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Abstract — The battery state of charge (SoC) is a crucial 

function in battery management system (BMS) of electric vehicles 

(EVs). However SoC cannot be directly measured from the 

battery. Therefore, SoC should be estimated by using the 

measured signals, such as voltage and current via accurate model 

of the li-ion battery. In this paper, Unscented Kalman filter 

(UKF) is proposed to estimate the SoC of the lithium-ion (Li-ion) 

battery. The Li-ion battery is modelled with second order 

Thevenin model. The equivalent circuit parameters of the 

Thevenin model are identified and promoted by experimental 

data. The experimental test bench is developed for SoC 

estimation based on extended Kalman filter (EKF) and UKF. 

UKF based SoC estimation results are compared with EKF based 

SoC estimation results aspect of SoC performance. Experimental 

results show that EKF and UKF both are applicable and UKF is 

better than EKF with SoC accuracy and computational time. 

Keywords—state of charge (SoC); battery management system 

(BMS); unscented kalman filter (UKF); extended kalman filter 

(EKF); lithium-ion battery 

I.  INTRODUCTION 

Recently, rechargeable battery technology has gained more 
and more attentions worldwide with the development of 
electric vehicles due to energy crisis and environmental issues 
[1]. Lithium-ion batteries are widely used in EVs in view of 
their high energy and power density, high nominal cell voltage, 
long life cycle, low self-discharge rate and not having a 
memory effect [2]. A battery pack is usually including battery 
cells connected in series and parallel. Hence, lithium-ion 
batteries need to be used with battery management system 
(BMS) to improve battery safety, reliability and performance 
[3]. As one of the most important function for BMS, state of 
charge (SoC) directly affects battery performance. Therefore, 
the estimation of battery SoC is a key parameter for BMS. 
Unfortunately, in practical applications the SoC cannot be 
directly measured, but it can be estimated by using a battery 
model based on the measured signals such as the voltage, 
current and temperature [4]. 

In the literature, various methods for SOC estimation have 
been proposed [5]. Common methods are the Coulomb 
counting method and open circuit voltage (OCV) method use 
for SoC estimation. Coulomb counting method only requires to 

measurement of the battery current and accurate knowledge of 
the initial SoC value. However this method has accumulated 
error problem from the integration process due to current drift 
[6,7]. Open circuit method estimate the SoC with relationship 
the OCV and the SoC, but this method needs to long resting 
time to reach the battery's steady-state. Hence, it is not suitable 
for online estimation [8,9]. To estimate SoC, computational 
algorithms such as neural networks and fuzzy logic have also 
developed. These methods which do not require battery model 
and detailed knowledge of battery systems define the battery as 
a black-box system and can achieve accurate SoC results. 
These methods are required a large amount and quality of the 
training data set, but collecting this data set is time consuming 
and nearly impossible [10,11]. 

Recently, researchers have been focused on model-based 
and close-loop estimation methods, among which the famous 
three methods are Kalman filter, extended Kalman filter and 
unscented Kalman filter [12,13]. Kalman filter which can solve 
initial SoC and cumulative error problems is widely used as 
accurate SoC estimator, but this method is only suitable for 
linear systems [14]. The Extended Kalman Filter (EKF) 
method which is used in non-linear systems linearizes the 
battery model using partial derivatives (Jacobian matrix) and 
first order Taylor series expansion. EKF provides accurate 
prediction of SoC of the battery, but linearization causes more 
computational running time and more estimation errors [15-
20]. UKF uses an unscented transformation with a set of 
sample points called as sigma points to estimate SoC without 
any linearization. UKF has a higher accuracy in estimating 
posterior mean and covariance of the state distribution than 
EKF owing to this transformation [21-26]. 

In this study, lithium-ion battery is modelled using second 
order Thevenin equivalent circuit model and the experimental 
test bench is setup to SoC estimation. UKF and EKF are 
applied to estimate SoC of lithium-ion battery used in EVs. 
Error signals, mean square errors (MSE) and computational 
times were calculated to compare the performances of both 
algorithms. Experimental results show that both UKF and EKF 
perform SoC estimation with high accuracy, but UKF is better 
than EKF with SoC accuracy and computational time. 



II. MODELING OF LITHIUM-ION BATTERY 

In order to employ unscented Kalman filter and extended 
Kalman filter for state of charge estimation, an accurate model 
of the li-ion battery is required. Thevenin model (RC model), 
Randles model, NREL (National Renewable Energy 
Laboratory) model, PNGV (Partnership for a New Generation 
of Vehicles) model are widely used in equivalent circuit 
modeling equivalent circuit modeling techniques. Thevenin 
model has less computational complexity and more model 
accuracy than the other equivalent circuit models.  

A. Thevenin Equivalent Circuit Model of Lithium-ion Battery 

Second order Thevenin model is chosen shown in Fig. 1 as 
the cell model of the li-ion battery. 

 

Fig. 1. Equivalent circuit model. 

This model is a dynamic model of the battery that consists 

of a ohmic resistance 
0R , polarization resistances 

1R  and 
2R , 

polarization capacitances 
1C  and 

2C , polarization voltages 
1U  

and 2U , open circuit voltage OCVU , load current LI . 

The electrical behavior of the second order Thevenin model 
can be expressed as following equations: 
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B. State of Charge Description 

SoC is defined as a ratio of the remaining capacity to the 
maximum available capacity of a battery; it is given by 
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where 
tSoC  is the present state of charge, 

0SoC  is the 

initial state of charge, 
bC  is the maximum available capacity, 

  is the charge-discharge efficiency, 
,L tI  is the load current. 

The discretization of (4) is, 
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where 
kSoC  is the state of charge kth   sampling time, 

1kSoC 
 is the state of charge ( 1)k th   sampling time, 

t  is 

the sampling period. 

C. State-Space Model of Lithium-ion Battery 

The continuous state-space equation of a linear system can 
be expressed as, 

 x Ax Bu   (6) 

 y Cx Du 
 (7) 

where x  is the state variables, u  is the input vector, y is 

the output vector, A  is the system matrix, B  is the control 
matrix, C  is the output matrix and D  is the transmission 

matrix. For further analysis, state of charge and polarization 
voltages are chosen as the state variables in (6) and (7). 
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In order to apply EKF method for SoC estimation, the state-
space equation can be defined as, 
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III. STATE OF CHARGE ESTIMATION METHODS 

In this section state of charge estimation techniques will be 
given. 

A. Extended Kalman Filter 

Extended Kalman filter is the nonlinear version of the 
Kalman filter which linearizes with first order Taylor series 
expansion. To estimate SoC based on EKF, the second order 
Thevenin model should be transformed to discrete-time state-



space model. Discrete-time state-space model of nonlinear 
system can be described as: 

  1 ,k k k kx f x u w  
 

(11) 

  ,k k k ky h x u v 
 

(12) 

  0, ( )kw N Q t  (13) 

  0, ( )kv N R t  (14) 

kx : System state vector 

ky : System output vector 

ku : System input vector 

kv : Measurement noise vector 

kw : Process noise vector 

( )Q t  and ( )R t : Weight matrices 

(.)f  and (.)h : Nonlinear process and measurement 

function, respectively 

The functions (.)f  and (.)h  are linearized using the 

Jacobian matrix and first-order Taylor-series expansion. The 
state- space model can be rewritten as: 

 1k k k k k kx A x B u w     (15) 

 k k k k k ky C x D u v    (16) 

Where, 
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The EKF consist of three major parts of initialization, 
prediction and correction as follows, 

 Initialization (for 0k  ) 

At the beginning of EKF, initial value of state (
0x ) and 

covariance (
0p ) should be selected. 

  0 0 0x̂ E x x   (21) 
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 Prediction (for 1,2,...,k   ) 

In this stage, priori state estimate 
1

ˆ
kx


 and priori error 

covariance matrix 
kP  are calculated by using the following 

equations: 
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 Correction (for 1,2,...,k   ) 

In this stage, first Kalman gain 
kK  and measurement of 

system output vector ˆ
ky  are calculated by using (25) and (26). 

Then state estimation and covariance matrix estimation are 
updated. 
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B. Unscented Kalman Filter  

Unscented Kalman filter is a widely used state estimator for 
nonlinear systems using unscented transformation principle. In 
unscented transformation principle, a set of sigma points are 
selected and transform each sigma point through the non-linear 

function (.)f .Then the statistics of the transformed points are 

calculated to form the mean and covariance estimate. The UKF 
consists of four major parts of initialization, sigma point 
calculation, state prediction and measurement update as 
follows, 

 Initialization (for 0k  ) 
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 Sigma point calculation (for 1,2,...,k   ) 
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where   is a scale 

 2 ( )a N N     (32) 

where a  is a scale parameter in the range 0 1a   and   

is the other tuning parameter. In order to guarantee that the 
covariance matrix is a positive semidefinite, the condition 

0   must be satisfied. 

 State prediction (for 1,2,...,k   ) 

Each sigma point through the non-linear function (.)f , 

  , 1 1 1 1, , , 0,..., 2x x v
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Then priori state estimate and priori error covariance matrix 
are calculated as: 
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where 
( )i

mw  and 
( )i

cw  are weights defined as: 
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Each sigma point through the non-linear function (.)h , 
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Then measurement of system output vector 
1

ˆ
ky 

 is 

calculated as: 
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 Measurement update (for 1,2,...,k   ) 

 The measurement covariance 
kyP  and the cross-correlation 

covariance ,k kx yP  are calculated as, 
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Then Kalman gain is calculated based on measurement 
covariance and cross-correlation covariance 

 1

,k k kk x y yK P P  (43) 

Finally, posteriori state estimate and posteriori error 
covariance matrix are calculated as: 
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IV. EXPERIMENTAL VALIDATION 

In order to validate the estimation of SoC based on UKF 
and EKF, the experimental test bench is developed as shown in 
Fig. 2. The test bench consists of a Panasonic NCR18650B 
lithium-ion battery whose nominal voltage and nominal 
capacity are 3.6 V and 3200 mAh respectively, a Gwinstek 
PEL-2002/2040 programmable dc load, a Gwinstek PSH-
3620A programmable dc power supply, a real-time controller 
DS1104 and a host computer. 

 

Fig. 2. Experimental setup. 

For UKF and EKF, the initial parameters are given in Table 
I. and discrete state-space equations are specified the same as 
follows: 
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TABLE I.  INITIAL PARAMETERS FOR UKF AND EKF 

 UKF  EKF  

Initial state  0 1 0 0x     0 1 0 0x   

Initial 
covariance 

  0 1 1 1p diag     0 0 0 0p diag  

Weight matrix 

1e-10 0 0

0 1e-10 0

0 0 1e-10

Q

 
 

  
  

 

1e-8 0 0

0 1 0

0 0 1

Q

 
 

  
  

 

Weight matrix 1 10R e   1R   

 

Q and R weight matrices are randomly determined after 
several attempts. UKF and EKF are developed on the proposed 
battery model. To estimate SoC of the lithium-ion battery, 
UKF and EKF are implemented with determined initial 
conditions. The experimental results of both algorithms are 
compared according to the SoC estimation results, error 
signals, mean square error and computational time criteria. SoC 
estimation results are given in Fig.3 (extended figure is given 
in Fig.4), error signals are given in Fig.5 and estimation 
performance with mean square error and computational time 
are given in Table II. 

 

 

Fig. 3. Comparison of SoC estimation results of UKF and EKF. 

 

Fig. 4. Comparison of SoC estimation results of UKF and EKF (extended). 



 

Fig. 5. Error signals. 

TABLE II.  ESTIMATION PERFORMANCE 

Estimation Algorithm 
Mean Square 

Error (10-9) 

Computational 

Time 

(10-4 sec.) 

Unscented Kalman Filter 3.0788 5.6932 

Extended Kalman Filter 7.2494 150 

 

V. CONCLUSION 

In this paper, EKF and UKF methods have been carried out 
to estimate the state of charge of the lithium ion battery. Then, 
the performances have been compared experimentally in terms 
of mean square error and computational time. Experimental 
results show that UKF and EKF both are applicable. However, 
UKF estimated SoC almost two times accurate than EKF and 
also had almost thirty times less computational volume. 

Possible future work is taking the ambient temperature 
effect in the account. Other possible future work includes 
developing battery management system to achieve the 
balancing the cells of the battery package by using the 
estimated SoC values based on EKF and UKF. 
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