SR
2

~) o
A
TGN <

ot

YILDIZ TECHNICAL UNIVERSITY
FACULTY OF ELECTRIC AND ELECTRONICS
DEPARTMENT OF COMPUTER ENGINEERING

SENIOR PROJECT

DEVELOPMENT OF THE SIMULATION AND THE
GRAPHICAL CONTROL INTERFACE OF A MAP
BUILDING ROBOT

Project Supervisor: Assist. Prof. Sirma YAVUZ

Project Group
[brahim OK, 03011044

[stanbul, 2007

© Copyright Yildiz Technical University, Department of Computer Engineering

il

TABLE OF CONTENT
ADDIEVIATION LISt ..uiiiiiiiiiiieiie ettt ettt et st e et e st e ens v
FAGUIE LISt ..eeiiieiiieeie ettt ettt et e ettt e st e e beesabeenbeesnbeenseennneenne \%
21 o) (T I] OO PRUSRRRRRRS vi
PrETACE ..ottt ettt e vii
OZEL ettt ettt et e e hb e et e e bt e e s bte e s bt e e eabeeas viil
ADSTIACE ...ttt ettt b et b e et h e bt e b st e bt et X
1. INTRODUCGTION ...ttt ettt ettt sttt et sttt st e b e e s enees 1
1.1. RODOLIC SYSTEIMS ..eeeiiiieiiiieiiieeciieeeieeetee et e ettt e eteeesteeesaeeesbeeesnseeesnseeenseeens 1
1.2. Definition Of The Robot For Which The Interface Will Be Built..................... 3
1.3, PIOJECT SCOPE ..veeneiieitieiie ettt ettt ettt et ettt e et esteebeesabeentaesnseenseesnseensaens 4
2. FEASIBILITY STUDY .ottt sttt sttt st 5
2.1. Technical feasibility StUAYccccuieiiiiiiiiice e 5
2.1.1. Establishing the hardware to be used...........ccccoevieniiniiiniiiiieeeeee 5
2.1.2. Establishing the software to be used in the studycccceveeviiiiiniincnenn. 5
2.1.2.1. Basic Software TOOISccccerierirriieienieieeeeee e 5
2.1.2.2. Why Java and Netbeans...........ccccveveieiriiiieniieeciie e evee e 5
2.1.2.3. The Operating SYStEIMccceevuiruerienerienienieeieneeseeee e 6
2.2. Economical feasibility study..........cccoeeuieriiiiiiiniieiieieeeee e 6
2.2.1. SOFIWATE COSt....eeiiiiiiiiiiieeieet ettt 6
2.2.2. HArdWare COSEocuueiiieiieiiieiee ettt ettt et e 7
2.3. Legal Feasibility Studycccoviiiiiiiniiiiiiceceeece e 7
2.4. Alternative Feasibility Studyccccoeviiiiiiiiiiiieeeeec e 7
3. SYSTEM ANALYSIS .ottt sttt 8
3.1, System ANAlYSIS STEPS ...vveeiriiieiieeeiieeeieeeriteeesteeesreeeteesteeeeaeeesseeesreeeneaeeenes 8
3.2. System analysis defining possible problems and solutionsc.cccceveeunenne. 8
3.3. Defining the hardwWarecccoooieiiiiiiiieiiieeeeeeee e 9
3.4. Defining the SOftWareccovciiriiiiiiie e 10
4. SYSTEM ARCHITECTUREcocoimiiiieiceeeeeeeeeeeeee e 11
4.1, MICTOCONIOLLET ...t et 12

4.1.1. Microchip T8F452.......uiiiiiiieieeteee ettt et s 13

i1

4.1.2. Microchip 12F675 Encoder Data Retrievecccccvveviieeeieeecieeeieeene, 13

4.2. RF COMMUNICATIONeiutiiiiieiiesiie ettt ettt ettt sttt esareenaee e 13

4.3 SEIVO .ttt ettt ettt ettt e e ab e et e e 14

4.4, INrared SEINSOTS ..c..eeuviriiiriieieeiierieee ettt sttt ettt 16

4.5. Dc Motor and ESC......ccc.ooiiiiiiiiiiieeee et 18

4.6, BNCOAELT ...ttt ettt et e 18

A 01 1<) 11 0] 1411 1<) SO URUP SR UPOUSRRRRPI 19

4.8, SWILCHES ...ttt ettt ettt ettt 19

5. COMMUNICATION PROTOCOL PACKET SCRUCTUREcccccocvvviirieienne. 20
T B 1 U] KRR 21

5.2 S ettt ettt nte et e se e aeenaennaens 21

5.3 LRNGEN ittt enees 21

5.4 AQATESS .ttt ne s 21

5.5 CONMIOL ..ttt et sttt e 22

5.6, PAYIOA........iiiiiiiie et 23

5.7 GOttt sttt e 24

6. COMMUNICATION PROCESSES. ..ottt 25
6.1. Simulation Side (Robot Side) Communication Processccccceeevveeennnenn. 25

6.2. Computer Side Communication ProCesscccccveerervueriineriienicneeienieniene 27

7. PROCESSES OF SYSTEM. ...ttt 28
8. DIAGRAMS AND SCREENSHOTSooiiiiiiiieieeeee et 31
8. 1. FIOW DIQ@Iamcccuviiiiiiieciieeeiee ettt et e e e e e sae e enaeeens 31

8.2. ER DIAGIAIM ..ottt sttt et e 32

8.3. UML DIaZIamSc.ueieiiieiieeiiieiie ettt ettt ettt eteestteeaeessaesbeesseesnseesaeenseas 34

8.4, SCIEENSNOLS ..ot 36

0. CONCLUSION......cutttiete ettt ettt ettt et et e st et e e st e st entesseenseenseeneenseenes 444

10. REFERENCESoiiiiiieeee ettt s 455

v

ABBREVIATION LIST

GUI
RF

IR

IDE
SWT
UML
UART
USART
SFD
SYNCH
PC
(M)Hz
MMC
NACK
/O
EMI
ESC
A/D
ACK
CPU
CRC
D/A
DC
DIP

Graphical User Interface

Radio Frequency

Infra Red

Integrated Development Environment
Standard Widgets Toolkit

Unified Modeling Language
Universal Asynchronous Receiver Transceiver
Universal Serial Asynchronous Receiver Transmitter
Start Frame Delimiter
Synchronization

Personal Computer

(Mega) Hertz

Main Microcontroller

Negative Acknowledge

Input / Output

Electromagnetic Interference
Electronic Speed Control

Analog to Digital Converter
Acknowledge

Central Processing Unit

Cyclic Redundancy Check

Digital to Analog Converter

Direct Current

Dual In-Line Package

FIGURE LIST

Figure 4.1 The work flow of System.............oooiiiiiiiiiii e 11

Figure 4.2 Futaba S3003..ot 14
Figure 4.3 “J7” Type CONMNECLOT.oouiintt ittt et et e e eee e e eans 14
Figure 4.4 Pulses and Directions Of Servo..........cvvviiiiiiiiiiiiiiiiiie e 16
Figure 4.5 Infrared Distances Measurement.............cceeiviiiiiiiiiiiiiieiiee e, 17
Figure 4.6 Sharp GP2D12 Infrared Sensor..............coooviiiiiiiiiiiiiinieee 17
Figure 4.7 Channel A and Channel B.................oooiiiii e 19
Figure 5.1 Packet Structure.........o.oviiiiiiiii e et e 20
Figure 6.1 Flow Diagram Of Microcontroller.................cooiiiiii i, 25
Figure 6.2 Flow Diagram Of Computer Side Progress............cocooviiiiiiiiiinnnen.. 27
Figure 8.1 The Flow Diagram Of The Designed System.............c..ooviiiiiiiieenennn.. 31
Figure 8.2 The ER Diagram Of The Designed Systemccovviiiiiiiininenn.. 32
Figure 8.3 The ER Diagram Of The Designed Systemcc.oceeiviiiiieen..... .33
Figure 8.4 The Uml Diagram Of The Designed Classes For Simulation Side............ 34
Figure 8.5 The Uml Diagram Of The Designed Classes For Control Interface Side ...35

Figure 8.6 The First Tab Of The Control Interface Side................ccoeeviiiiininnnn.. 36
Figure 8.7 The Second Tab Of The Control Interface Sidecccccoveiiiiin.. 37
Figure 8.8 The Fifth Tab Of The Control Interface Sidec.cocoiiniiiiiinn. 38
Figure 8.9 The Third Tab Of The Control Interface Sideooiiiinnn.. 39
Figure 8.10 The Forth Tab Of The Control Interface Sidecooviiiniin. 40
Figure 8.11 First Tab after Device Insertion..............cccooiviiiiiiiii i 41
Figure 8.12 The Sixth Tab Of The Control Interface Side................c..cooiiin.t 42

Figure 8.13 Interface Of Simulation Side............cooiiiiiii i 43

vi

TABLE LIST

Table 2.1 Software Cost. e 6
Table 2.2 HardWare COSt.oueinit ittt e e e ee e 7
Table 4.1 MicroCONtrOllerS.vuuine it 12
Table 4.2 Specifications Of Servo........cooiiiiiiiiii i e e 14
Table 4.3 Min Freq and Max Per. Of Pvm................o i 15
Table 4.4 Pulse Duty and Angels Of Servooooviiiiiiiiiiiii e 16
Table 4.5 Encoder Lead DesCriptions.ovuieuiiiiniiitiiiiieteieeeiee i eeee e 19
Table 5.1 Control BYtes.oouiiniiiiii e e e 22

Table 5.2 DevICES AdAIESSES. ...ttt e e e 23

Vil

PREFACE

I take it is a must to express my gratitude to my elder brother Mehmet Ok, who
supported me all through my work and Assistant Professor Sirma Yavuz, who didn’t
denied her very precious help and guidance from me in my work for the completion of
the graduation project in Department of Computer Sciences, Electrical and Electronic

Engineering Faculty, Y1ldiz Technical University.

viil

OZET

Robotlarin insan hayatindaki yeri azimsanamayacak oOl¢iide artmaktadir. Bu artisla
beraber robotun insanlarla ve icinde bulundugu ortamla etkilesime girmesi de
kaginilmaz hale gelmektedir.

Bu c¢alismanin amaci ¢evrenin 6n topolojik bilgilerine ya da bir takim referans
nesnelerinin yer bilgisine sahip olmadan ve ihtiya¢ duymadan robotun ydriingesinin ve
konumunun belirlenmesi isleminin simiilasyonunu ikinci bir bilgisayardan gelen
komutlara gore ger¢ek zamanli olarak yapmaktir. Simiile edilen robot, bilinmeyen bir
ortamda bilinmeyen bir noktadan harekete baslayarak bir taraftan bu ortami algilamak,
bir taraftan da kendi yerini tahmin edebilmek de ve baslangi¢c noktasina dondiigiinii de
algilayabilmektedir. Proje es zamanli konum belirleme ve harita ¢ikarma isinde
kullanilan bir robotun simiilasyonu ve kumanda arayiizliniin olusturulmasini
kapsamaktadir. Projede kullanilmakta olan robotun donanim aksami bdliimdeki
hocalarimiz tarafindan gerceklestirilmistir. Sistem iki bilgisayar ilizerinde c¢alismakda
olup bu bilgisayarlar seri porttan haberlesmektedirler. Programlama icin Java dili
kullanimustir.

1. bilgisayarda, araca iletilecek olan kumanda isaretleri 2. bilgisayardan gelen verilere
gore olusturulmakta ve 2. bilgisayardan gelen veriler izlenmektedir (sensor bilgileri,
motor bilgileri, yon bilgisi ve kamera goriintiilerinin izlenebilecegi bir pencere iceren
bir arayiiz).

2. bilgisayarda ise bir mekanin planini olusturmak iizere otonom hareket etmekle
gorevli araba simiilasyonu ¢aligmaktadir. 1. bilgisayardan komut geldik¢e (6rn. saga
don, hizlan vs.) bu arabanin komutlara uygun hareket etmesi ve kendi ydriingesini

cizdirmesi izlenmektedir.

1X

ABSTRACT

The place of the Robots in human life is on the increase. With this increase the
interaction of robots and people and the environment they act in is becoming more and
more indispensable. One of the pillar stones of this interaction is the ability to define the
environment and locate self in it.

The aim of this study is to perform simultaneous trajectory and location determination
simulation based on commands issued by a second computer. This is done by without
having any topological information of the environment or any reference object location.
The simulated Robot, starting its movement from an arbitrary point in an unknown
environment, is able to map the environment meanwhile also able to locate itself and
determine whether it has returned to the point it started. The project is on the simulation
of a locating and mapping robot and creating the control interface of it. The hardware
part of the robot has been built by our faculty professors. The system works on two
computers which communicate through a serial port. Java has been used for
programming.

In the first computer command signals to be sent to the robot has been created based on
the data from second computer and also data from the second computer has been
monitored (sensor data, engine data, directional data and a window interface to view the
camera on the robot). On the second computer, a car simulation program is running to
create a plan of the environment. If a command from the first computer comes (e.g. turn
right, accelerate etc.) the environment plan is created as the car follows these commands

the process can also be observed.

1. INTRODUCTION

Before we move to the steps of the project let’s see something about structures which

are going to be used. The main structure here is a robotic system.

1.1. Robotic Systems

When people think of a robot, they dream of a machine that is able to walk like people,
has humanlike behaviors, and more importantly a machine which is able to think and
decide like a human is considered. The sci-fi films people watch has a great impact on
this thought. C3PO can be given as a typical example from the Star Wars movies we

have seen years ago and still delightfully follow the new episodes.

As people watch these movies, robots were being used may be not in daily life but in
factories. The best example for this is the Robotic arms that carry parts, paint or weld.
These robots, which are totally different than the robots in our minds, but are like
human arms, are used in many parts of the busy and sensitive factories doing the

monotonous work in patience instead of humans.

With the developing technology, robots in time evolved from arms into machines that
can percept the environment, react to it and able to travel between two points. These
kind of robots are called “the mobile/itinerant robots”. One of the best examples for
such robots is the “Sojourner” designed by NASA to do researches on Mars.

Even though the word “robot” was first used in 1920, the first concepts and robot-like
machines go back as early as 3000 BC. It is known that Ancient Egyptians, Greek and
Anatolian civilizations developed automatic water clocks. In Ilyada of Homeros
manmade female servants are mentioned. It is written in the old books that in 100 BC an
Alexandrian scientist has made automatic doors, fountains etc that run on water or

steam power.

In the closer eras it is told that Leonardo Da Vinci had a walking mechanical lion.

In this progress of robot technology, El Cezeri (12th century AD), not very well known
in western cultures, has many advanced theories and applications on robotic technology

considering his era.

When we consider all samples called robot, it is clear that to define and categorize them
in terms of humanlike functions and appearance is not correct. Therefore the following
definition can be used instead: “Machines that have functions and behaviors that are

alike the live”.

And as the basic properties of robots:

It can be said that they are “self-sufficient in terms of functions and programmable”.

Marked properties of the robotic systems on process level are:

1-Robots can perceive their situation and location, and the environment that they exist
in.

2- They can make decisions based on comparing predefined duties and perceived
environment, their location and situation.
3- By applying the decisions they can change the environment, their situation and
location.

By realizing these functions by machines and in a system, a kind of intelligence is given
to manmade machines and systems. Here, the intelligent behaviors of the machines and

systems are the marked behaviors perceived by man.

It has been accepted that there are important differences between human intelligence
and machine’s and system’s intelligent behaviors in terms of basic concept and
structures. It is expected that these differences will diminish with the current and near

future developments.

The expectations on the Robotics Technology applications in near future will develop
based on the results obtained in robot technology research centers and university

research studies. Industrial expectations are building lighter and faster robots. The most

important factor in robotics technology is to decrease the production cost for the
manufacturing engineers. Similarly industrial mobile robots will decrease the

production cost and increase the output.

1.2. Definition Of The Robot For Which The Interface Will Be Built

The robot used in the project, as can be seen in the picture, is in the form of a car.

IR sensors are widely used in robotic sciences and automation, process control, remote
sensors and security systems in the world. They are generally used in basic object
detection as convergent sensor, counting, ground sensing, position control, depth and
distance monitoring, obstacle sensor, and computer visual systems [24,25,26].

The robot in the project finds out whether there are obstacles around and their distance
thanks to IR sensors and transfers the data to the computer through RF module. As a
map of the environment is created based on these signals, also control commands are

created and sent to the robot by the computer.

Robot and the Computer have created an autonomous system in the project.

The basic movements that the robot perform:

Turning: turning to the degree in the command signal Finding a wall: When the robot is
left in an environment the robot advances until it reaches an obstacle or wall. When it
finds a wall it places itself parallel to it. As in figure 2 the robot senses the wall in
position 1 and turns around until side sensors have the same values. In positions 2 and 3
the differences between sensor values has been displayed in light colors. In position 4
the values of two sensors are the same.

Now that the wall and the robot are in parallel the wall following step can start.

Wall Following: The robot will continue along the parallel wall as long as the difference

in values between two side sensors is below a certain threshold.

Deceleration: It is expected that the robot will decelerate before starting the turn.
Acceleration: Following the turn process, if there are no obstacles in front, the robot

will accelerate.

Above is the introduction of robot and its interface to be used in the project.

Below mapping and interface creation processes, which makes up the core of the

project, will be explained.

1.3. Project Scope

The aim of the project, as mentioned above, is to create an interface for the robot and
ability to create a 2D graphical representation of the environment that the robot moves

in, based on the data received from the robot.

The robot’s environmental data is gathered by the switches and IR sensors and
transferred to the computer through serial communication ports. Switches provide crash
data, and 6 IR sensors provide the distance data to the surrounding objects.

The first computer gathering the data used in this study is called the server and also has
the interface for the audience to follow the process. It also has a command interface
through which users can send command signals to the robot. The second computer
processes the data from the first computer (Server) and creates a 2D graphical
representation of the environment.

The design and application of these programs in the computers defines the scope of the

project.

2. FEASIBILITY STUDY

Feasibility studies are based on the following criteria. These are:

2.1. Technical feasibility study

Before we move to the steps of the project let’s see something about hardware cost.

2.1.1. Establishing the hardware to be used

The cost of the robot in the study is about 4348.6 YTL as calculated by department
staff.

Additional hardware required for the project are serial to serial cable, usb to serial

converter, ,joystick for controlling, interface and 2 P4 computers.

2.1.2. Establishing the software to be used in the study

Before we move to the steps of the project let’s see something about software cost.

2.1.2.1. Basic Software Tools

The programming of the robot has been completed in C programming language.
However the interface software has also been programmed in Java. Netbeans 5.5 has
been used for its easy to use GUI (graphical user interface) tools. Serial communication
libraries (javax.comm) and joystick controller libraries (javax.lwjgl) have been used in

addition to the software.

2.1.2.2. Why Java and Netbeans

Nowadays the cost decreases as much as the software development stage shortens.

Therefore it is very important to use the IDE (integrated development environment)

which speeds up the process. Even though currently the programming language used in
network or multi-user applications are C#, Java, Delphi or C++, the chosen
programming language and IDE for this study is Netbeans. The cause of this choice is
mentioned above.

Alternatively if C++ were used, run time performance would be faster; if C# were used,
communication and graphical design processes would be faster. But the success of the
Netbeans in developing applications has made us choose it.

Furthermore Java libraries provide most advantages and make easier communication

and joystick control.

2.1.2.3. The Operating System

Windows XP Professional operating system is chosen based on the fact there are many

programs for this system.

2.2. Economical feasibility study

A special attention has been paid to have the legal and licensed software in the system

design and hosting. The cost is detailed below.

2.2.1. Software Cost

Before we move to the steps of the project let’s see something about software cost.

Table 2.1 Software Cost

Windows XP Professional $299.00 (microsoft.com)

Netbeans 5.5 0%

TOTAL $299.00

2.2.2. Hardware Cost

Before we move to the steps of the project let’s see something about hardware cost.

Table 2.2 Hardware Cost

P4 PC computer (Simulator) $500.00
Centrino Notebook (Controller) $1000.00
Joystick $15.00
Usb2Serial converter for notebook $20.00
TOTAL $1535.00

2.3. Legal Feasibility Study

The project will be realized in Department of Computer Sciences, Electrical and
Electronic Engineering Faculty, T.C. Yildiz Technical University. All copyrights belong
to the department. Without consent and allowance of the department, the program

cannot be used or copied in any other program or separately in part or as a whole.

2.4. Alternative Feasibility Study

In the application developed it was also possible to create mapping functions only
without the graphical command interface. But that way no intervention and interaction
would be possible externally. This way both the data gathered is displayed (visuals,
speed and direction data) and also the robot can be freely moved through the command

interface.

3. SYSTEM ANALYSIS

Before we move to the steps of the project let’s see something about system analysis.

3.1. System Analysis Steps

1. Obtaining the technical data from robot’s micro-controller designer Hilmi
Kemal Yildiz about the hardware parts.

2. Obtaining comments of our instructors of the project on the remote control of
the Robot.

3. Feasibility studies of the project and determining the required software and
hardware.

4. Designing and creating UML diagrams of the classes based on the

communication protocol.

Definition of inter-class relations and implementation of the classes.

Designing and implementing the interface and classes for the robot simulation.

Creation of the command interface and definition of class relations.

© =N W

After the creation the testing of the command interface and robot simulation
interfaces and updates.
9. Comments of our instructors and updates

10. Handing in the project.

3.2. System analysis defining possible problems and solutions

During system analysis, defining possible problems will provide the chance to take
necessary precautions and will also help to see future problems of following stages,
system development for example. By creating the information system based on the
possible problems the designer will have advantages in the future and also prevent

unnecessary expenses. We can list possible problems and solutions as follows:

a. Users need to be informed on the command interface and its use. Through this

we can prevent misuses and inability to use it effectively

b. In the system requirements command interface and communication parts should
be developed as planned. If any of these have a small mistake whole system is
affected.

c. Properties for software maintenance and all steps taken to develop the system
should be documented. In other case, when we return for maintenance or for a
problem we might pay a great price

d. Project should be tested by someone out of the design team. Thus we can find
out any problem. The following questions answers should be positive by the
testing personnel: can you control all functions of the robot through the remote
control, Is there anything wrong with the communication of robot and the

remote control, and Does the simulation have all properties of the robot?

3.3. Defining the hardware

There will be 2 computers in the project. The computers will use the serial port for

communication. The computers and their uses are listed below.

The computer should be mobile since it will be used for development of command
interface design and robot control. For this reason a Fujitsu Siemens Amilio 1451

Laptop will be used. Properties are as follows:

The simulation computer can just be a desktop computer. The project’s simulation
software will be able to disabled by connecting the real robot. For this reason the

following computer with listed properties is used:

These two computers communicate through the serial port. For the notebook a
USB2SERIAL converter has been used. In addition to this a 12 button 3 axis joystick

has been used as part of the remote control in the Laptop.

A camera and receiver has been used to get pictures from the robot. Receiver has been

linked to an external TV card for the Laptop.

10

3.4. Defining the Software

It is useful to analyze the project in two parts as we did in the hardware.

Eclipse 3.2 has been used for the control computer. To ease the interface design process
Windows Builder Plug-in has been installed on Eclipse. The programming language
used is Java and SWT as mentioned in the feasibility. Finally the Laptop has Windows
XP installed.

Netbeans 5.5 has been used for the simulation program. Just like in control this program

has been written in Java, too. The Desktop Pc has Windows XP installed.

11

4. SYSTEM ARCHITECTURE

The simulation in the project is an identical copy of the slam robot in our school. The
responses to inputs, behaviors, hardware and all other aspects have been simulated
through software. Robot communicates with the control Pc over RF signals. The
simulation and control PC communicates through the same protocol over wire. To give
information about the robot’s parts will help us to understand what the simulation

program does. The following is the robot’s hardware properties.

The work flow of the designed program is as follows:

CONTROL INTERFACE SIMULATION

Devices Values (IR sensors, Encoder, Potentiometer, Switches)

Dc motor and Servo Values

v

Devices Addresses (IR sensors, Encoder, Potentiometer, Switches)

Figure 4.1. The work flow of System

Microcontroller unit of robot is responsible for acquiring the data of surrounding objects
by means of infrared-sensors and switches. Besides this, it is responsible for acquiring
the data of the direction and the speed of the robot by means of potentiometer and

encoder located on the front wheel of the robot.

12

4.1. Microcontroller

A microcontroller could be likened to the “brains” of the robot. It can be programmed
by the designer to accomplish the task at hand. It is responsible for sending commands
to other individual systems in the robot, receiving data from external devices, and
coordinating activities. For this specific project, a number of microcontrollers would
have been appropriate, but two have been chosen for their ease of use, availability of
support, and because they enclosed all of the requirements needed. The Microchip
18F452 PIC and 12F675 microcontrollers have been chosen. Two different

microcontrollers have been chosen, and the table below shows the features of each

microcontroller.
Table 4.1. Microcontrollers
Features Microchip 18F452 Microchip 12F675
Max Clock Frequency (MHz) | 40 8 (Internal)
RAM (Bytes) 1536 64
Flash Memory (Bytes) 32768 1792
EEPROM (Bytes) 256 128
PWM Outputs 2 -
Timers 5(1-8Bit, 3-16Bit, 1-WDT) | 1(1-8bit)
A/D 8/10-Bit 8 Channel 10 bit 4 Channel
Serial Interfaces USART, I2C, SPI -
1/0 Pins 33 6
Package 40-Pin DIP 8-Pin DIP

The need for two different microcontrollers becomes apparent when one investigates the
matter. The 18F452 doesn’t provide enough counter and timer for the requirements of
the encoder. Therefore the 12F675 was used for determining the direction of the front

Wheel by way of encoder.

13

4.1.1. Microchip 18F452

The 18F452 is the main microcontroller, and from this point on will be referred to as the
Main Microcontroller (MMC). MMC will be in control of all the functions of the robot.
The MMC will make use of it’s USART to communicate serially with the RF receiver,
in order to receive the data packets from the vision system. It will also use two data pins
to communicate with external devices such as the 12F675, and the eight analog to
digital on chip converters can be used to interface to local sensors. The 18F452 also
comes in a convenient and popular package, a 40-pin DIP.

The usual connections are made, such as power, clock, and ground, along with the
specific functions that the robot needs to utilize, such as the USART for receiving data

from the RF receiver and some ports to interface to other parts of the design.

4.1.2. Microchip 12F675 Encoder Data Retrieve

The 12F675 has not all of the necessary features to perform the function of the main
microcontroller, but it can use to implement to determine the front wheel direction. The
12F675 solves this problem. It listens the encoder indexes when it change direction, it
interrupts MMC and inform it about the new direction. Therefore MMC only counts the
index and when direction changed it stores the results, clear it’s counter and goes on

counting.

4.2. RF Communication

The RF part of the project has been greatly simplified because both of side computer
and pc use the same RF module. It is a 433.92 MHz RF receiver WIZ-SML-IA from
Aurel. This is a transceivers for point-to-point data transfer in half-duplex mode and its
card integrates a 100kbps XTR transceiver. This device will be used to receive the data
in serially, and should integrate perfectly into our current system through the USART
on the MMC. The MMC listens the RF Module for incoming data by using USART

interrupts.

14

4.3. Servo

Figure 4.2. Futaba S3003

A servo motor is comprised of a DC motor, a gear train, a potentiometer connected to the
output shaft and an integrated circuit for positional control. All this hardware is packaged in a
black casing. A servo motor is used because it is a low power device that has precise control
in the angular position of the front wheel. The servo used in the system is the Futaba S3003,

as shown in Figure 3.1. It’s specification is shown in Table 3.1.

Table 4.2. Specifications of Servo

Speed 0.23 sec/60 degrees at 4.8 v
Torque 44.4 oz/in (3.2 kg/cm) at 4.8 v
Size 1.59”L x 0.78”W x 1.42’H w/0 output shaft
Weight 1.31 0z (37.29)
Connector “J” type with approx. 5
Futaba
“J° Connector

Red (+)

Black (-]
White (Signal)

Figure 4.3. “J” type connector

15

As shown in Figure 6, this specific servo uses a “J” type connector and has three leads to
operate the servo. One for 4V — 6V power supply, second for ground and the third is a control
input signal that carries a pulse width signal. The control signal is used to control the angular
position of the servo. According to the Futaba s3003 datasheet, the servo optimum operating
frequency is 50Hz. The servo is tested using a microcontroller that generates the control
signal from 1ms to 2 ms of a 20ms period (50Hz). In order to achieve 50Hz from the
PIC18F452, software PWM implementation is needed in our case. Hardware implementation
of PWM is faster than software implementation. But we can not run the servo motor by way
of hardware PWM. Because the minimum frequency that can be achieved by hardware PWM
is greater than the operating frequency of servo. Besides this, minimum frequency depends on
the crystal frequency used in the circuit. Minimum frequencies that can be achieved by

hardware PWM are shown in Table 3.3.2.

Table 4.3. Min. frequencies and Max. periods of Hardware PWM

Crystal Frequency Minimum frequency of Maximum period of
Hardware Pwm Hardware Pwm

4 Mhz 250 Hz 4 ms

10 Mhz 625 Hz 1.6 ms
16 Mhz 1000 Hz 1 ms
20 Mhz 1250 Hz 0.8 ms
33 Mhz 2000 Hz 0.5 ms
40 Mhz 2441 Hz 0.4 ms

The pulse train results are shown in Figure 3.3 and Table 3.3. A pulse with 1.5ms puts the
servo to the center. The pulses with 1.0ms and 2.0ms are used to produce 45 degrees
anticlockwise and 45 degrees clockwise rotations respectively. It is also important that the

servo shares the same ground as the microcontroller or the servo may run unpredictably.

16

0.5 ms Pulze Train Servo
LSl lET ” H H ﬂ @ Motor Position Left
] 1.2 ms Pulse Train Servao
[|
1.5 ms Pulse J—H—ﬂ—ﬂ @ Mator Position Midrange

2.5 mz Pulze Train Serva
2.5 ms Pulze M Motor Position Right

Figure 4.4 Pulses and Directions of Servo

Table 4.4. Pulse Duty and Angles of Servo

Pulse Width Duty / ms Angle / degrees
0.5 0
1.0 45
1.5 90 (center)
2.0 135
2.5 180

4.4. Infrared Sensors

These units report the distance to a given target as an analog voltage. Using an analog to
digital converter on the microcontroller, one can determine the range to a given target.
Infrared sensors function by emitting a special wavelength of light invisible to the
human eye unaided, infrared, and then calculating the angle of return of the light. This
method uses simple trigonometry to determine the distance the sensor is from an object.

However, if the light is blocked or reflected away from the sensor, it will not be able to

17

detect the object. The method of measuring distance is shown below in Figure 4.5.

Infrared Distance Measurement.

Object

Point of Reflection fﬁg
ol

Figure 4.5. Infrared Distance Measurement

The infrared sensor, which would fit the project most appropriately, is the Sharp
GP2D12 infrared sensor. It has a range of 10 cm to 80 cm, which should have sufficient
range for our purposes, but it was mainly chosen for the cost. The minimum range of
the sensor is incurred because the angle of return becomes too wide for the width of the

sensor, causing the emitted infrared beam to be unable to be sensed.

Figure 4.6. Sharp GP2D12 Infrared Sensor

Most infrared sensors do not have a maximum range as far as the GP2D12, unless they

are significantly more expensive.

18

4.5. Dc Motor and ESC

DC motors are more common and easily available. Dc motor was used to move the
robot. They are generally more powerful, easier to interface to, and allow the robot to
move faster. However, despite these advantages, they also have a serious disadvantage.
They have no method for exact control of the distance to travel. They simply turn on
and drive and slowly turn off. This is a problem for our project because the robot needs
to have a method by which it can drive a specified distance and stop to survey its
surroundings. It would be possible to implement our own control device to determine
the number of rotations of the wheel by having an encoder get clock pulse each time the
wheel has rotated. However, this measurement is not very precise and therefore the DC
motor must be examined critically in order to interface it properly with the rest of the
mobile platform and achieve the desired goals.

The control of motor was provided by an esc. The working principle is same as servo
motor. A pulse with 1.5ms stops the dc motor. The pulses between 0.5ms and 1.5ms are
used to move forward and the pulses between 1.5ms and 2.5ms are used to move

backward.

4.6. Encoder

Incremental encoders are sensors capable of generating signals in response to rotary
movement. In conjunction with mechanical conversion devices, such as measuring
wheels or spindles, incremental shaft encoders can also be used to measure linear
movement. The shaft encoder generates a signal for each incremental change in
position. The encoder used on robot is Hengstler RI 32. Its resolution is 1024. It has 6
leads. Their descriptions are shown in table 3.6.1. Yellow leads generate one clock
pulse in a cycle. Green and white leads generate 1024 pulses in a cycle. But between
green and white there is 90 degrees phase difference. This difference make possible to

realize the direction of the encoder. This is shown in the figure 3.6.1.

19

Table 4.5. Encoder lead descriptions

Lead Description
Red DC5V/10-30V
White Channel A
Green Channel B
Yellow Channel N
Black GND
Yellow-Black Alarm

o
=
[E]
w
[3¢]

o
=
[E]
w
[3¢]
R

Figure 4.7.Channel A and Channel B

4.7. Potentiometer

Potentiometer is an instrument for measuring electrical potential, on the robot; a
potentiometer was attached on the front wheel in order to obtain direction information.

Because servo motors are reliable but some times they fail because of obstacles.

4.8. Switches

Switches are devices which open or break an electric current; there are eight switches on

the robot to notice collision.

20

5. COMMUNICATION PROTOCOL PACKET SCRUCTURE

The protocol between slam robot and the control has been exactly used for the protocol
used between simulation and the control. This protocol structure has been developed by
our colleague who programmed the microcontrollers. Information on the protocols is

given below.

In this Project the robot is responsible for performing commands sent by computer. That
is to say robot is slave and computer is master. If computer sends a command, robot
carries out this commands, and replies. But in some special circumstances robot acts on
its own. Collision is one of the examples of these circumstances. When the robot

collides with something, it stops moving and makes computer aware of collision state.

Integrating communication through the onboard UART required a significant amount of
research in new areas. However, it was not overly difficult to implement for testing
purposes. A loop can be created that travels along a series of bytes that have the values
to be sent stored in them and send them one at a time.

The packet structure that must be sent to the robot or computer is formatted as follows.

Figure 5.1. Packet Structure

21

5.1. SYNCH

The synchronization byte comes first. This is the flag of the data, if it comes, next byte
(SFD) is expected. The pattern of synch byte is 01010101 (0x55h) because this is the

most difficult byte that can be send by RF due to the nature of RF communication.

5.2. SFD

The second byte is start frame delimiter; this byte is determiner of boundaries. The
pattern of sfd byte is 01111110 (0x7Eh). If this byte is correct, receiver expects the
length byte; else it goes back and waits for synch byte again.

5.3. LENGTH

The third byte is length of the bytes which follow this byte. In other words, this
declares the sum of the length of address byte, control byte, payload bytes and crc bytes.
It can be up to a maximum of 255. Specifying the packet length is necessary because
each packet can contain a different amount of data. For example, a packet containing
all devices information will have the maximum amount of payload. However, a simple
HELLO packet has just 7 bytes. Therefore, specifying the packet length is essential to

coordinating messages properly.

5.4. ADDRESS

The fourth byte shows the sender and receiver addresses. First fourth bits of this byte
show sender address and the next four bits show receiver address. For instance, if
sender address is OxFh and the receiver address is 0xOh then address byte must be

0xFOh.

22

5.5. CONTROL

The fifth byte is control byte. This byte contains control data. Control bytes and their
meanings are shown in the table 4.1.1.1. It is possible to add a new control byte because
of new situations. But these control bytes are enough to handle robot control for now.
These bytes make difference sense for robot and computer. For example collision

packet can only be sent by robot to computer.

Table 5.1. Control Bytes

Control Byte Meaning

ACK (0x00) | Last packet received successfully

NACK Time out while receiving last packet

(0x01)

COLLISION Robot collided with something

(0x02)

ERROR Error in data packet

(0x03)

HELLO To verify the establishment of the connection
(0x04)

ACK means the last packet has been received by computer. When computer sends a
packet and receives its response on time, next packet’s control byte will be ACK.
NACK means that robot’s response to the last packet has not been received on time.

COLLISION means robot collided with something, ERROR means data is received by
one of the side but there is error on data. HELLO is a connection establishment byte. At
the beginning of connection HELLO packet sends to robot, if robot takes this packet, it

resends the same packet to the sender.

23

5.6. PAYLOAD

Payload part of packet is the main data that want to be transmitted. In this project a
flexible packet structure was used. On the robot a unique address was assigned for every
device, and devices are separated into main two groups. In the first group there are
readable devices. Sensors are an example of these devices. Computer only sends
readable devices’ addresses and robot reads the value of these devices and sends to
computer. In the second group there are writable devices. Servo is an example of these
devices. If computer wants to set the value of servo, it must send the address of these
devices and in the following byte value of these devices must be sent. Devices and their
addresses are shown in the table 7. Readable and writeable devices can be distinguished
from each other by checking the most significant bits of address byte. If it is a readable
device, the most significant bit of address byte is 0, if it is a writable device the most

significant bit of address byte is 1.

Table 5.2. Devices’ Addresses

Device Address | Device Name

0x00 IR sensor on the front

0x01 IR sensor on left side front

0x02 IR sensor on left side back

0x03 IR sensor on the back

0x04 IR sensor on right side back

0x05 IR sensor on right side front

0x06 Potentiometer on the front wheel

0x07 Encoder

0x08 Switches (Every bit of this byte shows one of the switch
respectively)

0x80 Dc motor

0x81 Servo

24

This packet structure also gives an opportunity to create different size of payload. We
can only send one of the device information or all of the devices information. Devices’
sequence in the payload is not important.

In some environment EMI can decrease the performance of RF communication. If
packet size increases, at the same time the number of corrupted packet increases. In this
circumstance we can reduce the packet size by demanding devices’ value one by one,

this can increase the performance.

5.7. CRC

CRC bytes are two bytes shows 16 bit CRC checksum. A CRC (cyclic redundancy
check) is a type of hash function used to produce a checksum — a small, fixed number of
bits — against a block of data, such as a packet of network traffic or a block of a
computer file. A CRC "checksum" is the remainder of a binary division with no bit
carry (XOR used instead of subtraction), of the message bit stream, by a predefined
(short) bit stream of length n, which represents the coefficients of a polynomial. The
checksum is used to detect errors after transmission or storage. CRC is computed and
appended before transmission or storage, and verified afterwards by the receiver to
confirm that no changes occurred on transit. CRCs are popular because they are simple
to implement in binary hardware, are easy to analyze mathematically, and are
particularly good at detecting common errors caused by noise in transmission channels.
For substantiality, we used the 16-bit CRC-16-CCITT polynomial x'® + x'* + x° + 1
(0x1021h).

25

6. COMMUNICATION PROCESSES

Before we move to the steps of the project let’s see something about communication

process.

6.1. Simulation Side (Robot Side) Communication Process

START

A 4

f ., . . . \
Initializations

L J
Y

()

Wait for SYNCH byte

G J
A 4

s D

If not SFD go to

L “Wait for Synch byte” state)
y

4 .)

Get length info. and
remaining bytes of packet)

A 4

Process the packet

A 4

Send the result in the same
packet format and go to

“Wait for Synch byte” state

Figure 6.1. Flow Diagram of Main MicroController(18F452)

When robot is turned on, initial values of variables must be assigned. Also timers, ADC

and interrupt settings must be done. After this configuration, robot waits until one of the

26

packets is correctly received. First it waits for SYNCH byte. When it comes, it checks
next coming byte. If it is SFD, it considers the next coming byte is length of remaining
bytes, else it goes back and waits for an other SYNCH byte. When packet is completed,
it starts to process the packet. All of these waitings functions are implemented by using
USART interrupts when new byte comes it goes to interrupt service routine and takes
the new byte. It increases the system performance.

When robot starts to process the packet, first it verifies the data integrity by using crc
checksum. If packet is corrupted it informs computer about the corrupted packet by
using ERROR control byte. If there is no crc error, it controls address information, if it
is correct, it processes the payload or else it does nothing because the packet is not sent
to this robot. Addressing is an important point if there is more than one robot.

If everything is ok, it checks control byte, if it is HELLO byte it resend the same packet
to the sender. If it is ACK or NACK, it processes the payload. Check the address of
device if there is readable device; it reads the value of that device and writes to the
output packet with device address. If there is writable device, it sets the value of that
device to the new value.

After packet processing finishes, it sends the output packet to computer with ACK

control byte. When sending packet to computer it uses interrupt mechanism also.

27

6.2. Computer Side Communication Process

START

A 4

Send Command

A 4

A 4

Take length info. and
rest of the bytes of packet

A 4

Process the packet

If there is an error on packet go to start

~
Wait for response
If response doesn’t come go to start

A 4

Figure 6.2. Flow Diagram of Computer Side Comm. Process

User interface and pc side protocol was written in Java. When we want to send
command to robot, we have to create a packet in correct packet format. After we send
the packet, computer waits for a predefined time if response does not come it resends
the same packet. If response packet comes, computer verifies the data integrity by using
crc checksum. If packet is corrupted it resends the packet else it verifies the address. If
address is incorrect it resends the same packet, else it processes the packet and gets the

results from the payload.

28

7. PROCESSES OF SYSTEM

We need to analyze the flow of the program from two perspectives:
1. Command interface

2. Simulation

First we need to analyze the command interface. As it can be seen in the UML diagram
the command interface consists of 15 classes. The main class of the interface
“Nterfacel” class has been created using the swt technology through windows API. In
the 5 tabs that comes to screen when it is run has remote control functions in the first 3
tabs and functions in the other two tabs used to change the command interface and

program dynamically.

The following are done in the first tab, second tab and fifth tab;

1. When the button on the bottom left “portlar1 bul” is pressed (find ports)
“getPorts()” is called in from the “GetAndOpenPort” class.

2. The port selected from the combo box calls “openPort()” method from the
“GetAndOpenPort” class and the port is opened. At this stage “helloPacket()”
from the CreatePacket class is called and a hello pack is sent and the link to
simulation is established.

3. Following the connection we press “Basla” (start) button and communication
with simulation is initiated and the interface is refreshed through the incoming
and outgoing data packages. Also the map is drawn on the screen. The following
are the steps taken when the button “start” is pressed.

3.1 First the thread “AnaThread” is created and the thread starts to run.

3.2 A package is created within the thread to be sent to the simulation. The
package is sent. Response for the package arrives, the response is
evaluated and the interface is updated, the map is updated through the
incoming response.

4. Communication can be stopped by pressing the “stop” button.

29

5. “start”, “stop” and “pause” buttons can be used to control the music player
embedded in to the interface.

6. We can calibrate the speed and angle through the “calibration” button

7. we can differently use the joystick in the fifth tab. The data from the joystick
controls the speed and angle and controls the simulation. The updated data is

sent to the robot so that it can follow the joystick’s speed and angle.

In the third tab all labels and scripts can be updated. That is through this update the

interface can be translated into any language.

In the fourth tab we can dynamically add devices to the program. First we should add a
groupbox control for the devices to be added and the devices should be added to this
groupbox. In this stage the addresses of the devices can be changed. Through this the

robot will be able to fit in the address changes easily.

For above mentioned update process 5 tables have been created in Access database. You
can find the ER diagram of these tables in the “ER DIAGRAM” title.

Secondly we need to analyze the robot simulation. Robot simulation program runs on
another computer and responds to the control commands like a “slam robot”. The

processes of the simulation are as follows:

1. When program is run simulation is ready to receive commands. “getPorts()” and
“openPort()” functions are started within the main thread and a port is opened
and readied to receive commands from the command interface.

2. When a request from the command interface is received the “receiveAndSend()”
method of the Main class is used to respond.

3. In addition the speed and the direction of the robot can be changed based on the
commands from the command interface. This change is also seen on the map

screen. This map simulates the environment that the robot is moving within. The

30

robot’s sensors and switches updates the data to be sent to the command
interface through “cevreBilgisiAl()” method.

Simulation is designed to respond the requests from the command interface.
When a request is received (which values are being set which values are being
get is determined) a suitable respond is created and sent to the command

interface.

31

8. DIAGRAMS AND SCREENSHOTS

8.1. Flow Diagram

Devices Values (IR sensors, Encoder, Potentiometer, Switches)

A

Dc motor and Servo Values

A 4

Devices Addresses (IR sensors, Encoder, Potentiometer, Switches)

»
»

@DOPHREEEZ= CORHZ200

Figure 8.1. The flow diagrams of the designed system

ZO— 3 C= —n

32

8.2. ER Diagram

degisken

Degisken_Adi
Deqgisken_Tur qgrup_kesxt
grup_location_x
grup_locaiton_y
grup_location_width
grup_location_height

device_adi grup_variable_name

device

device_adresi

eklenen_device
eklenen_device_id
grup_adi
device_chk_variable_name
device_txt_variable_name
device_text
device_location_chk_x
device_location_chk_y
device_location_chk_width
device_lacation_chk_height
device_location_bxt_x
device_location_txt_y
device_location_txt_width
device_location_txt_height
device_adresi

Figure 8.2. The ER diagrams of the designed database

33

== H|sEq 20ARIET BJUEY
H|seq weabosd
2733503

LY 5093

9IS 5993

5 YIS 5093

¥ Yaqias 5083

T (a3

Z \JaawasT 5aEg

T Y3qmas 5=

g e3ueyT5ge)
u3g4E3sad 508

g asned 50e]

ujg4es 5059

QWM ST Usn ajesau 5gey
|g S wisn{ ajesau 5ge]
|q(2 wisn{ ajesaw 5ge]
19/ 1 Wwisn{ ajesau 0]
g nqod” 5083

u3g aedad 58]

19 puneg5ge3

g 4Ep0d " 5q=]

HYIp 5G]

I~ 0Adas 508]

YT auawniisueiod 50
WISk £ 4apoaua 50
WISk 2 4apoaua 5ge]
WIsH T 42poaua 5ge]

Yo JapoousT gge

U3 uoAsEIgIE 5023

Yy uo Besgae]

Yo asuss EyueT Bes GaE]
I 40sUas EyIET 50e]

<

— sy = — = rrom—

~ 9 yims 5099 ~ A4 Masuas EE j05 5999 ~ YA 4pooUsT Z0e)
- 5 Yims 5099 Y7 Josuzs Uo jos S5 YT uo Bes zoe)
P Yas 5089 AL asuas uo sgeq U InsuasT ey s 208
£ s 5= ogdnouB s el pea Iy 50R] Sy AosUSs e IET 2R
T s 50R] ey xogqdnoUBeuong T Ggeg YT 0sUSs e IET |08 2R
s 5087 ey oqdnolET s esau 5aey YT IosUSsTUS T |esT 2Ry
Ui EEy5ge) Py xogqdnoul” pod 5027 YT Iosuas U Zgeq
u3g egsad 59 ey xoqdnoufTopT0sdas 509 g uoAsEIqIE 298]

U =sned 59e] Jray xoqdnouET IS 5089

g 3e3s 5999 e xoqdnoifT JapoiusT 509
L QRN R o V1= =N == Tt =] %23 xoqdnoJb Josuas 5gqe e I e =5
1q0 & WSy s esaur 5g= 8 Y Zgey LT I =7 2= o =3
191 2 wis{ ajesall 5099 £ Yims 29=q 2 OIpE T jRwE s 20e)
190 T unsy agesaui 509 9 YIS Ze] _ T OIpE JRE s 7R
u3q - nqyod- 592 5 oims 2= g7 g Y R|UnER oA 2R
u3q de0d 508 £ ims Z0=] g n|UnEr |04 Zge
197" punog 5929 o e [Ed -] [T e T =5
|9 4=)30d 5= Z s 20e] a2y z9e)
b =] TS 2089 ZolpeiTuoATZge]
EREREN L ela (=5 g aepod zqey ["oipeiTuodTzqey
Y2 =ugmwodisueiod 5gqe] g |ngod”zge] |9 g 2GR
wisH £ IapoIuET e |9 punog Z9=] |97 Pe"zqe]
E_m_v_HNHB_uoU_._mHmn_E 197 =j30dzg=) 1xay xogdnosBeyuey z0e)
st 1 JapoalE 5089 Ay aapwndisuegod Zqey 322y xoqdnosbTyagms Zge)
Y5 IspoIus 5] SR JSpoiUsT Zge) a7 wogdnoE e I0d Zgey
g uoAseg) ey 5099 B Iap0aUET Z0e] ey woqdnoub T lspoousT Zgey
I uo"Ges 599 WSk £ IapoUET Z0e] a7y wogdnoE T 10suas Zgey
i Y3 osuasT eyueT DesTgqe) p sk Z JapoiuET Zge) P wogdnoIE Zinwoy T Zgey
hod P A0sUE e SR v WSk 1 Japoous 28] v ey xogdnosgTinwoyTzge)

¥

g asned yiznui” 1qey
U3 dogs”sznu 1geg
U3 34E35 iEnui 1qey
u3gq uodseqiey 1983

u3g anp 1993

g Ejseq 198y
u3g 2e Jod 1ge)
|9 3400 1qey

g jngpod Tqey
A4TTIRT 19y

WY 0Aas [0e]
Y odisuejod 10e]
Y3 depoiusT [qey

WISk £ 4apoaua 1ge)
WISk 2 J4apoaua 1ge)
WISk T 49poaua 1ge)

Yo Jsosuss uo Oes g
Yo osues Eyle Bes [qe]
HYUI Jasuas EyIET 1R
U3 osUasT BT |05 [gR]
YT osUasT ud |05 1R
I 40suasTudT [ge]

cTY|seq I 0Adas [0E]

Z fIseq JpT 0Adas (e

T seq 2p” oadas 1983

Figure 8.3. The ER diagrams of the designed database

8.3. UML Diagrams

[C] Gui

© switches ¢ ink

@ ==crestex» Gui()

B inkComponante() : vaid

© maini \ ShringlT) «

@ getlLabell() : JLabel
@ setlLabeli(in jLabell :
@ getiLabel2() : JLabel
@ set)Label2(in jLabel2 : JLabel) :
@ geblLabel3() 1 JLabel

@ set)Label(in jLabel2 : JLabel) :
@ getlLabeld() : JLabel

@ setiLabelt(in jLabeld : JLabel) : void

@ getlLabelS() 1 JLabel

@ set)LabelS(in jLabelS : JLabel) : void

@ getlLabelb() : JLabel

@ set)Labelb(in jLabalb : JLabsl) : void

@ getlLabel7() 1 Mabel

@ set)Label7(in jLabely 1 Lsbel) 1 veid

@ getlPanel1() : JPanel

@ setIPanel1(in jPanell 1 JPanal) 1 void

@ getlPanel2() : JPanel

@ setIPanel2(in jPanel2 : JPanel) : void

@ getlPanel) : JPanel

@ setIPaneld(in Paneks 1 1Panel) 1 void

@ oetIPanels) WPanel

@ setIPanels(in jParwls 1 JPanel) woid

@ getITextField1() : MaxtField

© set)TextField L(in jTextFieldl : JTextField) : woid
@ getTextField12() : MextField

@ seb)TextField 12(in TextField12 1 JTextField) : void
@ getITextField13() : MextField

© sel)TextField L30in jTextField13 | ITentField) : void
@ getiTextField14() : MextFiald

@ set)TextField 14(in jTextField14 : JTextField) : woid
@ getTextField15() : MextField

@ seb)TextField 15(in jTextField15 | JTextField) : woid
@ getITextField16() : MTextField

@ setITextField 160in jTextField16 1 ITextField) : void
@ getiTextField17() : MTextFiald

@ set)TextField 17(in jTextField1? : JTextField) : woid
@ getTextField12() : MextField

@ et TextField 18(in jTextField1s | JTextField) : void
@ getITextField13() : MTextField

@ setITextField 190in jTextField19 1 ITentField) : void
@ getiTextField20() : MTextFiald

@ set)TextField200in jTextField20 : JTextField) : woid
@ getITextFielder) : MMextFiekd

@ set)TextFieldi(in jTextFields 1 JTextField) : void
@ getITextField3() : MextField

@ set)TextFieldd(in jTextFieldd 1 JTextField) : void
@ getSwicth2() : JPanal

@ setSwicth2(in swicth2 ; 1Panel) : void

@ getSwitchl() | JPanel

@ setSwitch1(in ewitchd ¢ JPanel) :
@ getSwitch3() : JPanel

@ setSwitch3(in switch3 1 JPanel) 1
@ gatSwitehd() | JPanel

@ etSwitcha(in ewitchd : JPanal) :
@ gelSwitch5() : JPanel

@ setSwitchS(in switchs 1 JPanel) 1
@ getSwitche() JPanal

@ setSwitchb(in svitchi | Panel) :
@ getSwitch?() | JPanel

@ setSwitchT(in switch? : JPanel) :
@ getSwitchs() : JPanel

@ setSwitch8(in switch : JPanel) : woid

@ getlLabels() ¢ JLabel

@ set)Labeli(in jLabeld : JLabel) ; void

© getiTextField2() : ITextField

© set TextField2(in jTextField2 | JTextField) : woi
@ get)TextFieldz() : JTextField

@ set)TextField3(in jTextField3 : JTexiField) : woi
@ gel)TextFieldd() : JTextField

@ setITextField4(in jTextFieldd : JTexiField) : woi
© get)TextFieldS() : JTextField

@ setTextFieldS(in jTextFiekdS ; JTexdField) : wai
© gathciba() ¢ JTextFiald

@ sebAcibet(in acibel : TextField) : void

Label) ¢

it i

O T S T A !

a a a

a

34

[c] Main
© ilericarpan ¢ int
© gericarpan t int
© turcarpan ¢ int

© wski 1 long

© collision : boolean

o gidilen : Roat

@ =<creste=> Main(in app 1 Gui)

@ getPorts() : void

@ openPort()

& receiveAndsend(in is 1 InputStream,in os : OutpulSiream) : void
@ run() : void

@ read&ndCreate(in paylod : byte[]) : byte[]

@ genersteCrelin data : byte[Lin lergth : int) : short

@ helloPacket(in os : OutpuiStreamin is 1 InputStream) + void
@ getPezitifin b 1 byte) 1 int

ain - Gul

© gskiegim 1 double

o vagl ™

© yenlarkay ; int

© yenionx 1 ink

© yeniony ; int

o ileriencodereski : int
© geriencodereski 1 int

© ileriencoderyeni : i

© encoderilerifark
o encodergerifark ¢ i
o alfa : double

© ileri 1 double

int
& geriencoderyeni : int
int
int

© geri : double

© ds : double

© gs : double

© gama : double
© gsérka i double
© rarka t double
© m2 : double

© m2hrka ; double
odiint

o ecki ¢ long

o ensag ¢ int

o enalt : int

@ ==createss Cizlin pal ¢ JPanelin pt 2 ITextField,in ilericm | JTextFieldin gericm @ JTaxtField,in ptText 1 MextFidd,in hizText | JTextField)
@ run{) : woid

@ paint(in g : Graphice) : void

& retumPivel(in hiz ; String) : int

& returnDerece(in pot : String) : foat

| cevreBilgisiAll) ; void

[c] Harita

@ wxcreatess Hartal()

@ intCompanents() vaid

@A -x Haky

© RobotBilgileri
o deriTur : int
© geriTur : int
o i int

@ <=crestes > RobotEigileri()

Figure 8.4. The UML diagram of the designed classes for Simulation Side

35

Figure 8.5. The UML diagram of the designed classes for Control Interface Side

36

8.4. Screenshots

LT8E |2.78B | 3.T8B | 4.T8B | 5.T8B | 6,148 |

Sensorler Servo-Dc Harita
wolt Byte cm Byte Cmfaci

Mon | 1.9607643 | ‘ 100 ‘ |33 | Fservo ‘n ‘ 0.0

#oc 46 ‘ 0.2694
[#] 50l on |U‘3235294 | ‘ 42 ‘ | 100 | ¥
Se Hiz Sifirls

[#] 50l Arka |U‘3235294 | ‘ 42 ‘ | 100 |
[arka |n‘3235294 | ‘ 4z ‘ | 100 |
[¥] 580 Arka |U‘3235294 H42 Hmn |
[sagon |n‘3235294 | ‘ 4z ‘ | 100 |
Encoder Switches
Enoder Eyte Cm
2|

Teri ‘ 16404 62
T ‘ 0 32,0

Potansiyo Metre

ol Byte A
[#]Patansiva |2‘3137255 | i 118 ‘ |—U‘U |
Potla il | Portle | COME | [porac [Basla | ou [Kallbrasyon] [Portkapat | [stat] [_stop |

Figure 8.6. The First Tab Of Control Interface Side

Komuk

Mesafe

Sensorlar

[#] 50l on

Sol Arka

[arka

bot Kumanda

37

‘ 800 e

Switches
(o v|erece oy, [2 | amjsn

| 1708 | 2.T4B [3.748 | 4.TAB | 5.TAE | 6.74B |
Harits
Ko Kallbrasyen
Hiz
aci @l

- Sol ¥an On
on 5ol
@ ileri
O Lot]
sol Yan Arka
Encoder
Encoder Byte Cm Arlea Sal
‘ 10 ‘ Teri | =2 [0 ‘

‘ 100

Geri [O ‘ ‘ g
1 arkasag

100

r S -
N N =
5

Tur 0 29.0

[#] Patansiya 118
Saq Yan Arka
Fortlar
Port oM ¥ E3ggEon

Bound Rate

9000090

On Sag
Fort Bul

Figure 8.7. The Second Tab Of Control Interface Side

bot Kumanda

| 1.788 | 2.788 | 3.788 |

4788 | 5.TAE 6,748 |

38

Sensorlet

on 1nn—|
Solon 777|
Sol Arka 777|
Sag Arka T
Sag On 70 |
Port

Partle COME v
Bound Rate | 115200 v

EButonlar

Devam

Encoder

Encoder

Tieri

Geri

Tur
Potansiya

Servo

Servo

[

Mesafe

Tleri

Geri

Swikch

Sol Yan on

on Sol

Sal Yan Arka

Arka Sol

arka Sag

Sag Yan Arka

Sag Yan On

on Sag

Geckme

‘00®00000

Harita

Figure 8.8. The Fifth Tab Of Control Interface Side

| 1788 | 2,748 | 3.T4B |4.TAB | 5.7aE | 6.74B |

39

=)

tabl text
tabz text

tab3_text

tabd_text

tabs_text

tabs_text
tabl_sensor_grouphoz_text

[serve-ne
Encoder |
tabl_potansiyometre_groupbos_ | Pokansivo M |
Switches

[Harta |
ﬁ?

tabl_servo_de_groupbox_text
tabl_encoder_groupbos_text

tab1_switches_groupbox_text
tab1_harita_groupbox_text
tab1_sensorler_basik_1
tab1_sensorler_baslik_2
tab1_sensorler_baslk_3
tab1_encoder_baslk_t
tab1_encoder_baslik_2
tab1_encoder_baslik_3
tab1_potansiyo_basik_t
tab1_potansiyo_baslk_2
tab1_potansiyo_basik_3
tab1_servo_dc_baslik_1
tab1_servo_dc_baslk_2
tab1_servo_dc_baslik_3
tab1_on_sensor_chk
tab1_sol_on_sensor_chk
tab1_sol_arks_sensor_chk

tabi_arka_sensor_chk
tab1_sag_arka_sensor_chk

Sanfrks |

tab1_sag_on_sensor_chk

Tleri

[Gen |
Tur
[Enoder
Potansivo
ﬁI:

tabl_encoder_1_kisim
tabl_encoder_2_kisim

tab1_encoder_3_ksim
tab1_sncoder_chk
tab1_patansiva_chk
tabl_serva_chk
tab1_de_chk
tab1_partbul_btn
tab1_port_bl
tabl_port_ac_bin
tab1_basla_bin
tabl_dur_btn
tab1_falbrasyan_btn
tabl_muzik_start_bin
tab1_muzik_stop_bin
tab1_port_kspat_bin
tab2_kemut_groupbox_text
[]
Sel r |
Encoder |

tab2_komut2_groupbosx_text

tabz_sensor_grouphos_text
tab2_encoder_aroupbosc_tex
tab2_portlar_grouphos_text
tab2_switches_groupbos_text
tabz_harita_groupbox_text
tab2_scl_lbl

tab2_aci_birim_lbl
tab2_yon_radio_1
tabz_yon_radio_2
tab2_hiz_lbl

tab2_hiz_birirm_lbl
tab2_yol_uzunhuk_lbl
tab2_yol_uzunluk_birim_It
tab2_jstikamet_radio_1
tab2_istiksmet_radio_2
tab2_baslat_1_btn
tab2_bitr_1_btn
tab2_baslat_z_btn
tab2_bitr_2_btn
tab2_kalbrasyon_btn

tab2?_on_sensor_chk | on
tabz_sol_on_sensor_chk [Solon |

tab2_sol_arks_sensor_chk
tab2_arka_sensor_chic
tab2_saq_arks_sensor_chk
tab2_sag_on_chk
tabz_encoder_chk
tab2_encoder_1 _kisim
tabz_encoder_2_kisim
tab2_encoder_3_kisim
tabz_encoder_baslk_1
tab2_encoder_baslk_2
tabz_potansiometre_chk
tab2_portlar_lbl
tabz_bound_lbl
tab2_porthul_bitn
tab2_portac_btn
tab2_switch_L
tab2_switch_2

tab2_switch_3 | Sol ¥an Arke |

tabz_switch_4 [arkasol |
tab2_switch_5 [arkasan |
tabz_switch_&

tabz_switch 7
tabz_switch_8
tabs._sensor_groupbox_text [

tabs_encoder_groupbos_te | B

babs_switch_groupboz_te | Swikch

babS_port_groupboe_text | Port

Mesafe
ibonlat

tabS_mesafe_groupbox_tex

tabS_butanlar_groupbosx_t
tabs_thread_geckme_grou |
tabS_on_sensor_chk
tabs_sol_on_sensor_chk
tabS_sol_arka_sensor_ch
tabs_arka_sensor_chk

| Arka
tabS_sag_arka_sensor_chk | SacArks |

tabS_sag_on_chk |

tabs_kalibrasyon_btn
tabS_encoder_chk
tabS_encoder_1_kisim
tabS_encoder_2_kisim
tabS_encoder_3_kisim
tabS_potansivometre_cht

| tahs_messfe_kisim_1 bl

.| tabS_restart_bin
. |tabS_harka_groupbox_text

tabS_bound_lbl
tabS_portac_btn
tabS_portbul_btn

[Bound Rate |

tabS_mesafe_kisim_2_bl
tabS_mesafe_kisim_3_bl

v | tabS_mesafe_kisim_3_birim_|t misn]
| tabS._start_btn

[Basla]

tabS_pause_btn

| 50l an on

tabS_switch_1
tabs_switch_2
tabS_switch_3
tabs_switch_
tabS_switch 5
tabs_switch_6
tabS_switch_7
tabS_switch_8

[Sa0 van on

tabS_servo_chk

= program_basik [Robot kuma |
| Kalibrasvon
[
Calisilacak Arac
@ simulasyon O Robot
GUNCELLE

tabs_dc_chk
tabS_portlar_jbl

| Partlar

Figure 8.9. The Third Tab Of Control Interface Side

bot Kumanda

| 1788 | 2,748 | 3.T48 | 4.TAB [5.7a8 | 6.74B |

40

)

bir device grubu (groupbox) eklemsk icin asagidski bigieri doldurunuz.
GroupBox Ekleme Islemleri Device EKleme Islemleri

Grup Basligi ‘

Grup

Dedisken Adi Device Text

U

Grup Lokssyan Bilgieri
£ ®

‘width Width

Height

EKLE

Robotta Onceden Bulununan Device Adres Ayarlari

Height

il

GrupBox Ekleme fpuglan
©On Sensor
1. Group Box Koardinatlan
Sol On Sensor
x=62y=10
genislik =223, yukseklik = 28
ke Sol Arka Senso

L
L]
= |

2. Group Box Koordinatlari Arka Sensor

|
Saq Arks Sensor | 4

x=622,y=207
genislik = 223, yukseklik = 28

[

i Sonar 4

Device CheckBox Lokasyon Bilgieri

16

Device Eklemek Icin Asagidaki bilgileri doldurunuz,

Device Adresi

Width

Height

Fotansiyo Metre ‘

Encoder Z
Sutches 5
o 128
Serwo 123

SagOnSensor | 5

GUNCELLE

Device Wariabls Nams -
3

Device TextBox Lokasyon Bilgieri

Daha Once Eklenmis Olan Devicelar ve Grouplar Asagidadir,

Yarolan Devicelsr

127

149

Devics Adi |

Secilen Device'i Sil

Grup Ad

Varolan Gruplar

L &

Secilen Grubu Sil

Device Ekleme Ipuclari

CheckBox

Lx=38,y=23,gen—85,yuk—16
2.x=38,y=67,gem—85, yuk =16
3x=38 y=111,gen =85, yuk=16
4x=138 y=152, gen=85,yuk =16
5x=38, y=197 gen=85,yuk =16
6.x=38,y=238, gen—85 , yuk = 16

TestBox
x=127,y-19, gen—67, yuk =25
x=127,y=64, gen =67, yuk =25
x=127,y=108, gen =67, yuk =125
x=127,y=149, gen =67, yuk =125
x=127,y=194, gen =67 yuk =125
x=127,y=235, gen— 67, yuk =125

Figure 8.10. The Forth Tab Of Control Interface Side

41

I Robot Kumanda

LTAB [2.7AB | 3.TAB | 4.TAB | 5,748 | 6,708 |

Sensarler Servo-De Sonar Sensorler Harita
volt Byte cm Byte Cmfac

P — V] Si 1
on |U Hn Hn | e ‘U i 20l
Bei [5| ¥* NN CO -

v
[¥] 50l Arka |n HU HU | [¥]sonar 3

Jone

v/
Flarka |El HD HD | [¥] Sonar 4

[F]5ag Arka |n HU HU |

[#]5ag On |U Hn Hn |

Encoder Switches

Enoder

Teri
Geri

Tur

Fotansiyo Metre
Volt Byte Ad

[FlPatansive |n | ‘ [‘ |n |

[Portaribul | portc

[kalbrasyon | o EEEETE

Figure 8.11. First tab after device insertion

42

M Robot Kumanda

| 1748 | 2,748 | 3.748 | 4.TaB | 5.TAB | 6.T4B |

Figure 8.12. The Sixth Tab Of Control Interface Side

< Robot Simulasyonu

ol bilgileri

leri gem)y (277
gerifcm) [0

birim kit |11

encoder bilgileri
leri IT—
geri 'E_u
tur 'l(—..

Hiz Eilgileri

mator]E 49

hiz misn
én Bilgileri

SErv E

potansiyometre |-

aci 20,0

43

£ Harita

Figure 8.13. Interface of Simulation Side

44

9. CONCLUSION

Firstly, I am glad to send my best wishes to my instructors by the help of whom

I have learned a lot.

Developing the Senior Project is a mile-stone to cope with the difficulty of
getting started to direct an overall study of B.Sc. towards a solution for a real problem. I
am glad for finishing successfully off the project and having the chance to set it up into

the real life.

The Slam robot of our department has been simulated, a command interface for

the robot and the simulation has been designed for this project.

Thanks to the project, a deep knowledge of the serial port communication has
been obtained, many facilities of the Java program has been used, a firm experience has
been obtained on the SWT subject of the java technology, a beginner level experience
for game programming has been obtained, a sense of experience has been obtained on

the real time systems and a project to be remembered proudly has been completed.

I personally want to thank all who contributed.

45

10. REFERENCES

[1] MANNING - SWT JFace in Action - GUI Design with Eclipse 3.0

[2] Wrox.Professional.Java.Native.Interfaces.with.SWT.JFace.Feb.2005.

[3] O'Reilly - SWT - A Developer's Notebook

[4] DEVELOPMENT OF A MAP BUILDING ROBOT’ S MICROCONTROLLER
SYSTEM(Senior Project Kemal Hilmi Yildiz /2006-1)

[5] http://java.sun.com/j2se/1.5.0/

[6] Jim Zyren, IEEE 802.11g Explained. Director of Strategic Marketing Intersil
Corporation, Wireless Networking. December 6, 2001.

46

CIRRICULUM VITAE

Name : Ibrahim

Surname : Ok

Birth date :06.09.1983

Birth place : Istanbul

High School : izmir Konak Hiirriyet Lisesi

Work Experience :

July 2005 - September 2005 : CMS A.S. (IT Department)
March 2007 — May 2007 : Ferda Bilgisayar LTD. STI (IT Department)

