
A Single/Double Precision
Floating-Point Reciprocal Unit Design for Multimedia Applications

Metin Mete Özbilen1 and Mustafa Gök2

1Mersin University, Engineering Faculty, Department of Computer Science,

33342, Mersin, Turkey
mmozbilen@mersin.edu.tr

2Çukurova University, Engineering Faculty, Department of Electric and Electronic,
01330, Adana, Turkey

musgok@cu.edu.tr

Abstract

Modern graphic processors, multimedia processors, and
general-purpose processors with multimedia extensions
provide SIMD floating-point instructions. SIMD floating-
point reciprocal operation is commonly used in 2D and 3D
applications, which mostly use single precision floating-point
operands. Consequently, efficient single precision units are
crucial for high performance systems. This paper introduces
a packed floating point reciprocal unit that can perform
reciprocal of either a double precision or two parallel single-
precision floating-point numbers using fast multipliers.

1. Introduction

Modern general purpose processors provide special

instructions for multimedia applications [1]. New generations of
the general purpose processors use larger sets of multimedia
instructions than the ones offered by the previous generations,
since the variety of the operations and the performance
requirement for multimedia applications increase [1].
Consequently, providing efficient multimedia hardware has
become an important design task. In the past, modifying only
integer data path were enough to implement most multimedia
instructions; however today, the floating-point data path is
modified as well, since many applications use floating-point
operations [2-3]. Floating point division operation takes place
in most of the 2D and 3D graphics applications. These
applications perform vast amount of image transformation
operations which require many multiplication and division
operation. In general, multimedia computations do not need high
accuracy i.e. single precision floating-point accuracy is
adequate. On the other hand speeding up the computation is very
important. The SIMD operations offer an alternative way for
increasing the performance of the applications. Many general-
purpose processor manufacturers implement multimedia
extensions that execute SIMD type floating point operations.
Processors from AMD have modified multiplier structure that
can process floating point reciprocal and division operations [4].
In [5] 32/64 bit floating point division, reciprocal, square root
and inverse square root unit is designed using cascade connected
small multipliers to compute Newton and Raphson iteration. A
High-Speed Double-Precision Computation of Reciprocal,
Division, Square Root, and Inverse Square Root is design using
Goldschmidt algorithm is given in [6]. A basic implementation

of Newthon-Raphson reciprocal for double precision is
presented in [7].

If an arithmetic unit has a fast multiplier, it can be configured
to use in multiplicative iteration algorithms to speed up
reciprocal and division operations. The division operation can be
expressed as /#qj , where /g is dividend, #g is divisor. The
reciprocal of divisor is realized using Newton and Raphson
iteration [8]. The multiplier can be also organized to operate on
packed data type. In this study, we present a packed floating
point reciprocal unit that can process single or double precision
floating-point numbers based on the operation mode. The rest of
this paper is organized as follows. In Section 2, floating point
reciprocal operation is described. In Section 3, multiplicative
reciprocal design and packed multiplier is described. In Section
4 the proposed design is described and in Section 5 the synthesis
results are discussed.

2. Floating Point Reciprocal

The sign, exponent, and mantissa of an IEEE-754 floating
number [9] D are represented as @� , -� , and Â� respectively.
The reciprocal V
 X � D� W of this number can be computed
using

 @~ X @� (1)
 -~ X �-� (2)
 Â~ X � Â�� (3)

The computation of these equations can be conducted in
parallel. For biased representation of exponent, the intermediate
result of exponent is

 -~Ô X Y# � -�Ô h � (4)

where B is bias value and small b denotes biased version of

exponents.
The reciprocal of the mantissa is the most crucial part of the

computation since it is the slowest step and it may introduce
rounding errors. This computation is realized by following
methods:

• Digit recurrence: simple and easy to implement, but the
latency is long;

• Functional iteration: Algorithms such as Newton-
Raphson[8] or Goldschmidt[10] iteration algorithms can
be used. These algorithms are fast, scalable and have
high precision.

II-352

• Very high radix arithmetic: This me
complicated.

The mantissa needs to be normalized w
reciprocal operation is less than 1. The n
performed by a left shift and the exponen
one. Fig. 1 shows basic implementatio
reciprocal unit.

Fig. 1. Basic implementation of a floating p

2.1. Newton-Raphson Iteration

The Newton-Raphson algorithm is wid

non-linear equations. The Newton-Raphson
initial value Dd, which is referred as initia
The derivation is carried out by Taylor s�VDW can be written using Taylor series D � Dd as

 �VDW X �VDW h ��VDdWVD � DdW h jb ���VDdWV

where ��VDdWg is the first derivative, ���
derivative of �VDW with respect to D. Newt
can quickly converge when the initial gues
the desired root. This means D � Dd is sma
few terms is enough to get accurate estimate
series can be shorten by throwing the second
Newton-Raphson iteration formula as [3]:

 Dj X Dd � �VDW ��VDdW� g

A more general form of equation can be writ

 D�xj X D� � �VD�W ��VD�W�

 An initial look-up table is used to ob

value of the root. Each iteration doubles
result.

The derivation of algorithm using Newt
for computing reciprocal for mantissa M as

 D X � Â�
 �VDW X � Â � D�
 �%VDW X � Db�

When Equations (8), (9) and (10) are pu

the iteration equation:

 D�xj X D�NY � Â��O

ethod is fast, but very

when the result of the
normalization can be
nt is decremented by
on of floating-point

point reciprocal unit.

dely used in solving
n technique needs an
l guess for the root.
eries. The function
expansion in period

VD � DdWb X � (5)

VDdW is the second
ton-Raphson method
ss is close enough to
all, and only the first
e of the root, Dd. The
d term and obtain the

(6)

tten as:

W (7)

tain an approximate
the accuracy of the

ton-Raphson method
follows:

 (8)
(9)

(10)

ut into Equation (7),

(11)

is obtained, which can be impl
multiplication and one subtraction
computing Equation (11).

2.2. Derivation of Initial Valu

The n-bit mantissa Â is represen

 �_ "j"b"Å ´ "\qjgV"�

When Â is divided into tw

 Âj X �_ "j"b"
 and Âb X �_ "�xj"�xb

The first-order Taylor expans

between Âjgand Âj h Yq�gand is e
 VÂj � Yq�qjW�qj � NÂj h Yq�qj

The equation can be expressed a

 � � Â
 where � X VÂj � Yq
 Â X Âj h Yq�qj h ^

C can be read from a lookup-tab

without leading one. The look-up
values of Â for special values
reciprocal of Â. The size of the re
table is about Y� � Y" bits [11].

The initial approximation of f
computed by multiplication of term
The modified form of Â is obtaine
bitwise. The last term can be ignora

3. Multiplicative Recipro

Basic multiplicative reciprocal u

mantissa modify unit process the m
and generates Â% according to Eq
approximation, � of Equation (15)
table.

In the first cycle, the first mu
value, the second multiplexer se
multiplexer. The third multiplexer
up table and the forth selects also th
In the second cycle, the multiplie
save format. In the third cycle
summed by a fast carry-propagate
cycle the initial value, D� is obtaine
and second multiplexers select the
previous cycle, the third and fourth
fifth cycle, these values are multipl
vectors generated by the multiplica
cycle, the two’s complement of t
stored initial value in first iteratio
selected. In the seventh and eig
multiplied and vectors are summe
calculation. In the ninth cycle,
normalization to suit IEEE mantiss

lemented in hardware. Two
n operations are required for

es

nted as

Í ¿�p�Àp � X � ´ �W (12)

wo parts Âj and Âb as

"Å ´ "�
(13)

b"�xÅ ´ "\qj

sion of Â� of number Â is
expressed as [4]:

h ^ � VÂb � Yq�qjWO (14)

as

(15) q�qjW�qjgand � VÂb � Yq�qjW

ble which is addressed by Âj,
p table contains the Y� of �

of ^ , where it is �Yd for
equired ROM for the look-up

floating point number Âqj is
m � with modified operand Â.
ed by only complementing Âb
able.

ocal Implementation

unit is show in Fig. 2 [3]. The
most significant part of the Â
quation (15). Also, the initial
 is obtained from the look-up

ultiplexer selects modified Â
elects the output of the first
selects the output of the look-
he output of third multiplexer.

er generates a result in carry-
the carry-save vectors are

adder. At the end of the third
ed. In the fourth cycle, the first
e initial value generated in the
h multiplexer select Â. In the
lied and in the sixth cycle, the
ation are added. In the seventh
the result is selected and the
on of the Newton-Raphson is
ghth cycle, these values are
ed for final result of iteration

the final result routed to
sa format.

II-353

Fig. 2. A simple reciprocal unit that uses

method.

Rounding is not studied here because
coupled with a floating point multiplier f
point division operation. Rounding can
multiplication by multiplication circuitry. T
the rounding error.

3. 1. Packed Multiplier

In this section, a packed multiplier design

mantissa multiplications for Newton-R
described. Fig. 3a shows the alignment of o
floating-point mantissa and Fig. 3b shows th
single precision mantissas. Detailed descri
multipliers used in this work can be found in

Fig. 3. The alignments of double precision

mantissas.

Fig. 4 presents the adaption of the te
implement the proposed design. In this
generated for two single precision mantissa
placed in the matrix generated for a doubl
multiplication. All the bits are generated
multiplication; the shaded areas labeled wit
not generated in single precision multiplica

Newton-Raphson

this circuit can be
for realizing floating
n be handled after
This also minimizes

n which performs the
Raphson method is

one double precision
he alignments of two
iption of the packed
n [12] and [13].

and single precision

echnique in [13] to
figure, the matrices

as multiplications are
le precision mantissa
in double precision

th Z1, Z2 and Z3 are
ation. The un-shaded

areas are generated for single p
partial products within the region
using equations:

 &� X � � &r and ^�

The rest of the partial products are

 ^�r X �� �

The signal � is used as control. Wh
shaded regions are generated.
generated. The � and ² are indices f
in the multiplication matrix [14].

Fig. 4. Multiplication matrix for

mantiss

4. Single/Double Precision Fl
Unit Design for P

This section presents the propo

point reciprocal design. This unit
computation methods and gener
precisions as follows: 1) In dou
generates a double-precision rec
precision mode, the reciprocal uni
reciprocal and a copy of generat
precision mode, the reciprocal u
reciprocals in parallel.

The input format of modified d
5a shows the input and output form
Fig. 5b shows the same input an
mode. An input, � signal selects op

Fig. 5. The alignments of double

point num

The block diagram for the propo
The explanations of the main units

• Exponent Unit generates t
precision or two single
precision mode exponents

precision multiplication. The
ns Z1, Z2, Z3 are generated

�r X �� � &� (21)

produced with

&r (22)

hen � X %�% only bits with un-
When � X %�% , all bits are
for appropriate partial product

single and double precision
as.

loating-point Reciprocal
Packed Data

osed multi-precision floating-
uses the previous reciprocal

ates reciprocals in different
uble precision mode the unit
ciprocal. 2) In first single-
it generates a single-precision
ted. 3) In the second single-
unit generates two different

design is shown in Fig. 5. Fig.
mat in double precision mode.
nd output in single precision
perating mode.

and single precision floating
mbers.

osed design is shown in Fig 6.
are as follows:
the exponents of one double
precision results. In single

s are obtained with Equation

II-354

(23). In double precision mode
connected in cascade.

 -Ç X �������� � -�!

• Mantissa Modifier generates modif

on the operation mode in order to
ready for the packed multiplier like

• Lookup Table contains look-up tabl
approximation required for Newto
These are C values of Equation
computed values generated by com
Maple, MatLab, etc.

• Operand Modifier modifies the op
initial value calculation. The value
of Equation (15). It is evaluated by
starting from 10th digit for this desig
of operand(s) depends on the selecte

• State Counter drives the multiplex
inputs to the packed multiplier dur
of Newton-Raphson iteration. T
Equation (11) requires three multip
on selected operation mode the in
are in double precision or pack
format as shown in Fig. 3. In the se
multiplexers are arranged for multi
value(s) and modified mantissas as
In the fourth cycle, multiplexer
multiplication of computed ini
value(s) and the input mantissa(s) i
And, in the sixth cycle, multiplex
multiplication of stored initial val
value(s) of inside parenthesis of the

• Packed Multiplier is 53 by 53
modified to handle two single and o
number as described. The input for
shown in Fig 2. Multiplication
selected operation mode.

• Packed Product Generator proce
packed multiplier and generates o
stages of iteration. The output of th
register. The format of output is t
double mantissa or two 24-bi
depending on selected mode. The m
in Fig. 3.

• I.A.Store unit stores the Initial App
computed in the second cycle of
values in Equation (15), which ar
cycle.

• Inverter inverts the stored multip
compute the expression in the par
(11). The inversion is done dep
operation mode.

• Single Normalizer(s) normalize th
precision mode. Double Normali
result in double precision mode. T
one left shift if required.

• Exponent Updater updates the expo
the normalization results. Two
separately used to update 8-bit expo
or in double mode these decreme
cascade to update 11-bit exponent.

e Equation (23) is

 (23)

fied mantissas based
o prepare the inputs
in Fig. 3.
les needed for initial
on-Raphson method.
(15). They are pre-

mputer software such

perands required for
evaluated here is Â%

y inverting the digits
gn. The modification
ed operation mode.
xers to select correct
ring the computation

The computation of
lications. Depending

nputs of multiplexers
ked single precision
econd cycle of circuit
iplication of look-up
in the Equation (15).
s are arranged for
itial approximation
in the Equation (11).
ers are arranged for
ue(s) and computed
Equation (11) .

multiplier slightly
one double precision
rmat of multiplier is
output depends on

esses the output of
output used in next
his unit is stored in a
truncated one 53-bit
t single mantissas

mantissas arranged as

proximation value(s)
circuit. These are xi
re needed in fourth

plication result(s) to
renthesis of equation
pending of selected

he result in single-
izer normalizes the
The normalization is

onents depending on
decrementers are

onents in single mode
enters are connected

Fig. 6. The proposed single/doub

5. Synthesis Results

In this section we present th

proposed single/double precision f
We use the design in [7] as referen
floating-point reciprocal unit w
estimations include design of unsig
propagate-adders and a controllin
Both circuits are modeled usin
Synthesis of the circuit is done usi
library and Leonardo Spectrum
optimized for delay. The clock d
terms of number of gates) for both
The values in Table 1 are in n
number of gate for area.

Table 1. The comparison of the s
proposed floating-point reciprocal

Design # of Ga
Reference
Double Precision 31979

Single
/Double Precision 33997

The single/double precisio

approximately 6% more area and
delay. The most critical delay occ
of the multiplier we used is sli
difference occurs in delay. The a
negligible grows in design. The f
used in modern processors are us
design performs two single-precisio
latency which is dissolved in pipeli

ble precision reciprocal unit

he synthesis results for the
floating point reciprocal unit.
nce standard double precision

with some estimation. The
gned radix-2 multiplier, carry-
ng logic for the multiplexers.
ng structural VHDL code.
ing TSMC 0.18 micron ASIC
program. Both circuits are

delays and area estimates (in
h designs are given in Table 1.
nanoseconds for time and in

standard double precision and
designs.

ates Latency

3.86 Ns

3.94 Ns

on reciprocal unit has
d has about 3% more critical
curs in the multiplier. Because
ightly modified a negligible
additional circuits cause also
floating-point reciprocal units
sually pipelined designs. The
on reciprocal with about same
ine stages.

II-355

6. Conclusions

This paper presented a reciprocal unit for multimedia
applications. The design operates on SIMD type data input. The
accuracy of the results are 20 bits for each iteration. Compared
to the previous reference designs less than 1% area increase and
delay increase is reported based on synthesis results. However
the functionality of the reciprocal unit is improved to support
three operation modes. The mode that generates two different
reciprocals simultaneously is expected to double the
performance of single precision division operations. The
proposed unit can be expanded to support reciprocal-square-root
operation with additional circuit and modifications

7. References

 [1] V. Lappalainen, T. D., Hämäläinen, P., Liuha, “Overview

of Research Efforts on Media ISA Extensions and Their
Usage in Video Coding”, IEEE Transactions on Circuits
And Systems For Video Technology, Vol: 12, No: 8, 2002.

[2] R.B., Lee, “Multimedia extensions for general purpose
processors”, Signal Processing Systems, 1997”, SIPS 97 -
Design and Implementation., IEEE Workshop, 1997, pp 9-
23.

[3] M. D. Ercegovac, T. Lang, "Digital Arithmetic", Morgan
Kaufmann, Los Atlas, CA, 2004.

 [4] S.F., Oberman, N., Juffa, F., Weber, “Method and
Apparatus For Calculating Reciprocals and Reciprocal
Square Roots”, Advanced Micro Devices Inc., Patent
Number 6.115.773.

 [5] C., Shuang, W. Dong, Z. Tie, H. Chao, "Design and
Implementation of a 64/32-bit Floating-point Division,
Reciprocal, Square root, and Inverse Square root Unit,"
Solid-State and Integrated Circuit Technology, 2006.
ICSICT '06. 8th International Conference on , pp.1976-
1979, 2006.

[6] J.A., Pineiro, J.D., Bruguera, “High-speed double-precision
computation of reciprocal, division, square root and inverse
square root”, IEEE Transactions on Computers, pp. 1377-
1388, 2002.

 [7] U. Kucukkabak, A. Akkas, "Design and implementation of
reciprocal unit using table look-up and Newton-Raphson
iteration", Digital System Design, 2004. DSD 2004.
Euromicro Symposium on, 2004, pp. 249-253.

 [8] F., Domenico, “A Division Method Using a Parallel
Multiplier”, Electronic Computers, IEEE Transactions on ,
1967,vol. EC-16, no.2, pp 224-226.

 [9] IEEE Standard for binary floating-point arithmetic, ANSI-
IEEE Standard 754-1985, 1985.

[10] P., Markstein, “Software division and square root using
Goldschmidt’s algorithms”, Journal of Universität Trier, pp.
146, 2004.

[11] N. Takagi, "Generating a power of an operand by a table
look-up and a multiplication", in Proceedings of 13th Sym.
on Computer Arithmetic, Asilomar, CA, 1997, pp. 126-131.

[12] M. Gok, S. Krithivasan, M. J. Schulte, "Designs for
Subword-Parallel Multiplications and Dot Product
Operations", in Workshop on Application Specific
Processors, 2004, pp. 27-31.

[13] S. Krithivasan, M. J. Schulte, "Multiplier Architectures for
Media Processing", in Conference Records of 37th Asilomar
Conference on Signals, Systems and Computers, Asilomar,
CA, 2003, vol. 2, pp. 2193-2197.

[14] M. Gok, M. M. Ozbilen, "A Single/Double Precision
Floating-Point Multiplier Design for Multimedia
Applications", Istanbul University Journal Of Electrical &
Electronics Engineering, 2009, vol. 9, pp. 827-831.

[15] S., Oberman, G., Favor, F.,Weber, “AMD 3DNow!
Technology: architecture and implementations”, IEEE
Micro, vol.19, no.2, pp.37-48, 1999.

II-356

