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Abstract 
 

Modern graphic processors, multimedia processors, and 
general-purpose processors with multimedia extensions 
provide SIMD floating-point instructions. SIMD floating-
point reciprocal operation is commonly used in 2D and 3D 
applications, which mostly use single precision floating-point 
operands. Consequently, efficient single precision units are 
crucial for high performance systems. This paper introduces 
a packed floating point reciprocal unit that can perform 
reciprocal of either a double precision or two parallel single-
precision floating-point numbers using fast multipliers.  

 
1. Introduction 

 
Modern general purpose processors provide special 

instructions for multimedia applications [1].  New generations of 
the general purpose processors use larger sets of multimedia 
instructions than the ones offered by the previous generations, 
since the variety of the operations and the performance 
requirement for multimedia applications increase [1]. 
Consequently, providing efficient multimedia hardware has 
become an important design task. In the past, modifying only 
integer data path were enough to implement most multimedia 
instructions; however today, the floating-point data path is 
modified as well, since many applications use floating-point 
operations [2-3].  Floating point division operation takes place 
in most of the 2D and 3D graphics applications. These 
applications perform vast amount of image transformation 
operations which require many multiplication and division 
operation. In general, multimedia computations do not need high 
accuracy i.e. single precision floating-point accuracy is 
adequate. On the other hand speeding up the computation is very 
important. The SIMD operations offer an alternative way for 
increasing the performance of the applications. Many general-
purpose processor manufacturers implement multimedia 
extensions that execute SIMD type floating point operations. 
Processors from AMD have modified multiplier structure that 
can process floating point reciprocal and division operations [4].  
In [5] 32/64 bit floating point division, reciprocal, square root 
and inverse square root unit is designed using cascade connected 
small multipliers to compute Newton and Raphson iteration. A 
High-Speed Double-Precision Computation of Reciprocal, 
Division, Square Root, and Inverse Square Root is design using 
Goldschmidt algorithm is given in [6]. A basic implementation 

of Newthon-Raphson reciprocal for double precision is 
presented in [7]. 

If an arithmetic unit has a fast multiplier, it can be configured 
to use in multiplicative iteration algorithms to speed up 
reciprocal and division operations. The division operation can be 
expressed as /#qj , where /g is dividend, #g is divisor. The 
reciprocal of divisor is realized using Newton and Raphson 
iteration [8]. The multiplier can be also organized to operate on 
packed data type. In this study, we present a packed floating 
point reciprocal unit that can process single or double precision 
floating-point numbers based on the operation mode. The rest of 
this paper is organized as follows. In Section 2, floating point 
reciprocal operation is described. In Section 3, multiplicative 
reciprocal design and packed multiplier is described. In Section 
4 the proposed design is described and in Section 5 the synthesis 
results are discussed. 

 
2. Floating Point Reciprocal 

 
The sign, exponent, and mantissa of an IEEE-754 floating 
number [9] D  are represented as @� , -� , and Â�  respectively. 
The reciprocal V
 X � D� W  of this number can be computed 
using  

 
 @~ X @� (1) 
 -~ X �-� (2) 
 Â~ X � Â��  (3) 
 

The computation of these equations can be conducted in 
parallel. For biased representation of exponent, the intermediate 
result of exponent is  

 
 -~Ô X Y# � -�Ô h � (4) 

 
where B is bias value and small b denotes biased version of 

exponents. 
The reciprocal of the mantissa is the most crucial part of the 

computation since it is the slowest step and it may introduce 
rounding errors. This computation is realized by following 
methods: 

• Digit recurrence: simple and easy to implement, but the 
latency is long; 

• Functional iteration: Algorithms such as Newton-
Raphson[8] or Goldschmidt[10] iteration algorithms can 
be used. These algorithms are fast, scalable and have 
high precision. 
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• Very high radix arithmetic: This me
complicated. 

The mantissa needs to be normalized w
reciprocal operation is less than 1. The n
performed by a left shift and the exponen
one. Fig. 1 shows basic implementatio
reciprocal unit. 
 

 
Fig. 1. Basic implementation of a floating p

 
2.1. Newton-Raphson Iteration 

 
The Newton-Raphson algorithm is wid

non-linear equations. The Newton-Raphson
initial value Dd, which is referred as initia
The derivation is carried out by Taylor s�VDW  can be written using Taylor series D � Dd as 

 �VDW X �VDW h ��VDdWVD � DdW h jb ���VDdWV
 

where ��VDdWg is the first derivative, ���
derivative of �VDW with respect to D. Newt
can quickly converge when the initial gues
the desired root. This means D � Dd is sma
few terms is enough to get accurate estimate
series can be shorten by throwing the second
Newton-Raphson iteration formula as [3]:  

 
 Dj X Dd � �VDW ��VDdW� g 

 
A more general form of equation can be writ

 
 D�xj X D� � �VD�W ��VD�W�

 
 An initial look-up table is used to ob

value of the root. Each iteration doubles 
result. 

The derivation of algorithm using Newt
for computing reciprocal for mantissa M as 

 
 D X � Â�  
 �VDW X � Â � D�  
 �%VDW X � Db�  

 
When Equations (8), (9) and (10) are pu

the iteration equation: 
 

 D�xj X D�NY � Â��O 

ethod is fast, but very 

when the result of the 
normalization can be 
nt is decremented by 
on of floating-point 

 

point reciprocal unit. 

dely used in solving 
n technique needs an 
l guess for the root. 
eries.  The function 
expansion in period 

VD � DdWb X � (5) 

VDdW  is the second 
ton-Raphson method 
ss is close enough to 
all, and only the first 
e of the root, Dd. The 
d term and obtain the 

(6) 

tten as: 

W (7) 

tain an approximate 
the accuracy of the 

ton-Raphson method 
follows: 

  (8) 
(9) 

(10) 

ut into Equation (7), 

(11) 

 
is obtained, which can be impl
multiplication and one subtraction
computing Equation (11).  

 
2.2. Derivation of Initial Valu

 
The n-bit mantissa Â is represen

 
 �_ "j"b"Å ´ "\qjgV"�

 
When Â is divided into tw

 
 Âj X �_ "j"b"
 and  Âb X �_ "�xj"�xb

 
The first-order Taylor expans

between Âjgand Âj h Yq�gand is e
 VÂj � Yq�qjW�qj � NÂj h Yq�qj
 

The equation can be expressed a
 

 � � Â 
 where � X VÂj � Yq
 Â X Âj h Yq�qj h ^

 
C can be read from a lookup-tab

without leading one. The look-up
values of Â  for special values 
reciprocal of Â. The size of the re
table is about Y� � Y" bits [11]. 

The initial approximation of f
computed by multiplication of term
The modified form of Â is obtaine
bitwise. The last term can be ignora

 
3. Multiplicative Recipro

 
Basic multiplicative reciprocal u

mantissa modify unit process the m
and generates Â% according to Eq
approximation, � of Equation (15)
table.  

In the first cycle, the first mu
value, the second multiplexer se
multiplexer. The third multiplexer 
up table and the forth selects also th
In the second cycle, the multiplie
save format. In the third cycle 
summed by a fast carry-propagate 
cycle the initial value, D� is obtaine
and second multiplexers select the
previous cycle, the third and fourth
fifth cycle, these values are multipl
vectors generated by the multiplica
cycle, the two’s complement of t
stored initial value in first iteratio
selected. In the seventh and eig
multiplied and vectors are summe
calculation. In the ninth cycle, 
normalization to suit IEEE mantiss

lemented in hardware. Two 
n operations are required for 

es 

nted as  

Í ¿�p�Àp � X � ´ �W   (12) 

wo parts Âj and Âb as 

"Å ´ "� 
(13) 

b"�xÅ ´ "\qj 

sion of Â� of number Â is 
expressed as [4]: 

h ^ � VÂb � Yq�qjWO  (14) 

as  

(15) q�qjW�qjgand   � VÂb � Yq�qjW    

ble which is addressed by Âj, 
p table contains the Y�  of � 

of ^ , where it is �Yd for 
equired ROM for the look-up 

floating point number Âqj  is 
m � with modified operand Â. 
ed by only complementing Âb 
able. 

ocal Implementation 

unit is show in Fig. 2 [3]. The 
most significant part of the Â 
quation (15). Also, the initial 
 is obtained from the look-up 

ultiplexer selects modified Â 
elects the output of the first 
selects the output of the look-
he output of third multiplexer.  

er generates a result in carry-
the carry-save vectors are 

adder. At the end of the third 
ed. In the fourth cycle, the first 
e initial value generated in the 
h multiplexer select Â.  In the 
lied and in the sixth cycle, the 
ation are added. In the seventh 
the result is selected and the 
on of the Newton-Raphson is 
ghth cycle, these values are 
ed for final result of iteration 

the final result routed to 
sa format.  
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Fig. 2. A simple reciprocal unit that uses 

method. 
 

Rounding is not studied here because 
coupled with a floating point multiplier f
point division operation. Rounding can
multiplication by multiplication circuitry. T
the rounding error. 

 
3. 1. Packed Multiplier 

 
In this section, a packed multiplier design

mantissa multiplications for Newton-R
described. Fig. 3a shows the alignment of o
floating-point mantissa and Fig. 3b shows th
single precision mantissas. Detailed descri
multipliers used in this work can be found in

 

 
Fig. 3. The alignments of double precision 

mantissas. 
 

Fig. 4 presents the adaption of the te
implement the proposed design. In this 
generated for two single precision mantissa
placed in the matrix generated for a doubl
multiplication. All the bits are generated 
multiplication; the shaded areas labeled wit
not generated in single precision multiplica

 

Newton-Raphson 

this circuit can be 
for realizing floating 
n be handled after 
This also minimizes 

n which performs the 
Raphson method is 

one double precision 
he alignments of two 
iption of the packed 
n [12] and [13].  

 

and single precision 

echnique in [13] to 
figure, the matrices 

as multiplications are 
le precision mantissa 
in double precision 

th Z1, Z2 and Z3 are 
ation. The un-shaded 

areas are generated for single p
partial products within the region
using equations: 

 
 &� X � � &r  and ^�

 
The rest of the partial products are 

 
 ^�r X �� �

 
The signal � is used as control. Wh
shaded regions are generated. 
generated. The � and ² are indices f
in the multiplication matrix [14]. 

 

 
Fig. 4. Multiplication matrix for 

mantiss
 

4. Single/Double Precision Fl
Unit Design for P

 
This section presents the propo

point reciprocal design. This unit 
computation methods and gener
precisions as follows: 1) In dou
generates a double-precision rec
precision mode, the reciprocal uni
reciprocal and a copy of generat
precision mode, the reciprocal u
reciprocals in parallel. 

The input format of modified d
5a shows the input and output form
Fig. 5b shows the same input an
mode. An input, � signal selects op

 

 
Fig. 5. The alignments of double 

point num
 

The block diagram for the propo
The explanations of the main units 

• Exponent Unit generates t
precision or two single 
precision mode exponents

precision multiplication. The 
ns Z1, Z2, Z3 are generated 

�r X �� � &�    (21) 

produced with 

&r    (22) 

hen � X %�%  only bits with un-
When � X %�% , all bits are 
for appropriate partial product 

 

single and double precision 
as. 

loating-point Reciprocal 
Packed Data 

osed multi-precision floating-
uses the previous reciprocal 

ates reciprocals in different 
uble precision mode the unit 
ciprocal. 2) In first single-
it generates a single-precision 
ted. 3) In the second single-
unit generates two different 

design is shown in Fig. 5. Fig. 
mat in double precision mode. 
nd output in single precision 
perating mode. 

 

and single precision floating 
mbers. 

osed design is shown in Fig 6. 
are as follows: 
the exponents of one double 
precision results. In single 

s are obtained with Equation 
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(23). In double precision mode
connected in cascade. 

 
 -Ç X �������� � -�! 

 
• Mantissa Modifier generates modif

on the operation mode in order to
ready for the packed multiplier like 

• Lookup Table contains look-up tabl
approximation required for Newto
These are C values of Equation 
computed values generated by com
Maple, MatLab, etc. 

• Operand Modifier modifies the op
initial value calculation. The value 
of Equation (15). It is evaluated by
starting from 10th digit for this desig
of operand(s) depends on the selecte

• State Counter drives the multiplex
inputs to the packed multiplier dur
of Newton-Raphson iteration. T
Equation (11) requires three multip
on selected operation mode the in
are in double precision or pack
format as shown in Fig. 3. In the se
multiplexers are arranged for multi
value(s) and modified mantissas as 
In the fourth cycle, multiplexer
multiplication of computed ini
value(s) and the input mantissa(s) i
And, in the sixth cycle, multiplex
multiplication of stored initial val
value(s) of inside parenthesis of the 

• Packed Multiplier is 53 by 53 
modified to handle two single and o
number as described. The input for
shown in Fig 2. Multiplication 
selected operation mode. 

• Packed Product Generator proce
packed multiplier and generates o
stages of iteration. The output of th
register. The format of output is t
double mantissa or two 24-bi
depending on selected mode. The m
in Fig. 3. 

• I.A.Store unit stores the Initial App
computed in the second cycle of 
values in Equation (15), which ar
cycle. 

• Inverter inverts the stored multip
compute the expression in the par
(11). The inversion is done dep
operation mode. 

• Single Normalizer(s) normalize th
precision mode. Double Normali
result in double precision mode. T
one left shift if required. 

• Exponent Updater updates the expo
the normalization results. Two 
separately used to update 8-bit expo
or in double mode these decreme
cascade to update 11-bit exponent.  
 

e Equation (23) is 

  (23) 

fied mantissas based 
o prepare the inputs 
in Fig. 3.  
les needed for initial 
on-Raphson method. 
(15). They are pre-

mputer software such 

perands required for 
evaluated here is Â% 

y inverting the digits 
gn. The modification 
ed operation mode. 
xers to select correct 
ring the computation 

The computation of 
lications. Depending 

nputs of multiplexers 
ked single precision 
econd cycle of circuit 
iplication of look-up 
in the Equation (15). 
s are arranged for 
itial approximation 
in the Equation (11). 
ers are arranged for 
ue(s) and computed 
Equation (11) .  

multiplier slightly 
one double precision 
rmat of multiplier is 
output depends on 

esses the output of 
output used in next 
his unit is stored in a 
truncated one 53-bit 
t single mantissas 

mantissas arranged as 

proximation value(s) 
circuit. These are xi 
re needed in fourth 

plication result(s) to 
renthesis of equation 
pending of selected 

he result in single-
izer normalizes the 
The normalization is 

onents depending on 
decrementers are 

onents in single mode 
enters are connected 

 
Fig. 6. The proposed single/doub

 
5. Synthesis Results 

 
In this section we present th

proposed single/double precision f
We use the design in [7] as referen
floating-point reciprocal unit w
estimations include design of unsig
propagate-adders and a controllin
Both circuits are modeled usin
Synthesis of the circuit is done usi
library and Leonardo Spectrum 
optimized for delay. The clock d
terms of number of gates) for both
The values in Table 1 are in n
number of gate for area. 

 
Table 1. The comparison of the s
proposed floating-point reciprocal 

 

Design # of Ga
Reference 
Double Precision 31979 

Single 
/Double Precision 33997 

 
The single/double precisio

approximately 6% more area and
delay.  The most critical delay occ
of the multiplier we used is sli
difference occurs in delay. The a
negligible grows in design. The f
used in modern processors are us
design performs two single-precisio
latency which is dissolved in pipeli

 
 

 

ble precision reciprocal unit 

he synthesis results for the 
floating point reciprocal unit. 
nce standard double precision 

with some estimation. The 
gned radix-2 multiplier, carry-
ng logic for the multiplexers. 
ng structural VHDL code. 
ing TSMC 0.18 micron ASIC 
program. Both circuits are 

delays and area estimates (in 
h designs are given in Table 1. 
nanoseconds for time and in 

standard double precision and 
designs. 

ates Latency 

3.86 Ns 

3.94 Ns 

on reciprocal unit has 
d has about 3% more critical 
curs in the multiplier. Because 
ightly modified a negligible 
additional circuits cause also 
floating-point reciprocal units 
sually pipelined designs. The 
on reciprocal with about same 
ine stages. 

II-355



6. Conclusions 
 

This paper presented a reciprocal unit for multimedia 
applications. The design operates on SIMD type data input. The 
accuracy of the results are 20 bits for each iteration. Compared 
to the previous reference designs less than 1% area increase and 
delay increase is reported based on synthesis results. However 
the functionality of the reciprocal unit is improved to support 
three operation modes. The mode that generates two different 
reciprocals simultaneously is expected to double the 
performance of single precision division operations. The 
proposed unit can be expanded to support reciprocal-square-root 
operation with additional circuit and modifications 
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