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ABSTRACT

Oversimplification of the model for image acquisition by
CCD cameras has detrimental effects in superresolution
applications. We propose a model which assumes that image
pixels are generated from a hypothetical image created by an
imaginary high resolution image sensor.  This way,
superresolution is no longer an upsampling process but an
imitation of an imaginary high resolution sensor. We
obtained superior results compared to related models.

I. INTRODUCTION

Since image acquisition and processing become practical
by the developments in the computing technology, the
generation of a single high quality image from a set of
images of the same scene has drawn considerable
attention due to the enormous possibilities it offers in
many imaging applications. Generating high quality
printouts from video sequences and satellite imagery are
just the most common applications of superresolution
restoration. The advancements in imaging technology
paved the way to higher resolution and higher quality
images. However, this did not eliminate the desire for
better images even we have much better images than we
used to just couple of years ago.

Superresolution restoration requires multiple images of
the same scene. The references [1-7] are some examples
of different directions taken in the methodology for the
resolution enhancement. As emphasized in the
references, the difference between imaging parameters of
these images are essential. Had they been the exact
copies of the same picture, it would not be possible to
extract additional information out of them. But such
image sets can be used to reduce the uncorrelated noise in
them by just taking the average of them. In order to
obtain a superresolution image, the differences created by
spatial motion, different blur and/or such, are necessary,
Assuming that one has the images satisfying this
requirement, the  generalized methodology for
superresolution generation can be simplified as;

1. On a reference coordinate system, register the images
in subpixel level to have irregularly spaced sample
points (pixels) of a hypothetical image.

2. From these irregularly spaced samples, estimate an
image with regularly and densely spaced samples. [10]

The success of the superresolution ultimately depends on

the accuracy of the subpixel registration [11-12] and the

accuracy of the imaging model. The registration process
and superresolution image generation can be handled as
either separate or combined processes. Many researchers
assumed that they have the registration parameters and
attacked on the superresolution generation. POCS

(projection onto convex sets), on the other hand, runs

them in parallel since they are deeply interconnected. The

dependency on the subpixel registration and the imaging
model remains intact.

II. THE MODEL

A generally accepted imaging model for superresolution
purposes has separate spatial translation and rotation
blocks for every image obtained from image sensor.
Reader is referred to [13] for a through modelling of CCD
sensors. The sensor surface is populated by the square
photoactive cells each of which generate an electrical
charge proportional to the number of the incident photons.
The charge is converted to a voltage value by the sensor
electronics which later quantized and digitized. The ™
pixel value is usually modelled by a spatial integration of
the light intensity field as

P, = I 1(2)dz )
S

where I(2) is the continuous light intensity function at the
sensor plane and S is the photoactive area of the sensor
cell surface. Common optical blur, PSF,.,, and the blur
caused by the integration, PSF., are separated in the
camera model. PSF,, is usually assumed to be spatially
invariant Gaussian blur function and the same for all
images. PSFg..sor, On the other hand, is a box function as



described. In some superresolution related studies these
PSFs are convolved to simplify the iterative processes
[14]. In many others [2, 3, 5, 7] PSFgsor 1S completely
ignored and superresolution is handled as if it is an
upsampling operation where it is assumed that the
downsampling was done after a Gaussian blur filter (low
pass filter). [4] leaves the selection of PSFens0r to the
implementation and aims to prove that their algorithm
converges to a minima for reasonable cases of the
selection. In [15] a summary on resampling and related
kernels is given. In this paper, however, we propose that
imaging process should not be oversimplified as such.

We favour a downsampling model depicted in Figure 1.
Bigger square in Figure 1 is a sample sensor cell from
which the actual image pixel values are obtained. The
smaller squares are the hypothetical sensor cells which we
assume high resolution (HR) image pixel values would be
generated if there were such a sensor.
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Figure 1. Overlapping areas of HR and LR image pixels
are used as weights in calculation of LR pixel value

We inherently assume that low resolution (LR) pixels are
generated by the weighted sum of the corresponding HR
pixels. The weights, as depicted by the dashed area in
Figure 1, are determined by the intersection areas of HR
and LR sensor cells. Assuming that the photo-activity of
the sensor cells are homogenous within the cell and
among all cells a discrete summation can be written in

terms of the intersection areas as
By = Z w; By
J

where Ws are the normalized intersection areas and Ppyjs
are the HR pixel values.

Figure 2 shows where the hypothetical HR image is in the
model. PSFqensor n reflects the integration over the surface
of the small hypothetical sensor cells, i.e. the small
squares shown in Figure 1. Since no action has been
taken to correct PSFy, it is in the path of HR image too.
We believe that unless a blur estimation step is added to
the restoration process, any blur block assigned by guess-
work should be approached by caution since it will
probably be incorrect/inaccurate. The common blur block
is, therefore, removed later in the modelling process and
left for the future work. There exist many examples of
blur removal, in the literature [8-9], which can be applied
separately after the superresolution restoration.

Since one of the LR images is selected to have zero
translation and zero rotation prior to registration, we shall
easily remove one of the translation-rotation pair and
assume that HR image is in line with this LR image. The
imaging blocks shown in Figure 2 can then be arranged to
reflect this as shown in Figure 3 where TR;s represent
translation and rotations in discrete domain and
PSFensor ks are just the calculations of LR pixels from the
intersection areas as shown in Figure 1.
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Figure 3. Discrete equivalent of the imaging model.
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Figure 2 Imaging model showing the hypothetical sensor image.



Assuming that TRys are known a priori, the
superresolution task is then to find hypothetical HR image
that satisfies all LR images. Since the inverse problem is
ill-posed, backprojection algorithms are preferred and that
is the way we follow in this study.

III. ALGORITHM AND THE TEST RESULTS
The standard backprojection algorithm implemented with
embedded steps to calculate the intersection areas is
shown in Figure 4.

Estimate an initial HR image
For each TRy
Apply TRy to HR estimate
Determine overlapping areas for
each HR/LR pixel
Calculate HR pixels
Calculate the difference between
estimated and original LR
images
Update HR estimate according to
the differences
Loop until desired/accepted error
levels for each image

Figure 4. ITterative superresolution restoration.

First estimate of HR image is obtained by just upsampling
the base LR image (the one with zero translation and
rotation) using simple nearest neighbour algorithm.

In order for a fair comparison of the different techniques
simulated LR images with known registration parameters
has to be obtained. As in many references, LR images are
obtained by local averaging using (2). Another choice
would be sub-sampling after a low-pass filtering. These
two are generally accepted to be equivalent.

Figure 5 shows two LR images with two different
translation and rotation parameters generated from ‘city’
HR image. The total of 4 differently translated and
rotated LR images are used as inputs to the algorithm.

Figure 5. Rotated-shifted two LR versions of city image.

Three techniques are compared. The bicubic interpolation
is not actually a superresolution technique based on the
arguments we made at the introduction section. However,
it is widely used to enlarge low resolution pictures. The
second technique uses the same algorithm given in Figure
4, but instead of overlapping areas of the squares, a

Gaussian weight function (PSF) is used. The results
shown for the Gaussian weight function are the best of
this technique after several trials. Since no algorithm is
used to determine the optimal Gaussian function, we are
forced to try and find the best. The third technique is the
one that uses overlapping areas.

Table 1 shows the SNR results after 5 iterations in
iterative techniques; Gaussian weight function and
weights calculated from overlapping areas. Bicubic
interpolation technique involves no iteration and uses only
one LR image. Since no other image is involved in
bicubic interpolation technique no additional detail could
be brought in to the generated HR image.

Table 1
SNR after 5 iterations

Bicubic Gaussian Areas
Lena 29.51 31.33 34.82
City 24.70 26.69 30.05
Cameraman | 25.99 28.16 31.43
Montego 23.96 25.89 28.70

From the very first iteration, areas technique performed
better than other two techniques. This is largely a result
of the better simulation of the CCD cells. Gaussian
weights technique also produced good results but the
weights are not equal to the overlapping areas, so it is not
a good representation of CCD cells.

IV. CONCLUDING REMARKS

We assumed that HR image is obtained by a hypothetical
CCD cell array and used overlapping areas of the HR and
LR CCD cells to model downsampling operation and
iteratively generate the HR image using the model. A
better approach would be the combination of optical blur
and PSFq.s,r. The weights would, of course, a lot more
difficult to calculate in that case. We also believe that
unless the optical blur represented by PSFy., is accurately
estimated or known a priori, estimations of PSFy.,, would
have a detrimental effect on the result. Another approach
worth to study on is to embed PSF.,, estimation into the
iterative restoration process. But the best contribution
would be in the area of subpixel registration of images,
since entire restoration process relies on the accuracy of it.
It is always easier to work on simulated images based on
the simple assumption of global rigid motion. In real life
consecutive images however, several other issues have to
be faced and handled. Our next study shall be on such
motion models like local motion in real CCD output.
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