Selected
prime implicants give a near-minimal solution. Also
number of the prime implicants of this solution give
an upper bound.

Step-3: Determination of minimal solutions

In this step, results of the first and second part of the

Step-2 described above is used. Thus essential prime
implicants are added to the minimal solution. Then
prime implicant combinations which cover the
minterms of the remaining covering table are checked.
The prime implicant combination which cover the
minterms of the remaining covering table and has a
minimum number of prime implicants are added to the
minimal solution. Thus these prime implicants and the
essential prime implicants give the minimal solution.
Since all combinations are checked for a minimal
solution, all minimal solutions are obtained.

Example 1:
Consider the functions f) and f, given below.

fi (X1, Xy, X3) =Z(4.,5,7)
£, (X3, X;, X3) =3(0,1,4)
These functions are described to the reduction
program MORP as follows.

i3
.02
.pS
000 01
001 01
100 11
101 10
111 10

The table which shows the minterms according to the
weights is given below.

0*
T
4
-
o

If we compare minterms that are in the adjacent
groups we obtain the following table.

(- | 00- 110
0*-4) 0

G | 1-1 |

124

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

Repeating the operation we find, This table has only one row. Therefore the row

indicated by the prime implicant PI, is selected. Thus
minimal cover for the functions f; and f; is obtained as

0-1)4-5 | -0- | 00

From the tables above we obtain the prime implicant
table which is given below.

Pli: Xs X2' Xy (100) | 11
Pl: X' X' (00-) [10
Pla: Xz' X;° (-oo0) |10
Pla: X3 Xp' (10-) |01
Pls: Xs X (1-1) |01

Then the covering table which has a row for each
prime implicant and a column for each minterm of the
functions f; and f, is,

ABEDED
Pl | X X
Pl X
Pl X X
Pla | X | X
Pl X

If we look at the table above, we see that second prime
implicant PI, and fifth prime implicant PIs are the
essential prime implicants. These prime implicants
must be included in the minimal cover. If we add
these prime implicants to the cover, we can delete
these rows and the columns they cover. The resulting
table is,

Pl X X
Pl X
Ply X

From the table above we see that the row
corresponding to PI; dominates the remaining two
rows. If we aelete the rows corresponding to PI; and
PL,;, we have,

| P, X X

given below.

f|=P15+PI] = X3 Xl + X3 Xz‘xl‘
f2=Plz+P11= X3‘X2‘+ X; Xz‘X]‘

Example 2:

Assume that the covering table is,

Mo My M3 Mz |mg|ms
Pl, | X X
Pl, X X
Pl, X X
Pl | X|X XX
Pls X | X

As seen from the table above, there are no essential
prime implicants. Therefore in the first part of the
Step-2, a prime implicant can not be selected.

In the second part of the Step-2, a row, which is
dominated by another row is searched; but there are no
row dominated by another rows. Therefore in the
second part of the Step-2, a row can not be deleted
from the covering table.

In the third part of this step, greedy method is applied
to this table. As a result of this method PI, which
covers maximum number of minterms is selected. By
deleting the row PL; and columns it covers, the
following table is obtained.

Pl, X
Pl, X
Ply X
Pls X

As seen from the table above, there are no essential
prime implicants. Therefore a prime implicant can not
be selected; but the row P1; dominates PL; and the row
PI, dominates PI;. Removing the corresponding rows
we have,

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING”

M2 Ms

Pl, X
Pl X

Now PI, and PI, are essential prime implicants.
Therefore, these prime implicants are added to the
near-minimal solution and the following near-minimal
solution is obtained.

fi =PL4+PL
f2 = PI4 + PI]

Since there are 3 prime implicants in the cover, the
upper bound upper bound for this example is 3.

In the next step, a minimal cover which has minimum
number of the prime implicants is searched.

Because of the upper bound is three, a search tree with
the level of two is created. To do this, two minterms,
which has lower weights, are selected. The weight of a
minterm is the number of prime implicants, which
cover it. In other words, number of ‘X" signs in the the
corresponding column gives the weight.

Covering table is shown below.

F Lt i

Mo | M4 [Ma M3 | iMafiMs
Pl | X X
Pi, X X
Pl X X
Pis [X | X X | X
Pls X | X

Hence the weights are,

Since the weights of all minterms are equal, randomly
selected two minterms will be used to create the
search tree. If we select the minterms mg and m;, the
following search tree is obtained.

root

PI, Pl

Pl Pls Pl Pls

From the search tree the combinations of the prime
implicants and the minterms covered by each
combination are given below.

PI;, PL :mgp, m, my, my, ms
PI;, PIs : my, m;, my, ms
Ply, PLy : mp, my, m3, my
Pl,,PI; : my, my, my, m3, My

Since there is no combination which covers all
minterms, the near-minimal solution, which has three
prime implicants, is a minimal solution.

3 Conclusion

In this paper we present an algorithm to realize m
Boolean functions with n variables by the use of a two
level AND/OR combinational circuit. The algorithm is
implemented with an efficient computer program
MORP(Multiple Output Reduction Program), which
gives the minimal expressions for Boolean functions.
The algorithm always gives a minimal solution or all
minimal solutions. However, if it takes too long time
to obtain a minimal solution then the algorithm may
give a near-minimal solution in a shorter time.

MORP is run and tested using the PC (Pentium
200MMX with 32MB RAM), on some two level
circuits, including some MCNC benchmarks and the
results are displayed in Table 1. From Table 1, it can
be seen that despite limited computing resources,
MORP is efficient on most of the benchmarks. The
near-minimal solution determination algorithm found

126

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

minimal solutions for all benchmarks except last three
benchmarks apex4, sao2 and ex5.

Table 1: Experimental Results

MORP MORP MOP ESPRESSO
(near-minimal) (minimal)
Benchmark | i [/} NM NPI | NP, Time NP, | Time | NP, | Time | NP, | Time
= (s (s.) s.) (s)
XOr5 o L I S R A §)
rd53 31 0
squars | 1250 9 129
conl
r/d73;»”_ S LT
rd84
misex |
0
XS is3fas588 |24g9 | 7l 5T S Wik o, e e hLh rEb e

i: number of inputs o: number of outputs NM: number of minterms NPI: number of prime implicants

NP;: number of prime implicants in the solution

References Specified Asynchronous Sequential Machines”,
Proceedings ECCTD'97, pp.690-694, Budapest,

September 1997.

[4] Ugar O. and Dervisoglu A., “State Reduction of

; 1) Incompletely Specified Finite Sequential Machines
[2] Puri R. and Gu J., “An Efficient Algorithm to by the Use of Closed Compatible Pairs”

Search for Minimal Closed Covers in Sequential Proceedings ECCTD'99, pp.1375-1378, Stresa
Machines”, IEEE Transactions on CAD of Jtaly, September 1999, ; A ’

Integrated Circuits and Systems, v.12, n.6, June { L |
[5] Dervisoglu A., “Logic Design Course Notes”,

1993, pp.737-745. ! St .
] . Istanbul Technical University, Electric and
[3] Dervigoglu A., Hactoglu H. and Ugar O., “A New Electronics Faculty, 1999.

Method for State Assignment in Incompletely

[1] E.J. McCluskey, Logic Design Principles, Prentice-
Hall Inc., Englewood Cliffs, N.J., 1986.

127

