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ABSTRACT 
In this study, it is aimed to design a speed sensorless 
DTC system for  induction motors (IMs). All the states 
required for DTC system in addition to the load 
torque are estimated using an Extended Kalman Filter 
(EKF). Simulation results demonstrate a good 
performance and robustness. 
 

I. INTRODUCTION 
High efficiency control and estimation techniques related 
to induction motors(IM’s) have been finding more and 
more application fields with Blaschke’s well-known field-
oriented control(FOC) established in 1971. There has 
been an intensive amount of work to  improve the 
dynamic response and reduce the complexity of FOC 
methods. One such method is the Direct Torque 
Control(DTC) method developed by Takahashi in 1984[1] 
and has been getting increased attention due to the  
improved dynamic performance and simplified control 
strategy that it offers with respect to the FOC methods. 
 
The DTC method involves the direct choice of the 
appropriate/optimum switching modes, in order to keep 
the flux and torque errors within a prefixed band limit. 
The errors are defined as the difference between the 
reference and the measured/estimated values of flux and 
torque. Unlike FOC methods, DTC techniques require the 
utilization of hysterisis band controllers instead of flux 
and torque controllers. To replace the coordinate 
transformations and PWM signal generators of FOC, DTC 
uses look-up tables to carry out the switching procedure 
based on the inverter states. However, both methods 
require  the accurate knowledge of the amplitude of the 
controlled flux and angular position (with respect to the 
stationary stator axis) in addition to the angular velocity 
for velocity control applications. 
 
As it is well known, speed sensors like tachometers or 
incremental encoders increase the size and cost of systems 
unnecessarily. Similar problems arise with the addition of 
search coils or Hall effect sensors to the motor for the 

measurement of flux, hindering functionality in terms of 
implementation. Thus, to improve the overall system 
performance, state estimators or observers are usually 
more preferrable than physical measurements. 
 
However, the 5th order and nonlinear structure of the IM 
model[3], in addition to the sensivity of the system 
parameters to temperature[4] and frequency[5] makes the 
design of observers for IM’s a challenge. 
 
In DTC, the flux is conventionally obtained from the 
stator voltage model, using the measured stator voltages 
and currents. This method, utilizing open-loop pure 
integration suffers from increased noise on voltage and 
current and quantization errors in the digital system, in 
addition to the offset, gain and conversions factors in the 
low speed operation range[6], even with the correct 
knowledge of the stator resistance. Moreover, it will 
require the rotor angular velocity for velocity control 
applications. Among the current studies conducting 
simultaneous flux and velocity estimation for DTC, in [7] 
a robust performance to 50% variations in the stator 
resistance has been obtained with a sliding mode 
approach, while the adaptive flux observer in [8] and the 
Extended Luenberger Observer in [9] demonstrate 
robustness to step shaped load torque variations. There are 
also Extended Kalman Filter applications in the literature , 
taking a stochastic approach for the solution of the 
problem. 
 
Unlike the other methods, model uncertainties and 
nonlinearities inherent to IM’s are well-suited to the 
stochastic nature of EKF’s[10] With this method, it is 
possible to make the on-line estimation of states while 
simultaneously performing identification of parameters in 
a relatively short time interval [11-13], also taking 
system/process and measurement noises directly into. 
This is the reason why EKF has found wide application in 
the sensorless control of IM’s, in spite of its 
computational complexity. In the EKF based previous 
DTC studies, [14] estimates the stator flux components 
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and velocity under the assumption of known load, while 
in [15], the velocity is estimated as a constant parameter. 
In spite of an improved performance in the steady-state, 
this approach has given rise to a significant observer error 
in the velocity during the transient state. 
 
The major contribution of this study is the development of 
an EKF based speed sensorless DTC system that achieves 
robustness to load torques that are step-like or varying 
linearly with the rotor velocity. The developed EKF 
algorithm involves the estimation of stator flux, angular 
velocity and load torque in addition to the stator currents 
(referred to the stator stationary frame), which are also 
measured as output. With the square shaped voltage 
obtained by switching the inverter on and off, there has 
been no need for the addition of white noise to the 
measured states; thus, a more realistic approach has been 
taken to the solution of the problem. The performance of 
the control system with the proposed EKF algorithm has 
been demonstrated with simulations. 
 

II. EXTENDED MATHEMATICAL MODEL OF 
THE IM 

The extended discrete model of IM in stator stationary 
axis can be given as follows: 
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where 

e
f : nonlinear function vector of the states. ex : 

extended state vector. eA : system matrix. eu : control 
input vector. eB : input matrix. eh : function vector of the 

outputs eH  measurement matrix. 1w , 2w

αs

βsi

: process and 
measurement noise, respectively. : number of pole 

pairs. , : stator inductance and resistance, 

respectively. , : rotor inductance and resistance, 
referred to the stator side, respectively. v , : stator 

stationary axis components of stator voltages. ψ  ψ : 

stator stationary axis components of stator flux. , : 

stator stationary axis components of stator currents. ω : 
angular velocity. : load torque. T : sampling time. 
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III. DEVELOPMENT OF THE EKF ALGORITHM 

The Kalman filter is a well-known recursive algorithm 
that takes the stochastic state space model of the system 
together with measured outputs to achieve the optimal 
estimation of states [16] in multi-input, multi-output 
systems. The filter takes system and measurement noises 
into account in the form of white noise. The optimality of 
the state estimation is achieved with the minimization of 
the mean estimation error. In this study, EKF, which is a 
form of Kalman filter that could be used for nonlinear 
systems is used for the estimation i , , ψ , ψ , 

 and . mω
 
EKF involves the linearization of Eq.(1) and (2) around 
the states, xeˆ  and inputs ( ueˆ ) of the previous step, 
using 
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The EKF algorithm is thus obtained with the following 
recursive equations; 
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Here, Q : covariance matrix of the model error (noise). 

ξD : covariance matrix of measurement noise. : 

covariance matrix of control input. , 
( kkN /1+ : covariance matrix of state estimation error 

and extrapolation error, respectively 
 

IV SPEED SENSORLESS DTC SYSTEM 
Fig. 1 demonstrates the speed sensorles DTC system. 
Here,  stands for the position of the flux with rfθ̂



reference to the stationary axis. The velocity controller 
given in the diagram is a conventional PID controller. The 
development of the sector selector and the switching table 
is based on Takahashi’s study presented in[1].  
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Fig. 1 The speed sensorless DTC system. 

 
V. SIMULATION RESULTS AND OBSERVATIONS 
To test the performance of the estimation method, 
simulations were performed on an IM with the following 
rated parameters; 
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The bandwidth ( ) of the flux  comparator is 0.02, while 

that of the torque comparator ( ) is 0.01. The 
simulations are performed for 12 different scenarios for 
the IM motor. Fig.2 depicts the stator flux. Fig. 3(a), (b), 
(c), (d) (e) and (f) depict the variations of & , 
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respectively. The  error signals illustrate the deviation 
between the actual and the estimated parameter or state. 
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Analysing the simulation results, the following 
observations are made: 
 
-With initial values taken as zero, it has been 
demonstrated that the EKF based estimation and control 

perform quite well even in spite of instantaneous 
variations in the load and velocity. 
 
-Another advantage of the developed scheme is the ability 
to account for various other constant uncertainties (the 
viscous friction, in this case), within the estimated 
constant load value. e  should be expected to be equal to 

, and as can be seen in the second time interval 
(1-2 s) of Fig. 3(f), 
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-The deviations detected in Fig.2 are caused by the 
instantaneous reversal of the load torque at the zero 
crossings of the velocity, as can be seen in Fig.3. 
However, it is important to note that the control system 
demonstrates a good performance even under those 
variations. 
 
-Between 9-10 sec. in Fig.3(b), the velocity is varied 
instantaneously from 10 to 1500rpm, with an additional 
linear variation in the torque from 0 to 20[Nm]. The error 
band decreases with reduced rates of variation. 
 
In summary, the speed sensorless DTC system has 
demonstrated a good performance for the IM, in the whole 
velocity range, in spite of step-like and linear variations of 
the load torque with the angular velocity. 
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Fig.2 Trajectory of ψ  and ψ  αsˆ βsˆ

 
VI. CONCLUSION 

In this study, a speed sensorless DTC system has been 
designed, particularly to achieve robustness against a step-
like and linear variations of the load torque with the 
angular velocity. All the states and the load torque 
required by developed control algorithm have been 
estimated by EKF. The speed sensorles DTC system has 
demonstrated a good performance even under 
instantaneous variations of load and velocity. 
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Fig. 3 Simulation results of the EKF based estimator and the speed sensorles DTC system.
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